
Low Power LDPC Decoder with Efficient
Stopping Scheme for Undecodable Blocks

Tinoosh Mohsenin, Houshmand Shirani-mehr and Bevan Baas

Abstract—An efficient technique for early detection of un-
decodable blocks during LDPC decoding is introduced. The
proposed method avoids unnecessary decoding iterations by
predicting decoding failure and therefore results in significant
improvement in power and latency in low SNR values. The
proposed method which has a low hardware overhead com-
pares the parity checksum against predefined threshold values
for three iterations and terminates decoding if a condition is
met. A 5.25 mm2 10GBASE-T Split-Row Threshold decoder is
implemented using the proposed technique in 65 nm CMOS.
The postlayout results show that at low SNR value of 3.0 dB,
the decoder requires 2.3 times fewer decoding iterations which
results in 23 pJ/bit energy dissipation. This is 2.4 times lower than
the energy dissipation of Split-Row Threshold decoder without
the proposed early stopping technique.

Index Terms—early termination, undecodable blocks, full par-
allel, LDPC, low power, energy efficiency, 10GBASE-T, 65 nm
CMOS

I. Introduction
Low-density parity-check (LDPC) codes [1], [2] have been

adopted by many communication standards due to their signif-
icant error correction performance. An efficient technique to
reduce the energy dissipation and decoding latency is through
controlling the number of decoding iterations that a block
requires for a successful decoding convergence. The common
method is to verify if the computed codeword satisfies all
parity check constraints, at the end of each iteration. Once
convergence has been verified, the decoding process is termi-
nated. However at low SNR ranges it happens frequently that
a block can not converge to a valid codeword even after a
maximum number of decoding iterations (Imax). Thus early
detection of an undecodable block is desired to avoid unnec-
essary iterations and therefore to reduce power dissipation and
decoding latency.

There have been recent studies to determine undecodable
blocks at early decoding stages. The proposed stopping meth-
ods in [3], [4] monitor the convergence of mean magnitude of
variable nodes and check nodes, respectively. The proposed
technique in [5] uses the number of satisfied parity check
constraints as the decision metric. In contrast, in [6] the sum-
mation of unsatisfied parity check constraints are monitored.
These two methods track the fluctuation of parity checksum at
a certain number of iterations and compare its magnitude with
threshold values which are SNR dependent. All the previous
methods propose a tradeoff between error performance and
decoder hardware complexity.

In this work instead of checking the fluctuation of parity
checksums at every iteration, we compare the parity check-
sum against a set of predetermined threshold values at three

iterations. The threshold values and the iteration number are
obtained empirically for the LDPC codes which are used in
the system. For illustration of our proposed algorithm we use
(6,32) (2048,1723) RS-LDPC code [7] which is adopted by the
10GBASE-T standard [8]. The proposed algorithm can be used
in both MinSum and SPA decoding methods. Because of the
significant benefits of recently proposed Split-Row Threshold
decoding [9] in circuit area, delay and power reduction we
implement the proposed algorithm for Split-Row Threshold
decoder.

II. Background

An LDPC code is defined by an M × N parity check
matrix H, which encapsulates important matrix parameters:
the number of rows, M, is the number of check nodes; the
number of columns (or code length), N, is the number of
variable nodes; row weight Wr and column weight Wc, which
define the 1’s per rows and columns, respectively.

The LDPC decoding algorithm works by performing an it-
erative computation known as message passing. MinSum Nor-
malized [10] is among the most common iterative message-
passing algorithms. The recently proposed Split-Row [11] and
Split-Row Threshold [12], [9] algorithms significantly reduce
the interconnect complexity and circuit area by partitioning
the links needed in the message-passing algorithm.

Both algorithms are defined by a check node update equa-
tion that generates α, and a variable node update equation that
generates β.

A. MinSum Normalized and Split-Row Threshold Decoding
Method

The MinSum Normalized check node update equation is
given as:

αi j = SfactorMS ×
∏

j′∈V(i)\ j

sign(βi j′)︸ ︷︷ ︸
Sign Calculation

× min
j′∈V(i)\ j

(|βi j′ |)︸ ︷︷ ︸
Magnitude Calculation

(1)

where αi j message magnitude is generated using the minimum
value of |β| messages from all variable nodes V(i) connected
to check node Ci as defined by H (excluding V j). The
normalizing scaling factor SfactorMS is included to improve
error performance.

In Split-Row Threshold the check node processing is par-
titioned into Spn nearly-independent simplified partitions. αi j

message in each partition Spi is computed as follows:

αi j:S pi = SfactorSplit ×
∏

j′∈V(i)\ j

sign(βi j′)︸ ︷︷ ︸
Sign Calculation

× MinS pi︸ ︷︷ ︸
Magnitude Calculation

(2)

In Eq.2, sign computation is complete. However, MinS pi is
computed based on a comparison between the minimum value
of |β| messages in partition Spi and a predefined threshold
value (T). A minimal amount of information is transferred
amongst partitions to ensure computational accuracy while
reducing global communication: One is the sign bit (Sign)
computed in each partition. The other is a single bit in-
formation based on a comparison with threshold T and is
called Threshold en. These two signals are sent between each
partition. Details of the algorithm are found in [9].

Both algorithms are followed by the variable processing
step which computes β messages according to Eq.4. At the
end of each iteration l, sign of z(l)

j is taken as the estimated
codeword bit x̂ j (mapping +1 to 0 and -1 to 1). The parity
checksum value (checksum(i)) corresponding to check node
Ci is computed by Eq.6, where

⊕
represents binary addition.

Syndrome (s(l)
check) is found by adding all checksum(i) values

according to Eq.7. If checksum(i) = 0 for every check node
Ci, a valid code is found and the decoding process can be
terminated.

III. Proposed Stopping Scheme

It is shown that the block is most likely decodable if
syndrome value (sCheck) monotonically decreases as decoding
iteration count (l) increases [6], [3]. In contrast, for undecod-
able blocks, sCheck fluctuates in a range of magnitudes. Figure 1
shows the variation of checksum for a (6,32) (2048,1723)
LDPC code versus iteration count, at SNR=4.0 dB for 1000
blocks. As shown in the figure, for majority of decodable
blocks s(l)

check starts decreasing within iteration interval of 4 to
6. Based on this observation, the algorithm works as follows:
at the end of each iteration, it computes the syndrome (s(l)

check)
from decoded bits x̂. If s(l)

check = 0 , it means decoder has
converged and decoding process is terminated. Otherwise, if
current iteration l = Itercheck − 2, Itercheck − 1 or Itercheck, it
compares S Check with a corresponding threshold value (T H1,
T H2 or T H3). If s(l)

check is larger than all three values for
corresponding iterations Condition 1 is met, which implies
that the decoder most probably can not converge within
maximum number of iterations thus it terminates decoding.
The algorithm is summarized in Algorithm 1.

A. BER Simulation Results

The error performance depends strongly on the choice of
threshold values. If the threshold values T H1, T H2 and T H3
are very large, it is less likely that Condition 1 can be met and
therefore algorithm converges to original Split-Row Threshold,
thus the error performance and average iteration remain the
same. On the other hand, if the threshold values are very
small, Condition 1 is always met which results in decoder

2 4 6 8 10 12 14
0

20

40

60

80

100

120

140

160

180

200

Iteration Count

S
C

he
ck

su
m

 V
al

ue

Fig. 1. Syndrome values versus iteration count for (2048,1723) LDPC code
at SNR=4.0 dB. The likely values of iteration count that can be checked for
undecodable blocks are highlighted.

Algorithm 1 Stopping Scheme Algorithm
Require: λ, i.e. channel information

for l = 0, 1, . . . , Imax − 1 do
for i = 0, 1, . . . ,M − 1 do

for j = 0, 1, . . . ,N − 1 do
do Eq.1 or Eq.2

end for
end for
for i = 0, 1, . . . ,M − 1 do

for j = 0, 1, . . . ,N − 1 do

z(l)
j = λ j +

∑
i

α(l)
i j (3)

βi j = z(l)
j − α

(l)
i j (4)

x̂ j =

{
1, if z j ≤ 0
0, if z j > 0

(5)

checksum(i)(l) =
⊕
j∈V(i)

x(l)
j (6)

s(l)
check =

M∑
i=1

checksum(i)(l) (7)

end for
end for
if s(l)

check = 0 then
Terminate decoding

else if l = Itercheck then
Condition 1:
if s(l−2)

check ≥ T H1 and s(l−1)
check ≥ T H2 and s(l)

check ≥ T H3 then
Terminate decoding

end if
end if
l = l + 1

end for

3 3.4 3.8 4.2 4.6
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

E
rr

or
 P

ro
ba

bi
lit

y

BER Split−Row Threshold
FER Split−Row Threshold
BER Proposed
FER Proposed

(a) BER and FER

3 3.4 3.8 4.2 4.6
0

2

4

6

8

10

12

14

16

SNR (dB)

A
vg

 It
er

at
io

n
N

um
be

r

Split−Row Threshold
Proposed

(b) Average number of iterations

Fig. 3. (a) Bit error rate (BER) and frame error rate (FER) and (b) average number of iterations versus SNR for (2048,1723) LDPC code.

0
50

100
150

0
50

100
150

10−7

10−6

10−5

10−4

TH1
TH3

B
E

R

Fig. 2. Bit error performance of (2048,1723) LDPC code versus two threshold
values. T H2 is chosen to be 95.

termination before maximum number of decoding iterations
and therefore error performance becomes worse.

The optimum values for itercheck, T H1, T H2 and T H3 are
obtained by empirical simulations. We use BPSK modulation
and an additive white Gaussian noise (AWGN) channel for
all simulations. Simulations were run until 80 error blocks
were recorded. Maximum number of iterations Imax is 15. For
the 2048-bit 10GBASE-T code using Split-Row Threshold,
itercheck = 6, T H1 = 120, T H2 = 95 and T H3 = 100
result in optimum error performance and average iteration
count. To further illustrate the impact of the threshold value
on error performance, Fig. 2 plots the bit error performance
(BER) of a (6,32) (2048,1723) versus T H1 and T H3 values
at SNR=4.3 dB. As shown in the figure, for T H1 and T H3
larger than 100, there is no significant improvement on the
BER indicating that the error performance is near to that of
original Split-Row Threshold. Fig. 3 (a) and (b) show bit error
rate (BER), frame error rate (FER) and average number of
iterations versus SNR for the the 2048-bit 10GBASE-T code
using Split-Row Threshold and the proposed stopping method
with optimum threshold values T H1 = 120, T H2 = 95 and
T H3 = 100. As shown in the figure, the proposed algorithm

performs very closely to Split-Row Threshold with a 0.04 dB
gap at BER = 10−7 and with 2.4 times less iteration at best
case.

IV. Full parallel Decoder Implementation and Results
The block diagram of a full parallel implementation of Split-

Row Threshold decoding with the proposed stopping method
is shown in Fig. 4. The decoder consists of Spn partitions,
each partition performs check node processing in parallel and
sends its S ign and Threshold en signals to the next partition
according to Split-Row Threshold algorithm [9]. These are
the only wires passing between the partitions. In full parallel
implementation, all check and variable processor outputs are
updated in parallel, and as shown in the block diagram, it
takes one cycle to update all messages for one iteration. At
every iteration, the Syndrome check block computes S check

and compares it with zero and also with T H1, T H2, T H3 or
Max S Check at corresponding iteration (iteration = itercheck −

2, itercheck − 1 or itercheck or else). If Condition 1 is met or
S check = 0, or iteration count reaches maximum number of
iterations Imax, a signal (Termination en) is sent to registers
to disable the clock and therefore terminate decoding process.

To further investigate the impact of the proposed stopping
scheme on the hardware implementation, we have imple-
mented two full parallel decoders using original Split-Row
Threshold and the proposed method for the (6,32) (2048,1723)
10GBASE-T LDPC code in 65 nm, 7-metal layer CMOS.

The parity check matrix of the 10GBASE-T code has 384
rows, 2048 columns, row weight 32 (Wr = 32), column
weight 6 (Wc = 6) and information length 1723. The fully-
parallel MinSum Normalized decoder has 384 check and 2048
variable processors corresponding to the parity check matrix
dimensions M and N, respectively.

Table I summarizes the post layout implementation results
for the original Split-Row Threshold. The amount of hardware
overhead to implement the proposed stopping method is very
small (less than 1% increase) compared to original Split-
Row Threshold. Due to the nature of Split-Row Thresh-
old algorithm, which significantly reduces wire interconnect
complexity, both full parallel decoders achieve a very high

Chk
1

Chk
2

Chk
M

Sign Sp0

Sign Sp1

Threshold_ensp0

Threshold_ensp1

Sign Spn-2

Sign Spn-1

Threshold_enspn-2

Threshold_enspn-1

Sign Sp1

Sign Sp2

Threshold_ensp1

Threshold_ensp2

Chk
1

Chk
2

Chk
M

Sp0 Spn-1

Var
(Spn-1)J+1

Var
N-1

Var
(Spn-1)J

Var
1

Var
J-1

Var
0

Chk
1

Chk
2

Chk
M

Sp1

Var
J+1

Var
2J-1

Var
J

Syndrome Calculation

Iteration
Counter

TH1

TH2

TH3 Compare

Compare
with zero

Max_SCheck

2-bit
Adder

Compare
with 3

Clk
Termination_en

Termination_en Termination_en Termination_en

Compare
with Imax

SCheck

Fig. 4. Top level block diagram of a full parallel decoder corresponding to an M × N parity check matrix, using Split-Row Threshold with early stopping
method. The decoder includes Spn partitions. The inter-partition S ign and Threshold en signals are highlighted. J = N/S pn, where N is the code length.
Max S check is a predefined number which makes the comparison result with S Check to be zero to make the stopping logic function correctly.

Split-Row Proposed
Threshold

CMOS fabrication process 65 nm CMOS, 1.3 V
Final area utilization 97% 96%
Area (mm2) 5.2 5.25
Worst case speed (MHz) 188 186

Average No. of iterations @SNR=3.0 dB 15 6.3
Throughput @SNR=3.0 dB (Gbps) 25.7 60.1
Energy per bit @SNR=3.0 dB (pJ/bit) 56 23
Average No. of iterations @SNR=4.3 dB 3.6 3.6
Throughput @SNR=4.3 dB (Gbps) 106.8 105.8
Energy per bit @SNR=4.3 dB (pJ/bit) 13.4 13.2

TABLE I
Comparison of fully-parallel decoders in 65 nm, 1.3 V CMOS, for a (6,32)
(2048,1723) code implemented using Split-Row Threshold and the proposed

early stopping technique.

logic utilization, 96%–97%. The throughput and energy data
are reported for 15 maximum decoding iterations with early
termination at two SNR = 3.0 dB and 4.3 dB. The throughput
varies from 60.1 to 105.8 Gbps and the energy dissipation
changes from 23 down to 13.2 pJ/bit. As shown in the table,
at SNR=3.0 dB, the proposed stopping scheme results in 2.4
times reduction in the iteration count which results in 2.3 times
and 2.4 times increase in the throughput and energy efficiency,
respectively.

V. Conclusion
This paper presents an early stopping technique for unde-

codable blocks to reduce unnecessary decoding iterations and
therefore power dissipation and latency. The method has a
low hardware overhead while maintaining the error correction
performance, only 0.04 dB reduction at BER = 10−7 compared
to the original decoding method. Postlayout results show
that the 10GBASE-T decoder implemented with the proposed
method dissipates 23 pJ/bit at SNR=3.0 dB which is 2.4 times
lower than the original decoder.

VI. Acknowledgments

The authors gratefully acknowledge support from ST Micro-
electronics, Intel, UC Micro, NSF Grant 0430090, CAREER
Award 0546907, and Grant 0903549, SRC GRC Grants 1598
and 1971 and CSR Grant 1659, Intellasys, SEM, and a UCD
Faculty Research Grant.

References
[1] R. G. Gallager, “Low-density parity check codes,” IRE Transaction Info.

Theory, vol. IT-8, pp. 21–28, Jan. 1962.
[2] D. MacKay, Information Theory Inference and Learning Algorithms,

3rd ed. Cambridge, UK: Cambridge University Press, 2003.
[3] Z. Cai, J. Hao, and L. Wang, “An efficient early stopping scheme for

LDPC decoding based on check-node messages,” in Communication Sys-
tems, 2008. ICCS 2008. 11th IEEE Singapore International Conference
on, Nov. 2008, pp. 1325–1329.

[4] J. Li, X. hu You, and J. Li, “Early stopping for LDPC decoding:
convergence of mean magnitude (CMM),” Communications Letters,
IEEE, vol. 10, no. 9, pp. 667–669, Sep. 2006.

[5] D. Shin, K. Heo, S. Oh, and J. Ha, “A stopping criterion for low-
density parity-check codes,” in Vehicular Technology Conference, 2007.
VTC2007-Spring. IEEE 65th, 2007, pp. 1529 –1533.

[6] L. C. Z. Cui and Z. Wang, “An efficient early stopping scheme
for LDPC decoding,” in 13th NASA symposium on VLSI design,
Jun. 2007, http://www.cambr.uidaho.edu/symposiums/13TH NASA
VLSI Proceedings/.

[7] I. Djurdjevic, J. Xu, K. Abdel-Ghaffar, and S. Lin, “A class of low-
density parity-check codes constructed based on Reed-Solomon codes
with two information symbols,” IEEE Communications Letters, vol. 7,
no. 7, pp. 317–319, Jul. 2003.

[8] “IEEE P802.3an, 10GBASE-T task force,” http://www.ieee802.org/3/an.
[9] T. Mohsenin, D. Truong, and B. Baas, “A low-complexity message-

passing algorithm for reduced routing congestion in ldpc decoders,”
Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 57,
no. 5, pp. 1048–1061, May. 2010.

[10] J. Chen, A. Dholakia, E. Eleftheriou, and M. Fossorier, “Reduced-
complexity decoding of LDPC codes,” IEEE Transactions on Commu-
nications, vol. 53, no. 7, pp. 1288–1299, Aug. 2005.

[11] T. Mohsenin and B. Baas, “A split-decoding message passing algorithm
for low density parity check decoders,” Journal of Signal Processing
Systems, vol. 61, pp. 329–345, Feb. 2010, 10.1007/s11265-010-0456-y.

[12] T. Mohsenin, D. Truong, and B. Baas, “An improved Split-Row Thresh-
old decoding algorithm for LDPC codes,” in Communications, 2009.
ICC ’09. IEEE International Conference on, Jun. 2009.

