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Abstract

Sparse matrix-vector multiplication (SpMV) is a critical operation in scientific

computing and engineering applications. This thesis explores implementing SpMV kernels on

a many-core array. Eight functionally equivalent SpMV implementations are created for a

fine-grained many-core platform with independent shared memory modules and floating-point

(FP) capabilities. These implementations are considered against one general-purpose processor

chip (Intel Core-i7 3720QM) and one graphics processing unit (GPU) chip (NVIDIA Quadro

620). The designs for the many-core array, general-purpose processor, and GPU are evaluated

using the metrics of throughput per area and throughput per watt when operating on a set

of twenty-seven unstructured sparse matrices of varying dimensions sourced from a wide

range of domains including directed graph, circuit simulation problems, computational fluid

dynamics problems, structural problems, and theoretical/quantum chemistry problems.

Since different scale methodologies and data types are used, throughput, power

and area results are scaled to 32 nm and single-precision FP values for the general-purpose

processor, GPU and fine-grained many-core implementations. The improvement in through-

put per watt achieved from experiments is 69× on average among all simulated matrices

versus the general-purpose processor implementations, and 94× on average versus the GPU

implementations. The improvement in throughput per area achieved from experiments is

54× on average versus the general-purpose processor implementations, and 40× on average

versus the GPU implementations.
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Chapter 1

Introduction

1.1 Motivation

Matrix-vector multiplication of the form y = Ax is a basic tool of linear algebra, and as

such has numerous applications in many areas of mathematics, as well as in applied mathematics,

statistics, physics, economics, and engineering. Matrices that contain mostly zero values are called

sparse, distinct from matrices where most of the values are non-zero, called dense [3]. The input

matrix A and input vector x can be either dense or sparse. The output vector y is dense. Figure 1.1

shows both the dense and sparse matrix vector multiplication. To multiply a row vector by a column

vector, the row vector must have as many columns as the column vector has rows.

As dense matrix-vector multiplication has been widely used in a wide variety of applica-

tions, sparse matrix-vector multiplication (SpMV) of the form y = Ax is becoming more common,

especially in many scientific and engineering applications, such as linear programming problems,

combinatorial problems, graph analytics, and even in the entire subdomain of machine learning,

such as natural language processing.

It is computationally expensive to represent and work with huge sparse matrices, which

size can reach million by millions, as though they are dense, and much improvement in performance

can be achieved by using representations and operations that specifically handle the matrix sparsity.

In case of repeated y = Ax operation involving the same input matrix A but possibly changing

numerical values of its elements, A can be preprocessed to reduce both the parallel and sequential

run time of the SpMV kernel [4].
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Figure 1.1: Example matrix-vector multiplications showing dense vectors and (top) dense matrix,

and (bottom) sparse matrix containing mostly zero data values.

Using parallel processing for SpMV is challenging and not as efficient as dense matrices

because the ratio of computation to memory access is low. Complementary strategies for workload

decomposition and matrix storage formatting to achieve uniform processor utilization and efficient

use of memory bandwidth regardless of the matrix’s non-zero structure are necessary and required

for achieving good performance on today’s parallel architecture.

Many custom matrix formats and algorithms have been developed to exploit both the

structural properties of a given matrix and the organization of the underlying platform architecture

to meet these design objectives [5]. More than 60 SpMV algorithms and sparse matrix formats

have been proposed on general-purpose processors [6], GPUs [7], FPGAs [8, 9], and many-core

platforms [10,11], which illustrates the current trend of increased parallelism in high performance

computer architectures. However, specialized or supplementary formats ultimately burden the

application with significant practical cost, like extra preprocessing time or inspection and formatting,

which could be tens of thousands of times greater than the SpMV operation itself; and excess storage

overhead because the original Compressed Sparse Row (CSR) [12] matrix is likely required by other

routines and cannot be discarded. Normally, sparse matrices will not be maintained in custom

compressed format, instead preferring general-purpose one such as the CSR format, which is free of
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architecture-specific blocking and used to improve portability for different applications.

As a result of a number of inherent performance limitations, like the algorithmic nature of

the kernel, the architectural nature of the platform and the sparsity patterns of the matrix, only a

fraction of the peak performance of current computing platform can be achieved when implementing

SpMV on them. With number of cores on one platform or die scaling to hundreds or thousands,

current SpMV algorithms designed for traditional architectures cannot be used due to differences

within architectural features such as intra-processor communication, shared memories, and off chip

I/O [13,14].

This work presents high performance, area and power efficient, scalable CSR SpMV

implementations, which were simulated on a fine-grained many-core array of low-powered, simple

Multiple Instruction Multiple Data (MIMD) [15] processors (AsAP3). Each SpMV implementation

consists a set of small modular program kernels operating on each core, making them scalable to

different array sizes.

1.2 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 starts with going over

SpMV on modern multi-core and many-core processors. Then the target fine-grained many-core

architecture, AsAP3 (KiloCore) is explained, which is used throughout the thesis. The extensive

simulation methodology, which is used to generate the results from the proposed SpMV algorithms,

is also introduced. A brief introduction to sparse matrix collection from University of Florida [5], as

well as all simulated matrices chosen for this thesis are given at the end.

Chapter 3 first gives the main kernels that make up the proposed many-core SpMV methods,

followed by proposed mappings of these implementations onto a generic 2D mesh based on AsAP3

architecture. Lastly, different phases of SpMV methods are analyzed and results from various

implementations are compared.

Chapter 4 presents power and area efficiency comparison for all the implementations on a

many-core processor array (AsAP3).

Chapter 5 presents the most power and area efficient implementations on AsAP3, compared

to the-state-of-art implementations on Intel general-purpose processor and Nvidia GPU platforms.

3



Finally, Chapter 6 gives a brief summary of the thesis and proposes future projects.
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Chapter 2

Background

2.1 SpMV on Modern Multi- and Many-core Processors

As computers changes to multi- and many-core processors, this scaling progression neces-

sitates a new shift to implement sparse matrix-vector multiplication kernels with large processor

arrays [16].

As modern processors continue to exhibit wider parallelism, workload imbalance can

quickly become the high-order performance limiter for segmented computations, such as CSR SpMV.

Current research adapted parallelizing SpMV algorithms to take advantage of multiple processing

cores.

2.1.1 Sparse Matrix Compressed Format

A sparse matrix is a matrix consisting of mostly zero elements. Sparse matrices are usually

stored in a compact format, i.e., only non-zero elements are preserved. Bell and Garland [17]

proposed some widely-used sparse matrix storage formats, including Compressed Sparse Row (CSR),

ELLPACK (ELL), Coordinate (COO), and Hybrid ELL/COO (HYB), each of which has its own

storage requirement, computational characteristic, and accessing method for the non-zero elements

of the sparse matrix.

In addition to the matrix storage format, how to process the multiplication with a dense

vector x in parallel is another question, which includes two main points: balancing the workload

among the distinct cores/threads; and accessing the matrix entries and the vector values efficiently.
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The standard approach of parallelizing the CSR, ELL, COO and HYB formats is to distribute the

rows among distinct cores/threads [18].

According to the Roofline model [19], one method of visualizing program performance and

determining the program boundedness (compute or memory), the operational intensity (in flops/byte

or flops/word) was measured by I = W/Q, where W is the total number of useful operations that

the algorithm performs, and Q is the total number of words it transfers (reads or writes). Memory

boundedness refers to a situation where the time to complete a computation is decided primarily by

the amount of data transferred from memory (i.e. memory speed). SpMV is characterized by a

very low flops/byte ratio because the kernel performs O(NNZ) operations on O(N+NNZ) amount

of data, where NNZ represents number of sparse multiplications (number of non-zero elements in

matrix A) and N refers to number of non-zero elements in vector x. Since SpMV is obviously a

memory-bound implementation for current computing platforms and systems, many specialized

formats are also designed to reduce memory I/O via index compression. Blocking is a common

extension of the storage formats above, where only a single index is used to locate a small, dense

block of matrix entries [20]. The yaSpMV BCCOO format is block-compressed COO variation

that uses bit flags to store the row indices in line with column indices [21]. Other sophisticated

compression methods attempt to optimize the bit-encoding of the matrix, often at the expense of

significant formatting overhead [22,23].

Instead of storing the whole matrix in one specific format, another commonplace scheme

called hybrid partitions the matrix into separate regions, each of which may be stored in a different

format. The HYB format combines an ELL portion with a COO portion [17]. Also multi-level

format is very popular in this research area. The pOSKI autotuning framework explores a wide set

of multi-level blocking schemes [24]. The compressed sparse block format is a nested COO-of-COO

representation where tuples at both levels are kept in a Morton Z-order [25].

However, increasing the SpMV performance through innovative matrix formatting brings

huge real costs. For most applications, general-purpose encoding such as CSR format, is preferable

for in-memory representation, compared to other custom codings. CSR coding has no architecture-

specific blocking, reordering, comments, etc., which means it has high portability for different

platforms and systems. In addition, CSR is the most popular format used in SpMV operations due

to its space efficiency and fast access latency. It consists of three arrays: ptr, indices, and data,
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Figure 2.1: Example of the CSR storage format. It consists of three arrays: ptr stores the cumulative

number of non-zero elements up to each row, indices stores the column indices of the non-zero

elements, and data stores the values of non-zero elements.

which store the cumulative number of non-zero elements up to each row, the column indices of the

non-zero elements, and the values of non-zero elements, respectively. Given a sparse matrix A, its

CSR representation is illustrated in Figure 2.1.

2.1.2 Related Work

SpMV is typically a memory-bound kernel for the majority of sparse matrices on multi-

and many-core platforms. In particular, SpMV is characterized by a very low flops/byte ratio,

since the kernel performs O(NNZ) operations on O(N+NNZ) amount of data, indirect memory

references as a result of storing the matrix in a compact format and irregular memory accesses to

the right-hand side vector due to sparsity. Its bandwidth utilization is strongly dependent on the

sparsity patterns of the matrix and the underlying computing platform.

Consequently, most optimization efforts proposed in the literature over the past years have

focused on reducing traffic between caches and main memory, primarily by compressing the memory

footprint of the matrix using segmented reduction [17], compressed block [25,26], ELL variant [27]

and data prefectching [28].

With the advent of many-core architectures, including GPGPUs and the Intel Xeon
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Phi [29] processors, the performance landscape has become more diverse. For example, the large

number of cores available makes SpMV performance more sensitive to workload distribution

between cores/threads. As the performance of SpMV becomes more and more dependent on the

matrix structure and the underlying computing platform, there is no universal solution to achieve

high performance. Blindly applying optimization can actually hinder performance, which further

emphasizes the value of picking and optimizing SpMV.

Even though each optimization can achieve significant gain for some matrices, it may cause

non-negligible slowdowns in others. Optimizing SpMV typically involves preprocessing steps to

analyze the sparse matrix structure, and may include format conversion, parameter adjustment, etc.

Although the overhead of this step can be amortized for applications that reuse the same matrix

multiple times, it can outperform any performance when the solver converges with fewer iterations,

which is often the case in preconditioned solvers [30], or when the structure of the matrix changes

frequently, e.g. in graph applications. This is why many recent efforts have focused on designing

more lightweight optimizations [31,32].

As variation increases, the row-based CsrMV implementations within Intel MKL [33]

and NVIDIA cuSPARSE [34] are progressively unable to map their workloads equitably across

parallel threads. In this direction, many clever partitioning and redistribution methods have been

proposed to improve performance stability for all sparse matrices, and reduce overhead to make

it suitable for solvers that require small number of iterations to convergence. These methods rely

on each processor’s ability to effectively access system I/O, shared memory, or processors other

than neighbors. This is a reasonable expectation for multi-core arrays, but not always for large

many-core arrays.

A high throughput SpMV called the Merge-Based SpMV was created for the GPU [7].

It presents a strictly balanced method that operates directly upon the CSR format without

preprocessing for the parallel computation of SpMV. Regardless of the sparse structure patterns, its

fair decomposition based on 2D merging strictly limits the amount of work assigned to each processing

element while traditional CsrMV methods often subject to orders-of-magnitude performance changes

in similarly sized data sets. In contrast, its approach provides predictable performance that is

substantially uncorrelated with the non-zero distribution among rows , which is also the main reason

that this method is chosen as the main benchmark when comparing to the implementations on
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many-core platform since it broadly improves upon the performance stability of current CsrMV

methods.

For extended reading, Williams et al. explore a range of methods for multi-core general-

purpose processors [5, 35], and Filippone et al. provide a comprehensive survey of SpMV techniques

for GPUs [36].

2.2 Targeted Many-Core Processor: AsAP3

This thesis proposes SpMV implementations on a large array of processors that only

communicate with the nearest neighbor and have limited long-distance communication. Only the

processor at the edge of the array can access the chip I/O, and the chip contains 12 explicit global

shared memories. Due to local communication and arbitrarily accessible large shared memory, the

proposed many-core SpMV designs are limited to streaming data through the array.

The results from the SpMV were measured from the third generation of the Asynchronous

Array of Processors (AsAP3), or KiloCore, developed at the University of California, Davis, VLSI

Computation Laboratory by Bohnenstiehl et al. [1, 37–40]. In AsAP3, each core, each packet

router inside each core, and each independent memory module contains its own local programmable

clock oscillator in an independent fully synchronous clock domain [41, 42]. Communication on chip

is accomplished by two complementary means: a very high-throughput and low-latency circuit-

switched network [43] and a very-small-area packet router [44, 45]. Each circuit or packet link

terminates in a dual-clock FIFO memory [46]. Diverse applications have been implemented in AsAP3,

including Advanced Encryption Standard (AES) encryption [47], 4095-bit code length low-density

parity-check (LDPC) decoders [48], 100-B database record sorting [49], 32-bit floating point [50].

More basic information of AsAP3 can be found from the original generations, AsAP [41, 51–55]

and AsAP2 [56–62]. Energy efficient 32-bit adder design [63] and method for transient frequency

distortion compensation [64] can also be good points of entry. A block diagram showing the AsAP3

chip, highlighting the communication, can be found in Figure 2.2.

AsAP3 is an example of a fine-grained many-core system with a fixed-point data path and

has 1000 simple independently-clocked homogeneous programmable processors and routers, which is

best suited for computationally-intensive applications and kernels. Using the AsAP3 many-core

architecture, its simplified instruction set architecture with 72 40-bit instructions, 128×40-bit
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Figure 2.2: Block diagram of the KiloCore chip, containing 1000 independent processors and 12

shared memories. Both of circuit and packet router network chip I/O are highlighted, showing the

communication between processors [1].

of instruction memory, 512 bytes of data memory, and two 128-bytes FIFOs for inter-processor

communication across clock boundaries per processor are the main considerations for implementing

applications on it.

Each processor implements a 16-bit fixed point data path, including a MAC unit having

a 40-bit accumulator, and a pair of processors adjacent to the shared memory can transfer data

through the memory. Although the natural word width of the data paths and memories is 16-bit,

through software other word widths are easily handled, for example, 32-bit floating point [50] and

10-Bytes sorting keys for 100-Bytes data records [49]. Each processor has its own clock that uses a

specific frequency depending on the workload, and can turn off its oscillator when it stalled, so that

the processor consumes negligible energy. For modeling purposes, the traits from the fabricated

32 nm PD-SOI CMOS chip were physically measured, where each processor takes up 0.055 mm2 of

area, each shared memory occupies 0.164 mm2 of area, and can operate up to a maximum clock

frequency of 1.70–1.87 GHz at 1.10 V [56]. Figure 2.3 is a KiloCore chip die micrograph showing
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Figure 2.3: KiloCore Chip Micrograph [1].

outlines of the 1000 cores and 12 independent memories, and 564 C4 solder bumps for flip-chip

mounting in the center of the array.

2.2.1 Scaling to Many-Core

Challenges of implementing SpMV on large processor arrays include balancing the compu-

tational load among the processors and transmitting the data between processors and memories.

Many matrices don’t scale well with more cores because of these challenges. To get around this issue,

many SpMV methods on large scale array processor, such as GPU SpMV algorithms, take advantage

of shared caches or shared memories to easily access the dense vector, and have independent threads

work on different parts of one row in parallel [7].

For AsAP3, calculating the partial products of rows is computationally simple in a processor

array, all the processing cores are either responsible for processing independent parts of one row or
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mapped into a data path to perform one part of the sorting network to pass the sparse data points to

the processing array. However, as array becomes larger, high-bandwidth long-range communications

and access to shared memory become more difficult, and in some cases, are removed to achieve more

processing areas and processing units, as done in the many-core array by Truong et al. [56].

Another main problem is that many commonly used compressed matrix formats do not

scale well to a many-core architecture because they require long extra preprocessing time, or mapping

their workloads equitably across parallel threads/cores. These more complex formats do not apply

to the many-core array architecture and are not explored in this thesis. Our target architecture

is low power, small area, many-core systems, thus eliminating more complex matrix compression

methods such as Blocking Coordinate format (BCCOO).

2.2.2 Basic Methodology

Section 3.2 explores implementing SpMV on a many-core platform as the size of the matrix

is scaled to include a different number of processors and shared memories. All implementations are

simulated using the following methods.

Simulation Methodology

Before starting the simulation, intuitive matlab programs were utilized to create CSR

format based matrices as the input data for all simulations, and then a simulator was used to model

an arbitrarily sized many-core array. The scalable multi-core architecture using two loop-based

state simulators was written in C++ by Bohnenstiehl et al. [1]. Each processor core was emulated

as a separate task, allowing multi-threaded operations. The core simulation is synchronized based

on the timing of data transmission through the modeling circuit network.

The original method previously presented of implementing SpMV on many-core processors

was also implemented on the AsAP3 platform [65]. These SpMV kernels were designed to be modular

and work on a large array of processors with only data memory within each processor. Expanding

on previous work, both of data memory within each processor and the independent shared memory

module have been gathered together for dealing with larger matrix and improving throughput per

watt versus throughput per area. Two scaling methods were explored: adding more processors to

the array and expanding the amount of shared large memory. The latter provides increased I/O
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bandwidth and storage capacity for loading vector at the expense of requiring more area usage.

Measurement Methodology

Power usage is estimated based on physical chip measurements for each type of operation,

memory accesses, network access, oscillator activity, and leakage. These figures are scaled for voltage

based on measured scaling characteristics.

Area usage is physically measured from the fabricated 32 nm PD-SOI CMOS chip, where

each processor takes up 0.055 mm2 of area, and each shared memory occupies 0.164 mm2 of area.

Comparison Methodology

With the uniqueness of the computation platform and compressed matrix format, it is

impossible to directly and fairly compare SpMV on the many-core platform with other published

SpMV implementations. So that I am looking specifically at CSR format based sparse matrices,

chosen from the University of Florida sparse matrix collection [2], a large and actively growing set

of sparse matrices that arise in real applications.

The state-of-the-art SpMV benchmark is the merge-based CsrMV, created by Duane Merrill

et al. [7], as it measures the total throughput of all the matrices from the University of Florida

sparse matrix collection [2]. It conducts the broadest SpMV evaluation to date to demonstrate the

practical shortcomings of exiting CsrMV implementations on real-world data.

Therefore, it would be uninformative to try to add a system power to our SpMV results,

so that only the processing power was counted for all implementations. With the above constraints

in mind, I created SpMV kernels to compare simulation results against common unoptimized CSR

format based SpMV kernels from merge-based CsrMV [7], which were implemented on two platforms,

a laptop general-purpose processor and a laptop GPU.

For the general-purpose processor implementation, the SpMV program was run on the

Intel Core-i7 3720QM 22 nm chip with a clock frequency of 2.6 GHz, die size of 160 mm2 and a

TDP of 45 W.

For the GPU implementation, the SpMV program was run on the Nvidia Quadro K620

28 nm chip with a clock frequency of 1.05 GHz, die size of 148 mm2 and a TDP of 41 W.
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2.3 Matrix Database

The role of sparse matrices from real applications in the development, testing, and perfor-

mance evaluation of sparse matrix algorithms has long been recognized. Almost all research articles

that include the performance analysis section of the sparse matrix algorithm include matrices from

actual applications or the simulations of parametric matrices that may actually occur.

Large, easy-to-access and actively growing sparse matrix collections in real-world appli-

cations are critical to the development and testing of sparse matrix algorithms. The University

of Florida sparse matrix collection [2] meets this need and is the largest and most widely used

collection available.

A complete list of these groups is too long to include here, there are a summary of numbers

of problems for different kinds of applications in Table 2.1, in which there are total 2272 matrices in

the collection coming from 359 different authors and 50 different editors.

Figure 2.4, 2.5 plot the matrix size dimension and NNZ of total 2272 matrices coming

from real life versus the year when the matrices were created.

Figure 2.4: Matrix dimension (the largest of row/column dimension if rectangular) versus years

created. The solid line is the cumulative sum [2].
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Table 2.1: Summary of all matrices from the University of Florida Sparse Matrix Collection.

1516 problems with no 2D/3D geometry

342 linear programming problem

299 combinatorial problem

251 circuit simulation problem

135 optimization problem

88 directed graph

70 chemical process simulation problem

68 economic problem

68 random problem

61 theoretical/quantum chemistry problem

56 power network problem

23 least squares problem

23 undirected graph

11 counter-example problem

10 statistical/mathematical problem

8 bipartite graph

4 frequency-domain circuit simulation problem

756 problems with 2D/3D geometry

288 structural problem

166 computational fluid dynamics problem

94 2D/3D problem (other than those listed elsewhere)

44 electromagnetics problem

42 model reduction problem

35 semiconductor device problem

31 thermal problem

28 materials problem

13 acoustics problem

12 computer graphics/vision problem

3 robotics problem

Figure 2.6 shows the distribution of matrix dimensions and nonzeros more clearly. Most of

the matrix dimensions are between 310 and 510, and NNZ are normally between 410 and 610. The

largest matrix in the collection has a dimension of 28 million with 760 million nonzeros. All 27

sparse matrices used through this thesis are obtained from the University of Florida sparse matrix

collection [2], the largest and most widely used collection of sparse matrices from a wide range of

domains, including linear programming, circuit simulation, directed graph, undirected weighted

random graph and combinatorial problem [2]. The sparsity patterns of all matrices used to evaluate

SpMV performance are shown in Table 2.2, which is sorted in matrix column size. Matrix and
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Figure 2.5: Number of nonzeros per matrix versus year created. The solid line is the cumulative

sum [2].

vector data of 17 integer matrices is in 16-bit fixed point format and the other 10 real matrices is in

single-precision 32-bit IEEE-754 format. The median column size of all simulated matrices is 6184,

while the average density is 0.00943.

Figure 2.6: Overall histogram of matrix dimensions and nonzeros. Matrix dimension is the largest

of row/column dimension if rectangular [2].
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Table 2.2: Data for the 27 2-dimensional sparse matrices used in the benchmarking throughout this

thesis, including the name, dimensions, number of non-zero elements, average number of non-zero

elements per row, data type, data format and word width.

Matrix Row Column Non-zeros NNZ Data Data Word

Name Size Size Number /Row Type Format Width

GD01-a 311 311 645 2.07 real floating point 32 bit

GD97-c 452 452 460 1.02 real floating point 32 bit

GD00-c 638 638 1041 1.63 real floating point 32 bit

G10 800 800 38352 47.94 integer fixed point 16 bit

GD01-Acap 953 953 645 0.68 real floating point 32 bit

GD96 a 1096 1096 1677 1.53 real floating point 32 bit

Trec11 235 1138 35705 151.94 integer fixed point 16 bit

Trec12 551 2726 151219 274.44 integer fixed point 16 bit

complex 1023 1408 46463 45.42 real floating point 32 bit

Rosen2 1032 3080 47536 46.06 integer fixed point 16 bit

Franz9 19588 4164 97508 4.98 real floating point 32 bit

C8-mat11 4562 5761 2462970 539.89 integer fixed point 16 bit

cis-n4c6-b4 20058 5970 100290 5 integer fixed point 16 bit

Ip d6cube 415 6184 37704 90.85 integer fixed point 16 bit

Trec13 1301 6561 654517 503.09 integer fixed point 16 bit

IG5-14 6735 7521 173337 25.74 integer fixed point 16 bit

pcb3000 3960 7732 57479 14.51 integer fixed point 16 bit

p6000 2095 7967 19826 9.46 integer fixed point 16 bit

foldoc 13356 13356 120238 9 integer fixed point 16 bit

EAT RS 23219 23219 325592 14.02 integer fixed point 16 bit

IG5-17 30162 27944 1035008 34.31 integer fixed point 16 bit

as-caida 31379 31379 106762 3.4 real floating point 32 bit

TF17 38132 48630 586218 15.37 integer fixed point 16 bit

ch7-7-b5 35280 52920 211680 6 integer fixed point 16 bit

rail582 582 56097 402290 691.22 real floating point 32 bit

Andrews 60000 60000 760154 12.67 integer fixed point 16 bit

rail507 507 63516 409856 808.39 real floating point 32 bit
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Chapter 3

Implementations of Sparse

Matrix-Vector Multiplication on a

Many-Core Platform

3.1 Sparse Matrix-Vector Multiplication Kernels

The SpMV implementations, described in Section 3.2, utilize basic program kernels in

each processor of the array. Each kernel is designed for modularity, so the kernels can be easily

used in any processor in any part of the array, making it easy to scale. Distributing, sorting, or

processing kernels do not require specific information or knowledge about processor location or run

size, so it’s easy to program different implementations. Each processor on the target platform has a

128×40-bit instruction memory, limiting each kernel to just 128 assembly instructions. Three main

SpMV scenarios including eight different implementations are described in this chapter, as shown in

the following list:

1. BigMemSnake.

• BigMemSnake.

2. BigMemPara.

• BigMemParaOne.
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• BigMemParaTwo.

• BigMemParaTwoNnz.

• BigMemParaFour.

• BigMemParaFourPad.

3. BigMemSubPara.

• BigMemSubParaFour.

• BigMemSubParaFourTable.

BigMemSnake includes only one implementation and it is itself. BigMemPara includes five im-

plementations: BigMemParaOne, BigMemParaTwo, BigMemParaTwoNnz, BigMemParaFour and

BigMemParaFourPad. BigMemSubPara includes two implementations: BigMemSubParaFour and

BigMemSubParaFourTable. The naming of each different implementation depends on the name of

the scenario, the number of rows in the processing array, and different kernels used. For example,

BigMemParaFourPad represents the implementation using four processing arrays with Padding

NNZ Distribution kernel, based on BigMemPara scenario.

3.1.1 Matrix Preprocessing

Since the original matrix data has a lot of zero elements without any compression, before

starting the simulation, intuitive matlab programs were utilized to create CSR format based matrices

as the input data to the simulator for all implementations.

Snake Preprocessing

The Snake preprocessing program generates CSR format based matrices as the input data

to the implementation BigMemSnake. As shown in Algorithm 1, it first generates a dense vector

with the same length as the matrix column size. For simplify, the vector items are all set to 1’s,

loading to output Matrix. Then all non-zero column indices and values are loaded to output Matrix

one by one. For each nonzero, its row index is compared with the previous one. Once the row index

of current non-zero is different from the previous one, which means the end of current row has been

achieved, then a token is added to the output Matrix as a symbol for the end of this row. Multiple

tokens are added sequentially if there are continuous rows without any non-zero. For simplify, the
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value of token is set equal to column size of the matrix since all indices are zero-based in all the

implementations.

Algorithm 1 Pseudocode of Snake Preprocessing

MatrixCol,MatrixRow,MatrixVal← Find(Matrix)

ColSize,RowSize← Size(Matrix)

for (i = 0; i ≤ ColSize; i++) do

Matrix[i]← 1 # Store vector X values

end for

k ← 1

for (j = 1; j ≤ length(MatrixCol); j++) do

if MatrixRow[j] == k then

i← i+1; # Store matrix A values of current row

Matrix[i]← MatrixCol[j]− 1;

i← i + 1;

Matrix[i]← MatrixVal[j];

else

for (q = 1; q ≤ MatrixRow[j]− k; q++) do

i← i+1; # Store token at the end of row

Matrix[i]← Colsize;

end for

i← i+1; # Store matrix A values of next row

Matrix[i]← MatrixCol[j]− 1;

i← i + 1;

Matrix[i]← MatrixVal[j];

k ← MatrixRow[j];

end if

end for

i← i + 1;

Matrix[i]← Colsize; # Store token at the end of row
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SubParallel Preprocessing

The SubParallel Preprocessing program generates CSR format based matrices as the input

data to the implementation BigMemParaOne, BigMemSubParaFour and BigMemSubParaFourTable.

As shown in Algorithm 2, it first generates a dense vector which length is the same as matrix column

size. For simplify, the vector items are all set to 1’s, loading to output Vector. Then all non-zero

column indexes and values are loaded to output Matrix one by one. At last, the NNZ per row is

accumulated to output NNZPerRow depending on the row index of each non-zero.

Algorithm 2 Pseudocode of SubParallel Preprocessing

MatrixCol,MatrixRow,MatrixVal← Find(Matrix)

ColSize,RowSize← Size(Matrix)

for (i = 0; i ≤ ColSize; i++) do

Vector[i]← 1 # Store vector X values

end for

i← 1;

for (j = 1; j ≤ length(MatrixCol); j++) do

Matrix[i]← MatrixCol[j]−1; # Store matrix A values of current row

i← i + 1;

Matrix[i]← MatrixVal[j];

i← i + 1;

end for

for (j = 1; j ≤ length(MatrixRow); j++) do

NNZ[MatrixRow[j]]← NNZ[MatrixRow[j]] + 1;

end for # Store NNZ per row

ParallelTwo Preprocessing

The ParallelTwo Preprocessing program generates CSR format based matrices as the input

data to the implementation BigMemParaTwo and BigMemParaTwoNnz. As shown in Algorithm 3,

it first generates a dense vector, which length is the same as matrix column size. For simplify, the

vector items are all set to 1’s, loading to output Vector. Then all non-zero column indexes and

values are divided into two groups in a round-robin order. The first and second groups are loaded
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to output Matrix1 and Matrix2 one by one. At Last, the NNZ per row is accumulated to output

NNZPerRow depending on the row index of each non-zero.

Algorithm 3 Pseudocode of ParallelTwo Preprocessing

MatrixCol,MatrixRow,MatrixVal← Find(Matrix)

ColSize,RowSize← Size(Matrix)

for (i = 0; i ≤ ColSize; i++) do

Vector[i]← 1 # Store vector X values

end for

i← 1;

for (j = 1; j ≤ length(MatrixCol); j+2) do

Matrix1[i]← MatrixCol[j]−1; # Distribute and Store matrix A values for 1st processing row

i← i + 1;

Matrix1[i]← MatrixVal[j];

i← i + 1;

end for

i← 1;

for (j = 2; j ≤ length(MatrixCol); j+2) do

Matrix2[i]← MatrixCol[j]−1; # Distribute and Store matrix A values for 2nd processing row

i← i + 1;

Matrix2[i]← MatrixVal[j];

i← i + 1;

end for

for (j = 1; j ≤ length(MatrixRow); j++) do

NNZ[MatrixRow[j]]← NNZ[MatrixRow[j]] + 1;

end for # Store NNZ per row

ParaFour Preprocessing

The ParallelFour Preprocessing program generates CSR format based matrices as the input

data to the implementation BigMemParaFour. As shown in Algorithm 4, it first generates a dense

vector, which length is the same as matrix column size. For simplify, the vector items are all set to
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1’s, loading to output Vector. Then all non-zero column indexes and values are divided into four

groups in a round-robin order. Four groups are loaded to output Matrix1, Matrix2, Matrix3 and

Matrix4 respectively.

Algorithm 4 Pseudocode of ParallelFour Preprocessing

MatrixCol,MatrixRow,MatrixVal← Find(Matrix)

ColSize,RowSize← Size(Matrix)

for (i = 0; i ≤ ColSize; i++) do

Vector[i]← 1 # Store vector X values

end for

i← 1;

for (j = 1; j ≤ length(MatrixCol); j+4) do

Matrix1[i]← MatrixCol[j]−1; # Distribute and Store matrix A values for 1st processing row

i← i + 1;

Matrix1[i]← MatrixVal[j];

i← i + 1;

end for

i← 1;

for (j = 2; j ≤ length(MatrixCol); j+4) do

Matrix2[i]← MatrixCol[j]−1; # Distribute and Store matrix A values for 2nd processing row

i← i + 1;

Matrix2[i]← MatrixVal[j];

i← i + 1;

end for

i← 1;

for (j = 3, 4; j ≤ length(MatrixCol); j+4) do

Matrix3[i],Matrix4[i]← MatrixCol[j]− 1;

i← i+1; # Distribute and Store matrix A values for 3rd & 4th processing rows

Matrix3[i],Matrix4[i]← MatrixVal[j];

i← i + 1;

end for
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ParaFourPad Preprocessing

The ParallelFourPad Preprocessing program generates CSR format based matrices as the

input data to the implementation BigMemParaFourPad. As shown in Algorithm 5, it first generates

a dense vector, which length is the same as matrix column size. For simplify, all vector items are

set to 1’s, loading to output Vector. Then all non-zero column indexes and values of each row are

divided into four groups in a round-robin order.

If the NNZ can be divided by 4, each group is loaded one by one to the corresponding

output. Otherwise, the column index token (ColSize) and value zero are added to the appropriate

group in a round-robin order, depending on the NNZ of each row.

Finally, the existing NNZ and zero added per row are accumulated to output NNZPerRow

depending on row index of each non-zero.

3.1.2 Nonzero Distribution

The Nonzero distribution kernel, shown in Algorithm 6, obtains NNZ per row from matrix

preprocessing and determines the NNZ per row that each processing array receives. The NNZ of

each row is not always divisible by the number of rows processed, and is distributed to the processing

row according to:

k = (NNZ % NumRows) (3.1)

NNZDis[j] = [
NNZ

NumRows
] + (j < k); j = i, ..., (i + k) % NumRows (3.2)

i = (i + NNZ % NumRows) % NumRows (3.3)

where NNZDis[j] is the number of elements distributed to the processing row j. The remainder of

elements k after distribution is added to the processing row based on previous distribution results.

The starting point (row i) that processes the next row distribution is determined based on the

addition result of the current starting point and the remainder of the previous row.

For example, the Algorithm 6 indicates that for two-array processing, the NNZ of each

row is divided by two, and the rest is added to one of the two processing rows in a round-robin

order, depending on the previous allocation order.
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Algorithm 5 Pseudocode of ParallelFourPad Preprocessing (continued on the next page)

MatrixCol,MatrixRow,MatrixVal← Find(Matrix)

ColSize,RowSize← Size(Matrix)

for (i = 0; i ≤ ColSize; i++) do

Vector[i]← 1 # Store vector X values

end for

for (j = 1; j ≤ length(MatrixRow); j++) do

NNZ[MatrixRow[j]]← NNZ[MatrixRow[j]] + 1;

end for # Store NNZ per row

a1, a2, a3, a4← 1;

for (j = 1; i ≤ RowSize; j++) do

if NNZ[j] == 0 then # Padding empty row

Matrix1[a1++],Matrix2[a2++],Matrix3[a3++],Matrix4[a4++]← ColSize;

Matrix1[a1++],Matrix2[a2++],Matrix3[a3++],Matrix4[a4++]← 0;

else

for k = 1; k ≤ floor(NNZ[j]/4); k++ do

Matrix1[a1++],Matrix2[a2++]← MatrixCol[i, i + 1]− 1;

Matrix3[a3++],Matrix4[a4++]← MatrixCol[i + 2, i + 3]− 1;

Matrix1[a1++],Matrix2[a2++]← MatrixVal[i, i + 1];

Matrix3[a3++],Matrix4[a4++]← MatrixVal[i + 2, i + 3];

i← i+4 # Distribute and Store matrix A values for 4 processing rows

end for
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Algorithm 5 Pseudocode of ParallelFourPad Preprocessing (continued)

if mod(NNZ[j], 4) == 1 then

Matrix1[a1]← MatrixCol[i]− 1;

a1← a1 + 1;

Matrix1[a1]← MatrixVal[i];

a1← a1 + 1;

i← i+1 # Padding and Store matrix A values when NNZ remainder is 1

Matrix2[a2],Matrix3[a3],Matrix[a4]← ColSize;

a2, a3, a4← a2 + 1, a3 + 1, a4 + 1;

Matrix2[a2],Matrix3[a3],Matrix[a4]← 0;

a2, a3, a4← a2 + 1, a3 + 1, a4 + 1;

end if

if mod(NNZ[j], 4) == 2 then

Matrix1[a1],Matrix2[a2]← MatrixCol[i, i + 1]− 1;

a1, a2← a1 + 1, a2 + 1;

Matrix1[a1],Matrix2[a2]← MatrixVal[i, i + 1];

a1, a2← a1 + 1, a2 + 1;

i← i+2 # Padding and Store matrix A values when NNZ remainder is 2

Matrix3[a3],Matrix4[a4]← ColSize;

a3, a4← a3 + 1, a4 + 1;

Matrix3[a3],Matrix4[a4]← 0;

a3, a4← a3 + 1, a4 + 1;

end if

if mod(NNZ[j], 4) == 3 then

Matrix1[a1++],Matrix2[a2++],Matrix3[a3++]← MatrixCol[i, i + 1, i + 2]− 1;

Matrix1[a1++],Matrix2[a2++],Matrix3[a3++]← MatrixVal[i, i + 1, i + 2];

i← i+3 # Padding and Store matrix A values when NNZ remainder is 3

Matrix4[a4++]← ColSize;

Matrix4[a4++]← 0;

end if
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Algorithm 6 Pseudocode of Nonzero Distribution

SendFirst :

go to CalculateNNZ

return

FirstOutput← NNZdiv2+ExtraNNZ1 # Store NNZ per row to two processing arrays in order

SecondOutput← NNZdiv2 + ExtraNNZ2

if NNZMod2 == 0 then

go to SendFirst # Decide next order

end if

SendSecond :

go to CalculateNNZ

return

SecondOutput← NNZdiv2+ExtraNNZ1 # Store NNZ per row to two processing arrays in order

FirstOutput← NNZdiv2 + ExtraNNZ2

if NNZMod2 == 0 then

go to SendSecond # Decide next order

else

go to SendFirst

end if

CalculateNNZ :

NNZ← Input # Distribute NNZ per row to two processing arrays

NNZdiv2← floor(NNZ/2)

NNZmod2← NNZ−NNZdiv2 ∗ 2

if NNZMod2 == 0 then

ExtraNNZ1← 0

ExtraNNZ2← 0

else

ExtraNNZ1← 1

ExtraNNZ2← 0

end if

return
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3.1.3 Core Boundary

The Core Boundary kernel, shown in Algorithm 7, obtains column size of matrix from

matrix preprocessing and determines the column boundary and number of vector items that each

processing core stores. Vector length (ColSize) is not always divisible by the number of processing

cores, and is distributed among processing cores according to:

k = (ColSize % NumRows) (3.4)

RowArray [j] = [
ColSize

NumRows
] + (j < k); j = 0, ...,NumRows (3.5)

where ColSize is the column size of matrix, equals to the number of vector items that the processing

network stores and RowArray[j] is the number of column indexes of matrix A that each processing

array stores. The remainder k after distribution is added to the processing rows in order, starting

from row 0.

Similarly, the elements distributed to each processing row are further evenly distributed

among the cores according to:

k = (RowArray [i] % NumCols); i = 0, ...,NumRows (3.6)

CoreArray [i][j] = [
RowArray [i]

NumCols
] + (j < k); j = 0, ...,NumCols (3.7)

Where NumCols is the number of processing cores of each processing array in the network, and

CoreArray[i][j] is the number of column indexes of the matrix A that each processing core stores.

The remaining k after the allocation is added to the processing core in order, starting from core 0.

Each processing core maintains the boundary of the column index, which it needs to handle

the multiplication, given by:

CoreArrayLow [i][j] = CoreNum; i = 0, ...,NumRows, j = 0, ...,NumCols (3.8)

CoreArrayHigh[i][j] = CoreNum + CoreArray [i][j] (3.9)

CoreNum = CoreNum + CoreArray [i][j] (3.10)

Where CoreNum is the number of column indexes that have been stored in the processing array so

far. CoreArrayLow[i][j] and CoreArrayhigh[i][j] are the lowest and highest column indexes of the

matrix A that each processing core stores.

To simplify loading vector processing, each processing core also retains records of the lowest
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column index of the matrix A it processes to make the correct decision to flush other elements to other

cores. Since all implementations use data memory and large shared memory, the numbers of vector

elements stored in these two kinds of memories are recorded for each processing core, given as follows:

NumCoreHold = CoreArrayHigh[i][j]− CoreArrayLow [i][j] (3.11)

NumPassEast = CoreArrayHigh[i][j]− CoreArrayLow [i][NumCols − 1] (3.12)

DMemHold = 240 (3.13)

BigMemHold = NumCoreHold −DMemHold (3.14)

For example, pseudocode 7 shows that for three processing cores, the number of column

indexes per row is divided by three, and the rest is added sequentially from the rightmost core to

the leftmost core.
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Algorithm 7 Pseudocode of Core Boundary

NumPerRow← floor(ColSize/NumRow)

for (i = 0; i < NumRow; i++) do

RowArray[i]← NumPerRow # Distribute row length to all processing arrays

end for

for (i = 0; i < ColSize % NumRow; i++) do

RowArray[i]← RowArray[i]+1 # Distribute extra part to the corresponding arrays

end for

for (i = 0; i < NumRow; i++) do

for (j = 0; j < NumCol; j++) do

CoreArray[i][j]← floor(RowArray[i]/NumCol)

end for # Distribute each array length to the whole processing array

for (k = 0; k < RowArray[i] % NumCol; k++) do

CoreArray[i][k]← CoreArray[i][k] + 1

end for # Distribute extra part to the corresponding cores

end for

for (k = 0; k < NumRow; k++) do

CoreNum← 0 # Set boundary to the corresponding cores

for (j = NumCol− 1; j ≥ 0; j−−) do

CoreArrayLow[k][j]← CoreNum

CoreArrayHigh[k][j]← CoreNum + CoreArray[k][j]− 1

CoreNum← CoreNum + CoreArray[k][j]

CoreNumLow← CoreArrayLow[k][j]

NumCoreHold← CoreArrayHigh[k][j]− CoreArrayLow[k][j] + 1

if j 6= NumCol−1 then # Set number to send to next core

NumPassEast← CoreArrayHigh[k][j]− CoreArrayLow[k][NumCol− 1]

end if

DMemHold← 240 # Set limitation to the corresponding data memory & shared memory

BigMemHold← NumCoreHold−DMemHold

end for

end for

30



Figure 3.1: An array of 3 processing processors loading dense vector to their data memory and

corresponding shared memory. The vector X values are evenly divided among three processing cores.

Vector elements correspond to the lowest columns of matrix A for which rows of X are stored in the

last core. Similarly, the first core stores vector elements correspond to the highest column index of

A. Each core, except for the last, passes X values downstream before storing X values in memory.

3.1.4 Loading Vector into BigMem and DMem

The Loading Vector kernel shown in Algorithm 8 involves obtaining the dense vector data

X from matrix preprocessing and streaming vector data through a set of cores that are connected

in a chain. First, vector is stored in the core array (either during programming or inflow), and then

flows into the A matrix data. In the process of loading the vector into memory, the data memory on

each core is filled first, and then all other items are loaded into the large shared memory connected

to the core. The total number of vector items that each core and its connected large memory hold

depends on the column boundaries stored in each processing core, as shown in equations 3.11-3.14.

The example allocation of loading vector kernels is performed in 2x3 blocks, with three

processing cores in each row, as shown in Figure 3.1. For simplify, the chain length here is chosen to

be three because such a chain contains three basically similar processing cores. In addition to the

FirstCore to get the input from the matrix preprocessing and the LastCore outputs to the off-chip,

the most common MiddleCore gets input from left core and outputs to the right core. The length of

loading chain can be increased by adding more MiddleCores to store more X dense vector elements.

31



Algorithm 8 Pseudocode of Loading Vector (continued on the next page)

NumPassEastDiv1024← floor(NumPassEast/1024)

NumPassEastMod1024← NumValEast % 1024

if NumPassEast < 1024 then

for (i = 0; i < NumPassEast; i++) do

EastOutput← Input1 # Loading vector X to next core

end for

else

LoadingDMem : # Loading vector X to next core repeatedly

for (i = 0; i < 1024; i++) do

EastOutput← Input1

end for

NumPassEastDiv1024← NumPassEastDiv1024− 1

if NumPassEastDiv1024 > 0 then

go to LoadingDMem

end if

if NumPassEastMod1024 6= 0 then

for (i = 0; i < NumPassEastMod1024; i++) do

EastOutput← Input1

end for

end if

end if

for (i = 0; i < DMemHold; i++) do

Dmem← Input1 # Loading vector X to data memory

end for

NumBigMemDiv1024← floor(BigMemHold/1024)

NumBigMemMod1024← BigMemHold % 1024

3.1.5 Sorting Network

The sorting kernel shown in the Algorithm 9 involves obtaining sparse matrix data points

(non-zero values and corresponding column indexes) from matrix preprocessing and sorting the

matrix data through a set of cores connected in 4x2 blocks.

First, the column index, non-zero value and NNZ per row are assigned to the core array,
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Algorithm 8 Pseudocode of Loading Vector (continued)

if BigMemHold < 1024 then

for (i = 0; i < BigMemHold; i++) do

BigMem← Input1 # Loading vector X to the big shared memory

end for

else

LoadingBigMem : # Loading vector X to the big shared memory repeatedly

for (i = 0; i < 1024; i++) do

BigMem← Input1

end for

NumBigMemDiv1024← NumBigMemDiv1024− 1

if NumBigMemDiv1024 > 0 then

go to LoadingBigMem

end if

if NumBigMemMod1024 6= 0 then

for (i = 0; i < NumBigMemMod1024; i++) do

BigMem← Input1

end for

end if

end if
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Algorithm 9 Pseudocode of Sorting Network

GetNNZPerRow :

NNZ← Input1 # Get NNZ left per row

if NNZ == 0 then

go to EndOfRow

else

SortingBit1 :

Bit1← Input0 next & 2 # Get 2nd LSB of each column index

if Bit1 == 0 then

go to Bit1IsZero

else # Send column index and its corresponding data to right core

RightOutput← Input0

RightOutput← Input0

NNZ← NNZ− 1

if NNZ == 0 then

go to EndOfRow # Achieve the end of the row

else

go to SortingBit1

end if

end if

end if

Bit1IsZero :

EastOutput← Input0 # Send column index and its corresponding data to east core

EastOutput← Input0

NNZ← NNZ−1 # Decrement NNZ per row

if NNZ == 0 then

go to EndOfRow

else

go to SortingBit1

end if

EndOfRow : # Send token to two directions at the end of each row

EastOutput← −1

RightOutput← −1

go to GetNNZPerRow
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and then if the second LSB of the column index of the sparse data point is 0, then the data value

from A is forwarded to downstream core, otherwise it is forwarded to upstream core.

Whenever the NNZ of a row counts down to zero, a flag (-1) indicating the end of the

row is sent to the downstream and upstream cores. The second LSB of each column index is given

by

Bit1 = Column index & 2 (3.15)

Where Bit1 represents the second LSB of each column index, and 2 in decimal represents 10 in the

binary.

For the second phase of the sorting network, the only difference from the first phase is

that the sparse data points are sent to the downstream or upstream cores, depending on the value

of the LSB of the column index of the sparse data.

After the sorting network, all sparse data points are flushed to the processing array. Once

the last value of the row has been sent, a token is sent to indicate the end of the row.

3.2 Proposed SpMV Architecture Mapping

Three main SpMV scenarios were explored in this section. The following three basic SpMV

implementations apply to our target architecture limitations, leveraging simple modular kernels and

easily extending the processor array size. Using the different phase kernels in Section 3.3, a total of

eight implementations based on three scenarios, were tested in the performance comparison part of

Chapter 4 and Chapter 5.

3.2.1 BigMemSnake Accumulation

BigMemSnake is the simplest one of the proposed SpMV implementations and its pseu-

docode is shown in Algorithm 10. For simplify, as shown in Figure 3.2, it involves streaming data

through a set of cores connected in a 1x4 block. This implementation utilizes the snake kernel on

each processor in the array, linking them together using a single input and output per processor.

Each processor takes in sparse data points, including column indices, matrix values, and

tokens, and then determine whether to multiply the matrix term with the corresponding vector

term and refresh the partial sum, or directly flush the token. If the column index of the sparse

data point matches the core boundary, then the matrix value A is multiplied by the corresponding
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vector x value, otherwise the sparse data point is forwarded to the right core. Once the last value of

the row has been sent, a token will be sent to indicate the end of the row. When a row end tag is

received instead of a valid column, the result is accumulated and output.

To accommodate the 256 bytes processor memory limit on the target architecture, each

processor core can hold up to 240 vector elements, and additional vector elements can be stored in

big shared memory connected to the processor. Each processor added to the array increases the

number of vector elements that can be stored.

Figure 3.2: BigMemSnake SpMV mapping showing the data path and BigMem connection. The x

vector values are evenly divided among the cores. Each core is labeled with its kernel name. Dense

column vector x and sparse matrix A data are passed into the array through FirstCore and the

resultant dense column vector B is sent out from LastCore. Each core, storing x values in data

memory before sending and storing remain x values in the connected shared memory module. After

storing x vector values, each core passes x values downstream, except for the LastCore.
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Algorithm 10 Pseudocode of BigMemSnake (continued on the next page)

LoadingVector

CheckColumn :

Column← Input # Get column index

if CoreNumlow ≤ Column ≤ CoreNumHigh then

go to Multiply # Go to Multiply since the column index is inside the boundary

else if Column < CoreNumlow then # Pass column index and its corresponding data

EastOutput← 0

EastOutput← Column

EastOutput← Input

else # Pass token when achieving the end of the row

EastOutput← 0

EastOutput← Column

end if

Multiply :

MemAddress← Column−CoreNumLow # Get the corresponding memory address

if MemAddress ≤ DMemHold then

go to MultiplyDMem

else # Loading the corresponding vector item from big memory and do the multiplication

VectorVal← BigMem[MemAddress−DMemHold]

AccSum← Input ∗VectorVal + AccSum

go to CheckColumnContinued

end if

MultiplyDMem : # Loading the corresponding vector item from data memory and do the multiplication

VectorVal← DMem[MemAddress]

AccSum← Input ∗VectorVal + AccSum

CheckColumnContinued :

Column← Input # Get next column index
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Algorithm 10 Pseudocode of BigMemSnake (continued)

if CoreNumlow ≤ Column ≤ CoreNumHigh then

go to MultiplyContinued # Column index is inside the boundary

else

EastOutput← 1

EastOutput← AccSum # Pass partial sum when achieving the end of the row

go to CheckColumn

end if

MultiplyContinued :

MemAddress← Column− CoreNumLow

if MemAddress ≤ DMemHold then

go to MultiplyDMemContinued

else # Loading the corresponding vector item from big memory and do the multiplication

VectorVal← BigMem[MemAddress−DMemHold]

AccSum← Input ∗VectorVal + AccSum

go to CheckColumnContinued

end if # Loading the corresponding vector item from data memory and do the multiplication

MultiplyDMemContinued

VectorVal← DMem[MemAddress]

AccSum← Input ∗VectorVal + AccSum

go to CheckColumnContinued

3.2.2 BigMemSubPara Accumulation

The BigMemSubPara is another more complex SpMV implementation and its pseudocode

is shown in Algorithm 11. As shown in Figure 3.3, there are three phases involved:

In the first phase, NNZ per row and matrix data are assigned to the sorting network in a

row-and-loop order.

The sorting network then sorts the data based on the LSB and second LSB of the column

index of each sparse data point. Each sorting core takes sparse data point, including its column

index and value, and then determines where it is sent depends on the LSB and second LSB of its
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column index, and then flush the sparse data point to the corresponding processing array.

In the final phase, data is transmitted through a set of processing cores connected in 4x4

blocks. The processing phase uses the snake kernel on each processor in the array, linking them

together using a single input and output from each processor. Each processing core determines

whether to multiply the matrix term with the corresponding vector term and refresh the partial sum,

or directly flush the token. If the column index of the sparse data point matches the core boundary,

the A matrix value is multiplied by the corresponding x vector value, otherwise the sparse data

point is forwarded to the next core. After the last value of the row has been sent, a token will be

sent to indicate the end of the row. Once a row end tag is received instead of a valid column, the

result is accumulated and output.

To fit within the processor memory limitation of 256 bytes on our target architecture, each

processor core can hold up to 240 vector elements, and additional vector elements can be stored in

shared large memory connected to the processor. Each processor added to the array increases the

number of vector elements that can be stored.

Algorithm 11 Pseudocode of BigMemSubPara (continued on page 40)

LoadingVector

CheckColumn :

if Input next ≥ CoreNumLow then # Check if the incoming column index corresponds to this core

go to Multiply # Do Multiply if column index inside the boundary

else

EastOutput← Input # Else pass column index and its corresponding data

EastOutput← Input

go to CheckColumn

end if

Multiply :

MemAddress← Input−CoreNumLow # Get the memory address of the corresponding vector item

EastOuput← −2
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Figure 3.3: BigMemSubPara with LSB based sorting SpMV mapping showing the data path and

BigMem connection. The implementation consists of four phases, distribution network, sorting

network, processing array, and collection network. NNZ of each row is received by the DisNnz core,

which sends a token downstream once transmitting all nonzeros of current row. LSB based sorting

network uses the LSBs of the column index to route data to the appropriate processing row. Each

processing core, storing x values in memory before transmitting sorted A values. After sorting A

matrix values, each core passes A values downstream depends on the column index of each element,

except for the LastCore. Each row computes partial products in parallel. Products are accumulated

in the collection network before being to off chip.
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Algorithm 11 Pseudocode of BigMemSubPara (continued)

if MemAddress ≤ DMemHold then

go to MultiplyDMem

else # Loading vector item from big memory and do the multiplication

VectorVal← BigMem[MemAddress−DMemHold]

EastOutput← Input ∗VectorVal

go to CheckColumn

end if

MultiplyDMem : # Loading vector item from data memory and do the multiplication

VectorVal← DMem[MemAddress]

EastOutput← Input ∗VectorVal

go to CheckColumn

3.2.3 BigMemPara Accumulation

BigMemPara is another proposed implementation of SpMV and its pseudocode is shown

in Algorithm 12. As shown in Figure 3.4, it involves three phases:

In the first phase, the matrix distribution kernel assigns matrix data to the beginning

of processing network in loop order, and the DisNnz core allocates NNZ per row to the end of

processing array.

For the processing array, matrix data A is streamed through a set of processing cores

connected in 4x3 blocks. Unlike the snake kernel described in section 3.2.2, the processing kernel

used here doesn’t need to stream token at the end of each row since NNZ per row has been routed

to the end of each processing row to indicate the end of each row. The processing phase uses a

simplified kernel on each processor in the array, linking them together using a single input and

output per processor. Each processing core determines which core each sparse data point fits in

based on the core boundary, then multiplies the matrix term by the corresponding vector term

to refresh the partial sum. The corresponding vector x value is fetched from either data memory

within each core or independent shared memory module based on the column index of the sparse

data point. Each big shared memory module is arbitrarily accessed by two processing cores from

adjacent rows.
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Figure 3.4: BigMemPara SpMV mapping showing the data path and BigMem connection. The

implementation consists of three phases, distribution network, processing array, and collection

network. DisNnz core sends nonzeros of each row to the appropriate processing row in round-robin

order. Each processing core, storing x values in memory before transmitting A matrix values

downstream, except for the LastCore. Each big shared memory module is arbitrarily accessed by

two processing cores from adjacent rows. Each row computes partial products in parallel. Products

are accumulated in the collection network before being to off chip.

If the column index of the sparse data point matches the core boundary, matrix value A

is multiplied by the corresponding vector x value, otherwise the sparse data point is forwarded to

the right core. Once the NNZ of the row counts down to zero, the result is accumulated and flows

into the output.

To fit within the processor memory limitation of 256 bytes on our target architecture,

each processor can hold up to 240 vector elements, and extra vector elements can be stored in the

shared big memory connected to that processor. Different from the two SpMV implementations

described above, one big shared memory will be connected to two processing processors in this

implementation because the downstream and upstream cores have the same column boundary, which

means they will access the same part of the whole vector. During operation, both processing cores

will arbitrarily access the same shared memory to save time and power. Each processor added to
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the array increases the number of vector elements that can be stored.

Algorithm 12 Pseudocode of BigMemPara

LoadingVector

CheckColumn :

if Input next ≥ CoreNumLow then # Check if the incoming column index corresponds to this core

go to Multiply # Do Multiply if column index inside the boundary

else

EastOutput← Input # Else pass column index and its corresponding data

EastOutput← Input

go to CheckColumn

end if

Multiply :

MemAddress← Input−CoreNumLow # Get the memory address of the corresponding vector item

EastOuput← −1

if MemAddress ≤ DMemHold then

go to MultiplyDMem

else # Loading the corresponding vector item from big memory and do the multiplication

VectorVal← BigMem[MemAddress−DMemHold]

EastOutput← Input ∗VectorVal

go to CheckColumn

end if

MultiplyDMem : # Loading the corresponding vector item from data memory and do the multiplication

VectorVal← DMem[MemAddress]

EastOutput← Input ∗VectorVal

go to CheckColumn

3.3 Different Phase Kernels Analysis

This work explores the Sparse Matrix-Vector Multiplication, one of the most common

and useful scientific implementations, and uses the KiloCore (AsAP3) processor to quantify the

results. Three main scenarios: BigMemSnake, BigMemSubPara and BigMemPara; and a total of

eight SpMV implementations on the many-core platform were simulated. The three main scenarios
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Figure 3.5: A diagram showing the general design including Distribution, Sorting, Processing,

Collecting phases.

were general mapped onto the chip in Section 3.2. Each scenario can be divided into up to four

different kinds of phases and each phase is built from a similar set of kernels, as shown in Figure 3.5.

I will focus on comparing the different kernels of three phases in this section: distribution network,

sorting network and processing array. For the three main SpMV scenarios: BigMemSnake only

includes processing array, BigMemPara includes distribution network and processing array, and

BigMemSubPara covers all three phases: distribution network, sorting network and processing array.

Different kernels within three phases that affect the throughput per watt and throughput per area

achieved by the SpMV implementations are analyzed as following.

3.3.1 Processing Array Phase

The previous method to implement SpMV on a many-core processor was also implemented

on the AsAP3 platform [65]. These processing array kernels were designed to be modular and run

on a large number of processors with only data memory within each processor. In order to extend

the previous work, big shared memory modules have been collected for large matrices with different

sizes. Two scaling methods were explored: adding more independent shared memory module to the

processing array and expanding the amount of processing cores. Both methods provide increased

I/O bandwidth and storage capacity with loading vectors at the cost of the area consumption.

In order to distinguish, the previous method is called DMem implementation, and the improved
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Table 3.1: Performance Comparison of Bigmem and DMem Implementations on the P6000 sparse

matrix. Throughput per area versus throughput per watt for various SpMV implementations

operating on the P6000 sparse matrix are plotted in Figure 3.6. The highest throughput per area

versus throughput per watt of Bigmem and DMem Implementations are in bold.

Implementation Throughput Per Area Throughput Per Watt

Name (MFLOPS/mm2) (MFLOPS/W)

DMemSnake 42 282

DMemParaOne 26 336

DMemParaTwo 35 266

DMemParaTwoNnz 37 271

DMemParaFour 17 231

DMemParaFourPad 31 247

DMemSubParaFour 32 371

DMemSubParaFourTable 36 387

BigMemSnake 210 4182

BigMemParaOne 215 2950

BigMemParaTwo 254 3000

BigMemParaTwoNnz 213 2867

BigMemParaFour 124 1922

BigMemParaFourPad 216 2722

BigMemSubParaFour 35 590

BigMemSubParaFourTable 48 632

method is called BigMem implementations for the rest part of thesis.

Since the percentage of time each processor actively processes information varies by

processor in the array, the bottleneck of a large number of processing cores in an array is highlighted.

When SpMV runs on a large amount of data, the lack of activity on the first processor will be filled

up in a continuous run, allowing runs to overlap. Other processors are underutilized because they

wait for new inputs to process or output records to stop. The percentage of activity is far below

100% utilization because they are waiting for neighboring processors, which reduces throughput.

The longer the array chain, the greater the throughput per watt and throughput per area are hurt.

Since connecting big shared memory module to a processing array can greatly reduce the array size

and alleviate bottlenecks between adjacent cores, it plays a great role on improving total throughput

per watt and throughput per area.

From Figure 3.6, which shows the performance comparison of BigMem implementations
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Figure 3.6: Performance Comparison of Bigmem and DMem Implementations on the P6000 sparse

matrix. Throughput per watt and throughput per area of all implementations are shown in

Table 3.1. For the most efficient Bigmem implementation, the improvement in throughput per watt

and throughput per area over the most efficient DMem one are 6.05× and 10.81× respectively. The

P6000 sparse matrix simulated is a relatively small sparse matrix from the entire database. For

larger matrices, the throughput per watt and throughput per area improvements are more significant

since the number of cores DMem implementations used increase dramatically, compared to Bigmem

ones.

and DMem implementations on matrix P6000, all implementations that use big shared memory

module achieve higher throughput per watt versus throughput per area than implementations

with only data memory within each core. For all Bigmem implementations, as shown in Table 3.1,

the average improvement in throughput per watt and throughput per area over DMem ones are

5.14× and 7.89× respectively. For the most efficient Bigmem implementation, the improvement in

throughput per watt and throughput per area over the most efficient DMem one are 6.05× and

10.81× respectively.
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Since each data entry needs to flow through the entire chain, and the access time to the

shared memory is negligible compared to the traffic latency between cores in chain, the length of

the processing core chain is the bottleneck affects throughput per watt versus throughput per area.

The P6000 sparse matrix simulated is a relatively small sparse matrix from the entire database.

For larger matrices, the throughput per watt and throughput per area improvements are more

significant since the number of cores DMem implementations used increases dramatically, compared

to Bigmem ones. DMem implementations are not further discussed or compared in this thesis since

using a combination of shared memory and data memory can significantly reduce the number of

processors required, which greatly improves throughput per watt and throughput per area.

3.3.2 NNZ Distribution Phase

Basic non-zero distribution kernel has been described at Section 3.1.2 on page 27. Therefore,

part of the difficulty of this kernel is to effectively determine which core in the distribution network

last received data.

Basic NNZ Distribution

Figure 3.7 shows the basic NNZ distribution kernel for two processing arrays, the NNZ of

each row will be divided by 2, and the rest will be added to one of the two processing rows in a

round-robin order, depending on the previous allocation order.

Padding NNZ Distribution

Similar to previous work [65], a variant of the basic NNZ distribution kernel was imple-

mented. In order to extend the basic version, this kernel uses explicit zeros to fill each sparse matrix

row so that NNZ of each row is an integer multiple of the number of processing rows, and the

distribution core doesn’t need to track the last received data to fill all processing rows in a loop

sequence, which requires the prior allocation order and additional control overhead.

As shown in Figure 3.8, with four processing rows, each row is filled with an appropriate

number of zeros, depending on the existing NNZ of this row. The corresponding vector is also

padded with zeros to ensure that the result is not affected. After padding zero entries to matrix

sparse data points A and dense vector x, the DistributeNnz core is simplified a lot because it just
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Figure 3.7: Basic NNZ Distribution Kernel on AsAP3. Using two processing rows, the distribution

core routes nonzeros per row to each processing array in round-robin order.

sends count equals to the NNZ per row divided by the number of processing rows to all processing

arrays.

Therefore, there is a clear trade-off between the basic kernel and its variant, as additional

useless zero entries were added to simplify the NNZ counter allocation instruction overhead. Al-

though the control overhead is reduced by zero padding formatting, once the number of padding

zero entries can’t be ignored compared to the total NNZ of matrix A, the throughput of the entire

kernel are not greatly increased or even decreased. In general, the efficiency of padding kernel

increases with the density of matrix A and decreases as the number of processing rows increases.

Table NNZ Distribution

From the two NNZ distribution kernels described above, it is clear that the most important

part of improving the efficiency of the kernel is to track the last received data on the distribution

network. Therefore, another method that can reduce the control overhead of the NNZ distribution

kernel without filling zero entries would be helpful. Since each core has an independent data memory,

the lookup table seems to be a good attempt to achieve both goals to improve throughput.

Since NNZ per row is not always divisible by the number of arrays processed, the extra

value of the uneven partition can be used to divide the entire table into different parts. For each
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Figure 3.8: Padding NNZ Distribution Kernel on AsAP3. Using four processing rows, each row

is filled with the appropriate number of zeros, depending on the existing NNZ of this row. The

corresponding vector is padded with zeros to ensure that the results are not affected. After filling

zero entries into A matrix values and x vector values, the distribution network is much simplified

because it only needs to route count, which equals to the quotient of the NNZ per row and the

number of processing arrays, to each processing array.

section, the cumulative non-zero value sent so far needs to be used as a pointer to the direction of

rotation.

For lookup table method, all possible combinations of sending additional non-zero values

for each direction are stored in memory along with all possible rotations, where the number of

values to store depends on the number of processing arrays of the kernel. The NNZ distribution core

receives NNZ of each row, tracks the table rotation, accumulates the NNZ per row and alternately

sends a non-zero number to each processing array.

3.3.3 Column Index Based Sorting Phase

The sorting network is another important phase of the BigMemSubPara scenario. In the

previous work [65], a similar sorting network was used, but the implementations without big shared

memory module were inefficient because a large number of dense vector elements take up too many

cores. Two different column index based sorting networks with or without shared memory module
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connection were compared as following.

BigMemSubPara with LSB based sorting

The basic Column Index Based Sorting was described in Section 3.2.2 on page 40, involving

three phases, as shown in Figure 3.3.

In the first phase, the NNZ per row and matrix value A are assigned to the sorting network

in a row-and-loop order.

The sorting network then sorts the data based on the LSB and second LSB of the column

index for each sparse data point. Each sorting processor takes sparse data point, including column

index and matrix value, determining where it is sent depends on the LSB and second LSB of its

column index, and then flushes the sparse data points to the corresponding processing array.

In the final phase, data is transmitted through a set of processing cores connected in

4x4 blocks. The processing array uses a snake kernel on each processor in the array, linking them

together using a single input and output from each processor. Each processing core determines

whether to multiply the matrix term with the corresponding vector term and refresh the partial sum,

or directly flush the token. If the column index of the sparse data point matches the core boundary,

the matrix value A is multiplied by the corresponding vector value x, otherwise the sparse data

point is forwarded to the next core. After the last value of the row has been sent, a token is sent to

indicate the end of the row. Once a row end tag is received instead of a valid column, the result is

accumulated and output.

To accommodate the 256 byte processor memory limit on the target architecture, each

processor core can hold up to 240 vector items, and additional vector items are stored in big shared

memory connected to the processor. Each processor added to the array increases the number of

vector items that can be stored.

BigMemSubPara with LSB based sorting and shared memory

Another BigMemSubPara SpMV variant, as shown in Figure 3.9, except for the big shared

memory connection, all three phases are identical to Figure 3.3 on page 40.

Unlike the basic kernel above, each big shared memory module are arbitrarily accessed

by two adjacent processing cores from same row because two consecutive cores on the same array
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Figure 3.9: BigMemSubPara with LSB based sorting and shared memory SpMV mapping showing

the data path and BigMem connection. The implementation consists of four phases, distribution

network, sorting network, processing array, and collection network. NNZ of each row is received by

the DisNnz core, which sends a token downstream once transmitting all nonzeros of current row.

LSB based sorting network uses the LSBs of the column index to route data to the appropriate

processing row. Each processing core, storing x values in memory before transmitting sorted A

values. Each big shared memory module are arbitrarily accessed by two adjacent processing cores

from same row. After sorting A matrix values, each core passes A values downstream depending on

the column index of each element, except for the LastCore. Each row computes partial products in

parallel. Products are accumulated in the collection network before being to off chip.

have consecutive column boundaries, which means they access successive parts of the entire vector.

During operation, two adjacent processing cores arbitrarily access the same shared memory to save

time and power.

BigMemSubPara with boundary based sorting

Another BigMemSubPara SpMV variant, as shown in Figure 3.10, except for the sorting

network, both the processing array and distribution network are identical to Figure 3.3 on page 40.

Unlike the basic kernel described above, the sorting network sorts the data according to
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the column boundaries that are appropriate for the column index of each sparse data point. Each

sorting core takes sparse data point, including its column index and matrix value, determining

where it is sent to depends on the comparison result of its column index and the corresponding

column boundary, and then flushes the sparse data point to each processing row.

In detail, for the first stage of the sorting network, if the column index of the sparse data

point is greater than the upper column boundary of the sorting core, the sparse data points and

its corresponding column index are sent to the upstream core for another comparison. Otherwise,

the non-zero element and its column index will be flushed to the next core for the second stage of

sorting. If the column index of the sparse data point is less than the lower bound of this sorting

core, the sparse data points and its corresponding column index will be sent to the downstream

core for another comparison.

BigMemSubPara with boundary based sorting and shared memory

Similar to Figure 3.9 on page 40, another BigMemSubPara SpMV variant is shown in

Figure 3.11, each big shared memory module is arbitrarily accessed by two adjacent processing cores

from same row since two consecutive cores on the same array have continuous column boundaries,

which means they will access successive parts of the entire vector. During processing, both processing

cores will arbitrarily access the same shared memory to save time and power.

Compare the four variants of Column Index Based Sorting described above, two basic rules

were found as following:

For the sorting network, LSB-based sorting is always more efficient than boundary-based

sorting because all sparse data points only need to traverse three sorting cores to reach the processing

array. In contrast, the length of the sorting path of the boundary-based sorting network is unstable

and variable, which results in more traffic and control overhead, thereby compromising throughput.

Although LSB-based sorting requires more processing effort due to the discontinuity of loading

vector, the processing workload is negligible compared to the overall core throughput.

For shared memory modules connected to nearby processing cores, the benefits of accessing

shared memory arbitrarily are overshadowed by the downside of more processing cores used since

the key point affecting the kernel performance is the amount of big shared memory used.

Due to the two rules mentioned above, only LSB-based sorting without shared memory
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Figure 3.10: BigMemSubPara with boundary based sorting SpMV mapping showing the data path

and BigMem connection. The implementation consists of four phases, distribution network, sorting

network, processing array, and collection network. NNZ of each row is received by the DisNnz

core, which sends a token downstream once transmitting all nonzeros of current row. Boundary

based sorting network routes data to the appropriate processing row depending on the comparison

result between the column index of A matrix values and column boundary of sorting core. Each

processing core, storing x values in memory before transmitting sorted A values. After sorting A

matrix values, each core passes A values downstream, except for the LastCore. Each row computes

partial products in parallel. Products are accumulated in the collection network before being to off

chip.

connection was tested for performance comparison of different implementations in Chapter 4 and

Chapter 5.
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Figure 3.11: BigMemSubPara with boundary based sorting and shared memory SpMV mapping

showing the data path and BigMem connection. The implementation consists of four phases,

distribution network, sorting network, processing array, and collection network. NNZ of each row

is received by the DisNnz core, which sends a token downstream once transmitting all nonzeros

of current row. Boundary based sorting network routes data to the appropriate processing row

depending on the comparison result between the column index of A matrix values and column

boundary of sorting core. Each processing core, storing x values in memory before transmitting

sorted A values. Each big shared memory module is arbitrarily accessed by two adjacent processing

cores from same row. After sorting A matrix values, each core passes A values downstream, except

for the LastCore. Each row computes partial products in parallel. Products are accumulated in the

collection network before being to off chip.
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Chapter 4

Comparison of Sparse Matrix-Vector

Multiplication Methods for AsAP3

As mentioned in Chapter 2, the throughput per watt and throughput per area of sparse

matrix vector multiplication on multi- and many-core platforms has been a keen interest in research.

This interest, coupled with the ever-increasing number of processor cores per general processing

chip, has led me to focus on using many-core processor arrays for SpMV.

For comparing the throughput, power, and area consumption within all eight SpMV

implementations on many-core platform (AsAP3), totally 17 sparse integer matrices used to evaluate

SpMV performance are shown in Table 2.2 on page 17. All integer matrix and vector data are in

16-bit fixed-point format. The median column size value for all the integer matrices in the entire

database is 7521, while the average density is 0.00945. This work considers matrices with a column

size value less than and greater than the median column size value of the University of Florida

sparse matrix collection [2].

Throughput data for the implementations on the many-core platform (AsAP3) are obtained

with a cycle-accurate C++ simulator. Power measurements from the 32 nm PD-SOI CMOS fabricated

chip are input to the simulator to obtain power data. Area usage is physically measured from the

fabricated 32 nm PD-SOI CMOS chip, where each processor takes up 0.055 mm2 of area, and each

shared memory occupies 0.164 mm2 of area.

Two important features will be tested and calculated for all SpMV implementations:

throughput per watt and throughput per area;

55



The throughput per watt is useful for selecting the most power efficient SpMV option,

which is the bottleneck for implementing scientific applications on many-core or multi-core platforms.

The throughput per area is useful for selecting the most area efficient SpMV design, which

is also very important for decreasing then fabrication cost and increasing area reduction per chip.

The throughput is calculated using the common metric [66,67], as shown in Equation 4.1:

Throughput =
2×NNZ

Execution T ime
(4.1)

For each implementation, the throughput is calculated by dividing the total number of

operations by the execution time.

4.1 Power Efficiency Comparison between different implementa-

tions

The metrics of throughput per watt is used for power efficiency comparison between

different implementations.

Three main scenarios: BigMemSnake, BigMemSubPara and BigMemPara; and a total of

eight SpMV implementations using different number of processing rows and kernels on the many-core

platform were simulated. The eight implementations, as well as general mappings onto the chip

were given in Chapter 3. As shown in Figure 3.5 on page 44, all SpMV implementations contain one

or more phases and each phase is build from a set of similar kernels. I will focus on comparing the

power efficiency of all implementations by analyzing different kernels of each phase in this section.

For the three main SpMV scenarios: BigMemSnake only includes processing array, BigMemPara

includes distribution network and processing array, and BigMemSubPara covers all three phases:

distribution network, sorting network and processing array.

4.1.1 Processing array phase

For processing array, after simulating 17 sparse integer matrices chosen from Table 2.2 on

page 17 on the number of cores ranging from 1 to 23. Adding more cores to the array only increases

the size of the run without significantly increasing the throughput per watt.

The main reason is that the logical parts of the processing array of all eight implementations

are very similar, passing matrix data to the corresponding core, fetching vector items from the data
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memory or big shared memory, and flushing the partial sum to the next core.

Theoretically, doubling the number of processing arrays doubles the efficiency throughput,

but the ideals can not be achieved due to other factors, including the flow and control overhead of

the distribution and sorting network.

Another reason is that due to the limitation of the data path width (16 bits), the maximum

size of all simulated matrices is less than 65536 (unsigned 16 bits), and each big shared memory can

hold up to 32768 vector items so that length of each processing array doesn’t exceed two, which

means that the blocking problem caused by too long processing chain when only the data memory

within each core using for storing the vector items will be negligible.

Due to the two main reasons mentioned above, it comes to the conclusion that BigMemSnake

is the most area efficient one among all eight implementations.

Another point to mention is that even the processing logic of BigMemSnake is more com-

plicated than BigMemPara and BigMemSubPara because of the lack of NNZ distribution kernels,

by using extra tokens to represent the end of each row, the throughput is not much compromised

compared to the power consumption since the processing array is relatively short.

BigMemParaOne recognizes a relatively small increase in throughput while power con-

sumption increases significantly, which occurs as the NNZ distribution kernel is added to simplify

the processing logic.

The biggest difference between BigMemSnake, BigMemPara and BigMemSubPara is that

big shared memory module can not be shared by neighbour cores for latter scenario because the

two neighboring kernels doesn’t access the same part of the vector, making loading and fetching

process much more complicated and inefficient. That’s why the BigMemSubPara is always the least

efficient one compared to the other two.

4.1.2 Distribution network phase

Since only BigMemSubPara and BigMemPara contain distribution network, all power

efficiency comparison will focus on these two scenarios.

As mentioned in Section 3.3 on page 43, assigning NNZ to all processing rows has a

significant impact on the throughput per watt.

Three non-zero distribution kernels were described in Chapter 3 on page 48. Therefore,
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part of the difficulty of this kernel is to effectively determine which core in the distribution network

last received data.

Basic NNZ distribution kernel is a baseline method for non-zero count distribution, and

the Padding NNZ distribution kernel and the table NNZ distribution kernel are considered to be

potential alternatives to improve throughput per watt and throughput per area.

For BigMemSubPara implementations with four computed rows, the table NNZ distribution

kernel improves the throughput per watt up to 1.44×, compared to basic one. The main reason

is that the table NNZ Distribution kernel uses data memory to store all distribution direction

information, so the control overhead of the kernel will be greatly reduced compared to the other

two kernels.

Padding NNZ to an integer multiple of the number of processing arrays improves throughput

per watt in most cases. Although processing added zero values reduces throughput per watt,

padding NNZ simplifies the non-zero count distribution. For BigMemPara implementations with

four computed rows, the padding NNZ distribution kernel improves the throughput per watt up to

2.87×, compared to basic one.

4.1.3 Sorting network phase

Boundary-based sorting kernel is the baseline method for the sorting network, and LSB-

based sorting kernel is an alternative to improve throughput per watt and throughput per area.

As described in section 3.3 on page 49, for sorting networks, LSB-based sorting kernel is

always more efficient than boundary-based sorting kernel due to the fixed length of the sorting path.

Also as with the two rules found on page 54, only LSB-based sorting kernel without shared memory

connection was tested for different implementation performance comparisons in Table 4.1.

For BigMemSubPara implementations with four computational rows using boundary-based

sorting kernel, switching to LSB-based sorting kernel can improve throughput per watt by up to

1.35× for all simulated matrices.

As N increases and is greater than 4, BigMemSubPara implementations with N processing

rows become progressively less efficient than the BigMemSnake method due to the size limitations

of the simulated matrices.
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4.1.4 Summary

BigMemSnake is the basic implementation first considered for SpMV.

BigMemPara is a similar scenario to BigMemSnake, which adds an extra kernel to calculate

the NNZ for each row at the end of each processing array, which simplifies control overhead but

also increases power consumption.

BigMemSubPara is the most complex implementation which adds the sorting network to

distribute nonzeros of each row to all processing arrays, decreasing the number of processing cores

needed but while increasing the total power consumption because of the extra sorting stage.

Additional implementations of BigMemPara and BigMemSubPara are developed to increase

throughput by increasing the number of rows computed in parallel.

Since all simulated matrices are not very large in size compared to the capacity of large

shared memory, simpler implementations such as BigMemSnake and BigMemParaOne achieve the

maximum throughput per watt. Complex implementations including extra sorting networks, such

as BigMemParaFour and BigMemParaFourPad, achieve the minimum throughput per watt.

The throughput per watt comparison results of all implementations on all simulated

integer matrices from Table 2.2 on page 17 can be found in Table 4.1, and the larger the relative

value of particular implementation, the higher its throughput per watt. For most simulated

matrices, BigMemSnake is the most power efficient implementation with maximum relative value,

and BigMemSubParaFour is the least efficient one with minimum value, metric (Throughput per

Watt) is normalized against the least efficiency one for all other implementations.
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4.2 Area Efficiency Comparison between different implementa-

tions

The metric of throughput per area is used for area efficiency comparison between different

implementations.

Three main scenarios: BigMemSnake, BigMemSubPara and BigMemPara; and a total

of eight SpMV implementations using different number of processing arrays and kernels on the

many-core platform were simulated. The eight implementations, as well as general mappings onto

the chip were given in Chapter 3. As shown in Figure 3.5 on page 44, all SpMV implementations

contain one or more phases and each phase is build from a set of similar kernels. I will focus on

comparing the area efficiency of all implementations by analyzing different kernels of each phase

in this section. For the three main SpMV scenarios: BigMemSnake only includes processing array,

BigMemPara includes distribution network and processing array, and BigMemSubPara covers all

three phases: distribution network, sorting network and processing array.

4.2.1 Processing array phase

For comparison of throughput per area, the common and majority part of area size used

for all the SpMV implementations is processing array, which includes both the processing cores and

big shared memory modules.

Since the programmable processors occupy 0.055 mm2 each and shared memory modules

occupy 0.164 mm2 each so that reducing the control and flow overhead of processing network and

making use of the combination of data memory within each core and independent big memory

module are the key points for achieving more throughput per area.

After simulating 17 sparse integer matrices chosen from Table 2.2 on page 17 on the number

of cores ranging from 1 to 23, BigMemPara is the most area efficient scenario for two reasons:

1. Compared to BigMemSnake, as described in Section 4.1.4, BigMemPara adds an

extra kernel to count the NNZ per row at the end of each processing array, simplifying control

overhead. Since the area occupied by the extra processing core is negligible compared to the entire

implementation, BigMemPara is always more area efficient than BigMemSnake, especially when

increasing throughput by increasing the number of parallel computed arrays in BimMemPara.

2. Compared to the BigMemSubPara, the extra area occupied by the sorting network is
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not negligible compared to the entire implementation. Although the BigMemSubPara processing

network requires fewer cores than BigMemPara, the single-port connection between core and shared

memory and size limits for all simulated matrices limit the throughput per area of BigMemSubPara.

For BigMemPara, the scenario with big memory shared by two cores from two adjacent

processing arrays has been analyzed and proved to be the one with highest throughput per area

in Section 3.3.3 on page 49. Since the throughput can also be increased by increasing the number

of parallel arrays, it is easy to find out that BigMemParaTwo is usually more area efficient than

BigMemParaOne and BigMemParaFour because it almost doubles the throughput while just adding

one row to processing array, which takes advantage of the big shared memory module shared by two

processing arrays.

4.2.2 Distribution network phase

Since only BigMemSubPara and BigMemPara kernels contain distribution network, com-

parison of area efficiency will focus on these two scenarios.

For BigMemSubPara and BigMemPara with four computational arrays, all other NNZ

distribution kernels improve throughput per area versus basic NNZ Distribution kernel, with up to

4.5× improvement with Padding NNZ Distribution kernel, and 2× with Table NNZ Distribution

kernel.

Versus the BigMemSnake implementation, there is a positive correlation between matrix

size and throughput per area improvement. As the size of the sparse matrix increases, implemen-

tations with more processing arrays (e.g., BigMemSubPara implementations with eight or more

computed arrays) become more area efficient. However, this trend is not shown in this thesis due to

the size limitation of the simulated matrices.

4.2.3 Sorting network phase

Boundary-based sorting is the baseline kernel for sorting networks, and LSB-based sorting

kernel is an alternative to improve throughput per watt and throughput per area.

As with the two rules found in Chapter 3 on page 54, only LSB-based sorting kernel without

shared memory was tested in Table 4.2 for different implementations performance comparison.

For BigMemSubPara implementations with four computed arrays using boundary-based
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sorting kernel, switching to LSB-based sorting kernel increases the throughput per area by up to

1.38× for all simulated matrices .

For a majority of simulated matrices, switching from boundary-based sorting kernel to

LSB-based sorting kernel with table NNZ distribution kernel is efficient for improving throughput

per area, by as much as 1.48×.

4.2.4 Summary

BigMemSnake is the basic implementation of SpMV first considered.

BigMemPara is a similar scenario to BigMemSnake, which adds an extra kernel to count

NNZ of each row at the end of each processing array, which simplifies control overhead but also

takes up more area.

BigMemSubPara is the most complex scenario, which adds a sorting network, assigning

non-zero values per row to all processing arrays, reducing the number of processing cores required,

but increasing the total area occupied due to the extra sorting phase.

Other implementations of BigMemPara and BigMemSubPara are added to increase through-

put by increasing the number of arrays computed in parallel.

Since the BigMemPara has been proved to be the most area efficiency scenario among

three main ones in section 4.2.1, and the throughput can also be increased by increasing the number

of parallel computed arrays so that BigMemParaTwo implementation, which takes advantage of the

big shared memory shared by two processing arrays, achieving the maximum throughput per area

for the vast majority of all the simulated matrices.

The area efficiency comparison results of all implementations on all simulated integer

matrices from Table 2.2 on page 17 can be found in Table 4.2, and the larger the relative value

of a particular implementation, the higher its throughput per area. For most simulated matrices,

BigMemParaTwo, BigMemParaFour and BigMemParaFourPad are the most area efficient imple-

mentations with maximum relative value, and BigMemSubParaFour is the least efficient one with

minimum relative value, metric (Throughput per Area) is normalized against the least efficiency

one for all other implementations.
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Chapter 5

Comparison of Sparse Matrix-Vector

Multiplication Methods on AsAP3

with general-purpose processor and

GPU

5.1 Sparse Matrix Data Sets

For performance comparison with all eight implementations on many-core platform and

others (general-purpose processor and GPU), totally 10 sparse real matrices used to evaluate

SpMV performance are shown in Table 2.2 on page 17. All real matrix and vector data are in

single-precision 32-bit IEEE-754 format. The median column size value for all the real matrices in

the entire database is 16001, while the average density is 0.00941. This work considers matrices

with a column size value less than and greater than the median column size value of the University

of Florida sparse matrix collection [2].

5.2 Matrix Library

Since the row-based CsrMV implementations within Intel MKL [33] and NVIDIA cuS-

PARSE [34] are progressively unable to map their workloads fairly across parallel threads. To
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ensure a fair comparison of performance evaluation results, the parallel OpenMP C++ merge-based

CsrMV implementation on general-purpose processor and CUDA C++ two-level merge-path CsrMV

implementation on GPU [7] will be used as benchmark in this thesis for area and power performance

comparison. The evaluation precision of all benchmarks is single-precision floating point (32 bit).

I primarily compare against the CsrMV implementations provided by Intel MKL library [33]

and NVIDIA’s cuSPARSE library v7.5 [34]. To highlight the competitiveness of the merge-based

CsrMV method in the absolute, non CSR-based implementation like Cusparse HybMv will also be

compared against.

5.3 Details of general-purpose processor and GPU

The general-purpose processor for SpMV is the Intel Core i7-3720QM, and its specifications

are shown in Table 5.1. After establishing the merge list and the merge path length, each thread

identifies its start and end diagonals and then searches for the corresponding 2D start and end

coordinates within the merged grid to effectively execute the sequential CsrMV algorithm. When

calculating throughput, the execution time of the multiplication step is divided by the number of

iterations and the number of threads used.

The GPU for SpMV is the Nvidia Quadro 620, and its specifications are shown in Table 5.1.

Since the entire implementation is divided into two levels, at the coarsest level, the merge path is

fairly distributed among the thread blocks to fully occupy the GPU’s multiprocessor. Each thread

block then proceeds to consume a share of its merge path with a fixed size path chunk. The path

chunk length is determined by the amount of local storage resources available to each thread block.

After copying the sublist to local shared memory, threads independently perform sequential CsrMV,

each consuming exactly items-per-thread to make maximal utilization of the GPU’s fixed-size shared

memory resources. The time of executing SpMV is measured and divided by the number of instances

and iterations to obtain average execution time.

Table 5.1: Details of general-purpose processor and GPU Utilized for SpMV Comparison.

Chip Technology (nm) TDP (W) Area (mm2 )

Intel Core-i7 3720QM 22 45 160

NVIDIA Quadro 620 28 41 148
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5.4 Measurement and Simulation Methodology

Two important features will be tested and calculated for all SpMV implementations

on various platforms: throughput per watt and throughput per area; The throughput per watt

(MFLOPS/W) is useful for selecting the most power efficient SpMV option, which is the bottleneck

for implementing scientific applications on many-core or multi-core platforms. The throughput per

area (MFLOPS/mm2) is useful for selecting the most area efficient SpMV design, which is also

very important for decreasing then fabrication cost and increasing area reduction per chip. The

throughput is calculated using the common metric [66,67] shown in Equation 4.1 on page 56. The

throughput per watt and per area results were plotted to analyze the power and area efficiency of

each design.

Due to the different scale methodology, throughput, power and area results are scaled to

32 nm values for the general-purpose processor and GPU implementations. Area is scaled using

1/S2 scaling, and throughput and power are scaled using the trend of gate delay and switching

energy for 65–14 nm technology nodes [68].

Throughput data for the implementations on the many-core platform are obtained from a

cycle-accurate C++ simulator, customized for chip KiloCore (AsAP3) [1]. Power measurements

from chips fabricated by 32 nm CMOS PD-SOI are input to the simulator to obtain power data.

The chip power measurement and core area are scaled by the relative increase determined by the

synthesis in 32 nm CMOS PD-SOI at 0.9 V and 1.8 GHz when adding a single-precision 32-bit FP

adder and multiplier with denormal support and switching to a 32-bit data path, the scaling factors

for power measurement and core area are obtained from previous work done by Jon J.Pimentel [65].

The general-purpose processor throughput data is gathered from a parallel OpenMP C++

merge-based CsrMV implementation [7], and no architecture-specific optimizations are enabled.

Software pipelining, branch elimination, register-blocking, cache-blocking, TLB-blocking, matrix-

blocking, or index compression are not explicitly incorporated, and power consumption is estimated

using half of the thermal design power (TDP/2).

The GPU throughput data is collected from the CUDA C++ two-level merge path CsrMV

implementation [7]. All compiler optimizations are turned on, and power consumption is estimated

using half of the thermal design power (TDP/2).

For each implementation, the execution time is only the time of the sparse matrix multipli-
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cation operation. For general-purpose processor-based implementations, this excludes the time to

read the sparse matrix A and the dense vector x from the file, load them into memory, and save

the results to a file. For GPU-based implementations, this also eliminates the time to load data

from host memory (i.e., general-purpose processor) to device memory (i.e., GPU), and vice versa.

For many-core implementations, this only excludes the time to load the vector x into memory, but

includes the time to load the sparse matrix A.

The most efficient designs provide the largest throughput per watt and throughput per

area, therefore the most efficient designs are located near the upper-right corner and the least

efficient designs are nearest the lower-left corner of each plot.

5.5 Power Efficiency Comparison with other Work

The eight proposed many-core SpMV implementations were simulated on 10 sparse real

matrices chosen from Table 2.2 on page 17 using between 1 and 23 processors on the many-core

platform, and are effective at improving throughput per watt versus using the methods on the GPUs

or general-purpose processors. The implementations on the many-core platform increase throughput

per watt by up to 190× versus the general-purpose processor implementations, and by up to 269.5×

versus the GPU implementations.

BigMemSnake is typically the most power efficient implementation, but as matrix size

(NNZ) increases, other implementations provide a higher throughput per watt.

5.5.1 Small and Sparse Matrix

For a relatively small and sparse matrix, Figure 5.1 shows the per-watt throughput and

per-area throughput for all implementations on different platforms when performing SpMV using

the sparse matrix GD96 a. The minimum number of cores for storing vector x is first used for the

BigMemSnake implementation and then added to create other implementations.

Increasing the number of cores for the BigMemSnake beyond what is required to store the

vector x decreases the throughput per watt. The optimal BigMemSnake implementation uses the

least amount of cores to store the vector x.

Modify the BigMemSnake implementation to use BigMemParaOne with extra NNZ counter

core to simplify the logic control overhead, thereby increasing throughput per area while decreasing
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Table 5.2: Throughput per area versus throughput per watt for various SpMV implementations

operating on the GD96 a sparse matrix. All metrics data is plotted in Figure 5.1 and the highest

throughput per area versus throughput per watt of various implementations are in bold.

Implementation/Benchmark Throughput Per Area Throughput Per Watt

(Single FP Precision) (MFLOPS/mm2) (MFLOPS/W)

Quadro K620 Merge-based 2.2 16

Quadro K620 Cusparse CsrMv 4 28.8

Quadro K620 Cusparse HybMv 1.3 8.8

i7-3720QM Merge-based 2.4 33.6

BigMemSnake 164 3600

BigMemParaOne 212 2762

BigMemParaTwo 101 1282

BigMemParaTwoNnz 96 1208

BigMemParaFour 30 545

BigMemParaFourPad 81.5 871

BigMemSubParaFour 11 205

BigMemSubParaFourTable 17.7 272

throughput per watt.

The relatively small size and NNZ of GD96 a make it less meaningful to find alternative im-

plementations for SpMV. The results on Figure 5.1 show that the BigMemPara and BigMemSubPara

implementations attempt to achieve this goal by increasing the amount of parallel processing with

multiple processing rows come to failure. As the implementation becomes more complex and uses

more cores, throughput per watt and throughput per watt will decrease, as shown in Figure 5.1.

The most efficient implementations tend to be smaller and simpler, namely BigMemSnake. The

least efficient many-core implementations tend to use more cores for a sorting network, including

the BigMemSubPara implementations.

The least efficient implementation is the Cusparse HybMv algorithm in the NVIDIA

Quadro K620. The GPU cannot perform SpMV operations efficiently because the unbalanced

workload of each thread due to small column size of the matrix. Other GPU and general-purpose

processor implementations provide the same order of magnitude throughput per watt and throughput

per area as the least efficient one.

All implementations on many-core platform for GD96 a provide greater throughput per

watt than the general-purpose processor and GPU based implementations. As shown in Table 5.2,
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Figure 5.1: Throughput per area versus throughput per watt for various SpMV implementations

operating on the GD96 a sparse matrix. All eight implementations on many-core platform for

GD96 a are compared against general-purpose processor and GPU implementations. The evaluation

precision of all benchmarks is single-precision floating point (32 bit). Throughput per watt and

throughput per area of all implementations are shown in Table 5.2. The optimal design has the

largest throughput per watt and throughput per area. The implementations on many-core platform

provide 6.1-107.14× and 7.12-125× higher throughput per watt than the general-purpose processor

and GPU designs.

implementations on the many-core platform provide 6.1-107.14× and 7.12-125× higher throughput

per watt than the general-purpose processor and GPU designs.

5.5.2 Medium Size Matrix

As the size and density of the sparse matrix increases, implementations with multiple

processing rows typically become more power efficient.

For relatively large and dense matrices, Figure 5.2 shows throughput per watt versus

70



Table 5.3: Throughput per area versus throughput per watt for various SpMV implementations

operating on the Franz9 sparse matrix. All metrics data is plotted in Figure 5.2 and the highest

throughput per area versus throughput per watt of various implementations are in bold.

Implementation/Benchmark Throughput Per Area Throughput Per Watt

(Single FP Precision) (MFLOPS/mm2) (MFLOPS/W)

Quadro K620 Merge-based 30.2 218.2

Quadro K620 Cusparse CsrMv 30.4 219.8

Quadro K620 Cusparse HybMv 47.2 416.7

i7-3720QM Merge-based 41.6 338

BigMemSnake 68.5 1875

BigMemParaOne 146.1 3200

BigMemParaTwo 289.5 2804

BigMemParaTwoNnz 236.8 2423.7

BigMemParaFour 94.1 1453.1

BigMemParaFourPad 181.2 1967

BigMemSubParaFour 48.4 537.6

BigMemSubParaFourTable 59.3 644.1

throughput per area for all implementations on different platforms when performing SpMV using

the sparse matrix Franz9. The minimum number of cores for the storage of vector x is first used for

the BigMemSnake implementation, and then added to create additional implementations.

The relatively large size and NNZ of Franz9 motivate finding alternative implementations

for SpMV. Modify the BigMemSnake implementation to use BigMemParaOne with an extra NNZ

counter core to simplify logic control overhead, which increases throughput per area and throughput

per watt because of the medium density of Franz9. The results on Figure 5.2 show that the

BigMemPara and BigMemSubPara implementations attempt to achieve higher throughput per watt

by increasing the number of arrays processed in parallel come to failure. Since with more cores, the

throughput per watt is reduced because processing cores with relatively small chip sizes typically

consume more power than shared memory.

The least efficient implementation is the merge-based algorithm in the NVIDIA Quadro

K620. Although the column size of Franz9 is almost the median of all matrices of the sparse matrix

database, even if a merge-based algorithm is used to balance the workload between all threads,

the GPU cannot perform SpMV operations efficiently. Cusparse HybMv algorithm on Franz9

achieves 1.89× and 1.23× throughput per watt than other general-purpose processor and GPU
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Figure 5.2: Throughput per area versus throughput per watt for various SpMV implementations

operating on the Franz9 sparse matrix. All eight implementations on many-core platform for

Franz9 are compared against general-purpose processor and GPU implementations. The evaluation

precision of all benchmarks is single-precision floating point (32 bit). Throughput per watt and

throughput per area of all implementations are shown in Table 5.3. The optimal design has the

largest throughput per watt and throughput per area. The implementations on many-core platform

provide 1.59-9.47× and 1.29-7.68× higher throughput per watt than the general-purpose processor

and GPU designs.

implementations since the non-zero elements of this matrix are evenly distributed, enabling ELL

format to improve throughput per watt versus throughput per area. Other GPU and general-purpose

processor implementations provide the same order of magnitude throughput per watt and throughput

per area as the least efficient one.

The most efficient many-core implementation tends to achieve a balance between simplifying

control logic of processing cores and doubling processing rows, namely the BigMemParaOne design.
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The least efficient many-core implementation tends to use more cores for the sorting network,

including the BigMemSubPara implementations.

All the implementations on many-core platform for Franz9 provide greater throughput

per watt than the general-purpose processor-based and GPU-based implementations. Compared

with the general-purpose processor and GPU designs, the throughput per watt on the many-core

platform is increased by 1.59-9.47× and 1.29-7.68× respectively, as shown in Table 5.3.

5.5.3 Large and Dense Matrix

For larger and denser matrices, Figure 5.3 shows throughput per watt versus throughput

per area for all implementations on different platforms when performing SpMV using the rail507

sparse matrix. The minimum number of cores to store the vector x is first used for the BigMemSnake

implementation, and then increased to create additional implementations.

The large column size and NNZ of rail507 prompted the search of alternative implementa-

tions for SpMV. Since column size for rail507 is 63516, which means at least two big shared memory

modules are needed for storing the vector x. While increasing the number of processing rows for the

BigMemParaOne to handle multiplication in parallel, it provides nearly 2× and 4× throughput for

BigMemParaTwo and BigMemParaFour implementations and is relatively small in run size because

each shared memory module can be accessed by processing cores from nearby rows.

The results on Figure 5.3 show that the BigMemParaFourPad achieves the highest through-

put per watt because the average NNZ per row of this matrix is 808, which is the densest one

among all the simulated matrices and could be divided by 4. The second optimal BigMemParaFour

implementation uses the same schema mapping as BigMemParaFourPad, which uses padding NNZ

distribution kernel to provide higher throughput per watt while still delivering the same throughput

per area.

The least efficient implementation is the Cusparse HybMv algorithm in the NVIDIA

Quadro K620. Since the column size and density of the matrix are the highest for all simulated

matrices, the merge based algorithm can effectively perform SpMV operations over the other two

algorithms. Other GPU and general-purpose processor implementations provide the same order of

magnitude throughput per watt and throughput per area compared to the least efficient one.

The most efficient many-core implementation tends to increase the number of processing
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Figure 5.3: Throughput per area versus throughput per watt for various SpMV implementations

operating on the rail507 sparse matrix. All eight implementations on many-core platform for

rail507 are compared against general-purpose processor and GPU implementations. The evaluation

precision of all benchmarks is single-precision floating point (32 bit). Throughput per watt and

throughput per area of all implementations are shown in Table 5.4. The optimal design has the

largest throughput per watt and throughput per area. The implementations on many-core platform

provide 4.07-13.01× and 4.95-15.81× higher throughput per watt than the general-purpose processor

and GPU designs.

rows while reducing control and traffic overhead, namely the BigMemParaFourPad design. The

least efficient many-core implementation tends to use more cores for the sorting network, including

the BigMemSubPara implementations.

All the implementations on many-core platform for rail507 offer greater throughput per

watt than the general-purpose processor-based and GPU-based implementations. Compared with

the general-purpose processor and GPU designs, the throughput per watt on the many-core platform

is increased by 4.07-13.01× and 4.95-15.81× respectively, as shown in Table 5.4.
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Table 5.4: Throughput per area versus throughput per watt for various SpMV implementations

operating on the rail507 sparse matrix. All metrics data is plotted in Figure 5.3 and the highest

throughput per area versus throughput per watt of various implementations are in bold.

Implementation/Benchmark Throughput Per Area Throughput Per Watt

(Single FP Precision) (MFLOPS/mm2) (MFLOPS/W)

Quadro K620 Merge-based 28.8 208

Quadro K620 Cusparse CsrMv 22.4 161.6

Quadro K620 Cusparse HybMv 20.8 153

i7-3720QM Merge-based 24 252.8

BigMemSnake 105 3067

BigMemParaOne 113.6 2200

BigMemParaTwo 143 2340

BigMemParaTwoNnz 125 2340

BigMemParaFour 208 3190

BigMemParaFourPad 208 3289

BigMemSubParaFour 91.1 1029

BigMemSubParaFourTable 91.1 1042

5.6 Area Efficiency Comparison with other Work

The eight proposed SpMV implementations were simulated on 10 sparse real matrices

chosen from Table 2.2 on page 17 using 1 to 23 processors on the many-core platform, which can

improve throughput per area versus using the methods on the GPU or general-purpose processor.

The implementations on the many-core platform increase throughput per area by up to 165.4×

versus the general-purpose processor implementations, and by up to 102.4× versus the GPU

implementations.

BigMemParaTwo is usually the most area efficient implementation for most simulated

matrices, but as the matrix size (NNZ) changes, other implementations provide a higher throughput

per area for some specific matrices.

5.6.1 Small and Sparse Matrix

For a relatively small and sparse matrix, Figure 5.4 shows throughput per watt versus

throughput per area for all implementations on different platforms when performing SpMV using

the GD01 a sparse matrix. The minimum number of cores for the storage of vector x is first used
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for the BigMemSnake implementation, and then increased to create additional implementations.

Since the processing core consumes relatively high power and the matrix size is small,

increasing the number of cores of BigMemSnake beyond the number of cores required to store the

vector x reduces the throughput per watt. The optimal BigMemSnake implementation uses the

least amount of cores to store the vector x.

Modify the BigMemSnake implementation to use BigMemParaOne with an extra NNZ

counter core to simplify the logic control overhead, thereby increasing throughput per area while

reducing throughput per watt. The main reason is that the processing core typically consumes more

power than the shared memory, which has three times the chip size of the processing core.

The relatively small size and NNZ of GD01 a reduce the motivation to find alternative im-

plementations for SpMV. The results on Figure 5.4 show that the BigMemPara and BigMemSubPara

implementations attempt to achieve higher throughput per area by increasing the number of arrays

processed in parallel come to failure. Comparing to the optimal BigMemParaOne, as the implemen-

tation becomes more complex and uses more cores, throughput per watt and throughput per watt

will decrease. The most area efficient implementations tend to use as few shared memory modules

as possible while adding extra NNZ counter core to simplify the control and flow overhead, namely

BigMemParaOne. The least efficient many-core implementations tend to use more cores for the

sorting network, including the BigMemSubPara implementations.

The least efficient implementation is the Cusparse HybMv algorithm in the NVIDIA

Quadro K620. The GPU is unable to perform the SpMV operations efficiently because the column

size of the matrix is the smallest of all the simulated matrices, and it is difficult to balance the

workload of each thread. Other GPU and general-purpose processor implementations provide the

same order of magnitude throughput per area and throughput per watt as the least efficient one.

All the implementations on many-core platform for GD01 a provide greater throughput

per area than the general-purpose processor-based and GPU-based implementations. As shown in

Table 5.5, the implementations on the many-core platform provide 16.15-165.38× and 10-102.38×

higher throughput per area than the general-purpose processor and GPU designs.
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Figure 5.4: Throughput per area versus throughput per watt for various SpMV implementations

operating on the GD01 a sparse matrix. All eight implementations on many-core platform for

GD01 a are compared against general-purpose processor and GPU implementations. The evaluation

precision of all benchmarks is single-precision floating point (32 bit). Throughput per watt and

throughput per area of all implementations are shown in Table 5.5. The optimal design has the largest

throughput per watt and throughput per area. The implementations on many-core platform provide

16.15-165.38× and 10-102.38× higher throughput per area than the general-purpose processor and

GPU designs.

5.6.2 Medium Size Matrix

Implementations with multiple processing rows generally become more area efficient as the

size and density of the sparse matrix increases.

For a relatively large and dense matrix, Figure 5.5 displays throughput per watt versus

throughput per area for all implementations on different platforms when performing SpMV using

the sparse matrix complex. The minimum number of cores to store the vector x is first used for the

BigMemSnake implementation, and then increased to create additional implementations.
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Table 5.5: Throughput per area versus throughput per watt for various SpMV implementations

operating on the GD01 a sparse matrix. All metrics data is plotted in Figure 5.4 and the highest

throughput per area versus throughput per watt of various implementations are in bold.

Implementation/Benchmark Throughput Per Area Throughput Per Watt

(Single FP Precision) (MFLOPS/mm2) (MFLOPS/W)

Quadro K620 Merge-based 0.9 6.4

Quadro K620 Cusparse CsrMv 2.1 14.1

Quadro K620 Cusparse HybMv 0.6 4.3

i7-3720QM Merge-based 1.3 20

BigMemSnake 174 3800

BigMemParaOne 215 2810

BigMemParaTwo 144 1651

BigMemParaTwoNnz 68 732

BigMemParaFour 43 724

BigMemParaFourPad 127 1344

BigMemSubParaFour 21 285

BigMemSubParaFourTable 34 380

The relatively large size and NNZ of complex motivate finding alternative implementations

for SpMV. Modify the BigMemSnake implementation to use BigMemParaOne with extra NNZ

counter core to simplify logic control overhead, thereby reducing throughput per watt and throughput

per area. Due to the medium size and density of matrix complex, only one processing core and shared

memory will be needed for BigMemSnake so that extra NNZ counter core will hurt throughput

per area versus throughput per watt. The results on Figure 5.5 show that the BigMemPara

implementations attempt to achieve higher throughput per area by increasing the number of arrays

processed in parallel succeed. The most efficient implementation is BigMemParaTwo, which is

the simplest implementation in which big shared memory is connected to two processing cores on

neighbour arrays, making full use of arbitrary access of shared memory to save area consumption.

The throughput per area decreases as implementation uses more processing arrays since the relative

low density of this matrix limits doubling the throughput while the number of processing core

doubles, as shown in Figure 5.5.

The least efficient implementation is the merge-based algorithm in the NVIDIA Quadro

K620. GPU cannot perform SpMV operations efficiently because the column size of matrix complex

is just 1408, even if a merge-based algorithm is used to balance the workload between all threads.
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Figure 5.5: Throughput per area versus throughput per watt for various SpMV implementations

operating on the complex sparse matrix. All eight implementations on many-core platform for

complex are compared against general-purpose processor and GPU implementations. The evaluation

precision of all benchmarks is single-precision floating point (32 bit). Throughput per watt and

throughput per area of all implementations are shown in Table 5.6. The optimal design has the

largest throughput per watt and throughput per area. The implementations on many-core platform

provide 3.91-12.92× and 3.16-10.45× higher throughput per area than the general-purpose processor

and GPU designs.

Other GPU and general-purpose processor implementations provide the same order of magnitude

throughput per area and throughput per watt, compared to the least efficient one.

The most area efficient many-core implementation tends to achieve a balance between

increasing number of processing rows and simplifying control logic between processing cores, namely

the BigMemParaTwo design. The least efficient many-core implementations tend to use more cores

for a sorting network, including the BigMemSubPara implementations.

All implementations on many-core platform for complex provide greater throughput per
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Table 5.6: Throughput per area versus throughput per watt for various SpMV implementations

operating on the complex sparse matrix. All metrics data is plotted in Figure 5.5 and the highest

throughput per area versus throughput per watt of various implementations are in bold.

Implementation/Benchmark Throughput Per Area Throughput Per Watt

(Single FP Precision) (MFLOPS/mm2) (MFLOPS/W)

Quadro K620 Merge-based 27.7 199.8

Quadro K620 Cusparse HybMv 26.6 192

Quadro K620 Cusparse CsrMv 12.2 88

i7-3720QM Merge-based 22.4 308.8

BigMemSnake 228 4545

BigMemParaOne 226 3263

BigMemParaTwo 289.5 3763

BigMemParaTwoNnz 238 3892

BigMemParaFour 288.5 3800

BigMemParaFourPad 281 3861

BigMemSubParaFour 87.5 982

BigMemSubParaFourTable 87.5 994

watt than the general-purpose processor-based and GPU-based implementations. Compared with

the general-purpose processor and GPU designs, the throughput per area on the many-core platform

is increased by 3.91-12.92× and 3.16-10.45× respectively, as shown in Table 5.6.

5.6.3 Large and Dense Matrix

For large and dense matrices, Figure 5.6 shows throughput per watt versus throughput per

area for all implementations on different platforms when performing SpMV using the sparse matrix

rail582. The minimum number of cores for the storage of vector x is first used for the BigMemSnake

implementation, and then increased to create additional implementations.

The large size and NNZ of rail582 motivate finding alternative implementations for SpMV.

Since the column size for this matrix is 56097, which means at least two big shared memory

modules are needed for storing the vector x. By increasing the number of processing rows for the

BigMemParaOne to handle multiplication in parallel, it provides nearly 2× and 4× throughput

for BigMemParaTwo and BigMemParaFour implementations, and is relatively small in run size

because big shared memory module can be shared by processing cores from nearby rows.

The results on Figure 5.6 show that the BigMemParaFourPad achieves the highest
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Figure 5.6: Throughput per area versus throughput per watt for various SpMV implementations

operating on the rail582 sparse matrix. All eight implementations on many-core platform for

rail582 are compared against general-purpose processor and GPU implementations. The evaluation

precision of all benchmarks is single-precision floating point (32 bit). Throughput per watt and

throughput per area of all implementations are shown in Table 5.7. The optimal design has the

largest throughput per watt and throughput per area. The implementations on many-core platform

provide 3.97-9.29× and 3.04-7.09× higher throughput per area than the general-purpose processor

and GPU designs.

throughput per area because the average NNZ per row for this matrix is 691, which is the second

densest one of all simulated matrices. The second optimal BigMemParaFour implementation uses

the same architectural mapping as BigMemParaFourPad, which uses a padding NNZ distribution

kernel to provide higher throughput per watt while still delivering the same throughput per area.

The least efficient implementation is the Cusparse HybMv algorithm in the NVIDIA Quadro

K620. Since the column size and density of the matrix are the second highest of all simulated

matrices, the merge based algorithm can effectively perform SpMV operations over the other two
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Table 5.7: Throughput per area versus throughput per watt for various SpMV implementations

operating on the rail582 sparse matrix. All metrics data is plotted in Figure 5.6 and the highest

throughput per area versus throughput per watt of various implementations are in bold.

Implementation/Benchmark Throughput Per Area Throughput Per Watt

(Single FP Precision) (MFLOPS/mm2) (MFLOPS/W)

Quadro K620 Merge-based 29.3 211.2

Quadro K620 Cusparse CsrMv 21.1 152

Quadro K620 Cusparse HybMv 20.5 148.3

i7-3720QM Merge-based 22.4 272

BigMemSnake 105 3067

BigMemParaOne 111.6 2200

BigMemParaTwo 143 2340

BigMemParaTwoNnz 125 2340

BigMemParaFour 208 3200

BigMemParaFourPad 208 3299

BigMemSubParaFour 89 1030

BigMemSubParaFourTable 89 1036

algorithms. Other GPU and general-purpose processor implementations provide the same order of

magnitude throughput per area and throughput per watt, compared to the least efficient one. The

most area efficient implementation tends to increase the number of processing rows while reducing

control and flow overhead, namely the BigMemParaFourPad design. The least efficient many-core

implementation tends to use more cores for the sorting network, including the BigMemSubPara

implementations.

All implementations on many-core platform for rail582 provide greater throughput per

area than the general-purpose processor-based and GPU-based implementations. Compared with

the core general-purpose processor and GPU designs, the throughput per area on the many-core

platform is increased by 3.97-9.29× and 3.04-7.09× respectively, as shown in Table 5.7.

5.7 Performance Comparison Summary

In addition to the six sample matrices analyzed in this chapter, the throughput per area

versus throughput per watt for various SpMV implementations operating on other four real sparse

matrices from Table 2.2 on page 17 were also simulated, as shown in Table 5.8.
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Table 5.8: Performance Comparison of AsAP3 with general-purpose processor and GPU implemen-

tations. The evaluation precision of all implementations is single-precision 32-bit IEEE-754 format.

AsAP3 metrics are normalized against the comparison device, and are scaled to the same technology

using data from Holt [68].

Matrix Throughput/Area Throughput/Watt Throughput/Area Throughput/Watt

Name (i7 3720QM) (i7 3720QM) (Quadro 620) (Quadro 620)

GD96 a 88.3 107.1 53 125

Franz9 7 9.5 6.1 7.7

as-caida 16.4 45.5 11.3 30.3

GD97-c 78.6 112.9 88.2 214.7

GD01-a 165.4 190 102.4 269.5

GD01-Acap 75 64.6 56 107.3

GD00-c 83.7 119 58.7 128

rail507 8.7 13 7.2 15.8

rail582 7.1 12.1 9.3 15.6

complex 12.9 14.7 10.4 22.8

Table 5.8 shows that implementing SpMV on the many-core platform increases throughput

per watt by 68.8× on average, and as much as 190× versus the general-purpose processor imple-

mentations, and by 93.7× on average, up to 269.5× versus the GPU implementations. Throughput

per area is increased by 54.3× on average, and up to 165.4× versus the general-purpose processor

implementations, and by 40.3× on average, as much as 102.4× versus the GPU implementations.
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Chapter 6

Thesis Summary and Future Work

6.1 Thesis Summary

This thesis summarizes the current research and challenges in many-core SpMV algorithms,

and why the topic is relevant. The background information about the matrix database and the

different sparse matrix compression formats to be explored are given. The large 2D mesh architecture

used throughput the thesis, AsAP3 (KiloCore), is explained.

It continues to demonstrate and explore the SpMV implementations on a many-core

platform (AsAP3). Three main scenarios: BigMemSnake, BigMemPara, BigMemSubPara, which

consist of one or more of the three main phases of SpMV: NNZ distribution network, Sorting network

and Processing array are explored. Based on these three main scenarios and phases, a total of eight

functionally equivalent sparse matrix dense vector multiplication implementationns are created.

Two main metrics for various SpMV implementations: throughput per watt and throughput

per area are used to measure the area and power efficiency of various designs on different platforms.

To measure against SpMV implementations on the GPU and general-purpose processor, the

classic sparse matrix APIs [33,34] and the most advanced benchmarks [7] are used for implementing

SpMV. The evaluation precision of all benchmarks is single-precision 32-bit IEEE-754 format. The

throughput, power, and area consumption of all implementations are measured for performing SpMV

on unstructured sparse matrices from distinct scientific workloads of varying sizes. The many-core

implementations increase power efficiency by 68.8× versus the general-purpose processor SpMV

on average, and by 93.7× versus the GPU SpMV on average. Simultaneously, they provide 54.3×
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improvement in area efficiency versus the general-purpose processor SpMV on average, and 40.3×

improvement versus the GPU SpMV on average.

This summary is followed by a list of the author’s proposed future work.

6.2 Future Work

This thesis explores implementing SpMV on a many-core platform (AsAP3). However,

due to time limitation, this thesis has not tested huge matrix with column size or NNZ larger than

millions. The most complex but least efficient kernel BigMemSubPara for relatively small matrix

may help to explore larger matrix since it will use fewer processing cores than the other two main

kernels:BigMemSnake and BigMemPara, which means achieving more power and area efficiency.

From the perspective of architecture, increasing the amount of on-chip shared memory and streaming

instructions from a shared memory to a neighboring processor will be helpful, especially for designing

more complex kernels for huge matrices. The exploration of relatively large matrix for other SpMV

kernels is left as a future research endeavor.

Furthermore, in addition to sparse matrix vector multiplication, there are many other

common scientific kernels that could be implemented on a many-core platform to explore trade-offs

and efficiency, including general sparse matrix-matrix multiplication, 2D stencil computations, and

lattice quantum chromodynamics (QCD).
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Glossary

API Application Programming Interface. APIs are a set of programming routines, and tools for

building software.

AsAP3 The third generation Asyncronous Array of simple Processors (AsAP) chip. AsAP3 is a

fine-grained many-core system with 1000 independently clocked homogeneous programmable

processors.

BCCOO Blocking Coordinate format. BCCOO divides the matrix into blocks to reduce the access

to column index, and store in COO format.

CMOS Complementary Metal Oxide Semiconductor. CMOS circuits are based on field-effect

transistors and use both n-channel and p-channel transistors. Most modern chips use CMOS

technology.

COO Coordinate format. In this storage format, three arrays are used to store the matrix. The

arrays have the same number of non zeros as the original matrix. One of the arrays holds the

matrix entries, and the other two arrays hold the column and row index of the matrix entries

from the original matrix.

CSR Compressed sparse row. A format represents a matrix A by three (one-dimensional) arrays,

that respectively contain nonzero values, the extents of rows, and column indices.

CUDA Compute Unified Device Architecture. An application programming interface (API) by

NVIDIA to enable general purpose processing on a GPU.

cuSPARSE The NVIDIA CUDA Sparse Matrix library. It provides a collection of basic linear

algebra subroutines used for sparse matrices that delivers up to 8x faster performance than

the latest MKL.
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ELL Ellpack-Itpack generalized diagonal format. In this storage format, two rectangular arrays are

used to store the matrix. The arrays have the same number of rows as the original matrix,

but only have as many columns as the maximum number of nonzeros on a row of the original

matrix. One of the arrays holds the matrix entries, and the other array holds the column

numbers from the original matrix.

FIFO First in, first out. A method for organizing and manipulating a data buffer, where data are

sent out in the same order in which they were received.

flops floating point operations per second. Flops is a measure of computer performance, useful in

fields of scientific computations that require floating-point calculations.

GPGPU general-purpose GPU. GPGPU is a graphics processing unit (GPU) that performs non-

specialized calculations that would typically be conducted by the central processing unit

(CPU). Ordinarily, the GPU is dedicated to graphics rendering.

HYB Hybrid format. The purpose of the HYB format is to store the typical number of nonzeros

per row in the ELL data structure and the remaining entries of exceptional rows in the COO

format.

IEEE-754 A techincal standard for FP arithmetic and data representation. The standard specifies

a set of formats, operations, rounding rules, flags, and the handling of exceptions.

Intel MKL Intel Math Kernel Library. A library of math processing routines.

LSB Least Significant Bit. In this thesis, LSB refers to the right-most bit of a binary value.

MIMD Multiple Instruction, Multiple Data. MIMD is a type of parallel architecture where different

processors may be executing different instructions on different pieces of data.

NNZ Number of non-zeros.

OpenMP Open Multi-Processing. It is an application programming interface (API) that supports

multi-platform shared memory multiprocessing programming in C, C++, and Fortran, on

most platforms, instruction set architectures and operating systems, including Solaris, AIX,
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HP-UX, Linux, macOS, and Windows. It consists of a set of compiler directives, library

routines, and environment variables that influence run-time behavior.

PD-SOI Partially Depleted Silicon On Insulator. A fabrication technology where partially depleted

layered silicon is placed on an insulator, which is then placed on a silicon substrate. SOI

lowers parasitic capacitance by isolating the silicon junction using an insulator.

QCD Quantum chromodynamics. It is the theory of the strong interaction between quarks and

gluons, the fundamental particles that make up composite hadrons such as the proton, neutron

and pion.

SpMV Sparse Matrix-Vector Multiplication. A common scientific kernel involving the multiplication

of a sparse matrix with a dense vector.

TDP Thermal design power. It is the maximum amount of heat generated by the CPU that the

cooling system in a computer is required to dissipate in typical operation.

TLB Translation lookaside buffer. It is a cache that memory management hardware uses to improve

virtual address translation speed.

Xeon Phi Xeon Phi. Xeon Phi is a series of x86 manycore processors designed and made entirely

by Intel. They are intended for use in supercomputers, servers, and high-end workstations.

Its architecture allows use of standard programming languages and APIs such as OpenMP.
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[25] Aydin Buluç, Jeremy T Fineman, Matteo Frigo, John R Gilbert, and Charles E Leiserson.
Parallel sparse matrix-vector and matrix-transpose-vector multiplication using compressed
sparse blocks. In Proceedings of the twenty-first annual symposium on Parallelism in algorithms
and architectures, pages 233–244. ACM, 2009.

[26] Ali Pinar and Michael T Heath. Improving performance of sparse matrix-vector multiplication.
In Proceedings of the 1999 ACM/IEEE conference on Supercomputing, page 30. ACM, 1999.

[27] Jeremiah Willcock and Andrew Lumsdaine. Accelerating sparse matrix computations via data
compression. In Proceedings of the 20th annual international conference on Supercomputing,
pages 307–316. ACM, 2006.

[28] Sivan Toledo. Improving the memory-system performance of sparse-matrix vector multiplication.
IBM Journal of research and development, 41(6):711–725, 1997.

[29] George Chrysos. Intel R© xeon phiTM coprocessor-the architecture. Intel Whitepaper, 176, 2014.

[30] Moritz Kreutzer, Georg Hager, Gerhard Wellein, Holger Fehske, and Alan R Bishop. A unified
sparse matrix data format for efficient general sparse matrix-vector multiplication on modern
processors with wide simd units. SIAM Journal on Scientific Computing, 36(5):C401–C423,
2014.

[31] Richard Vuduc, James W Demmel, and Katherine A Yelick. Oski: A library of automatically
tuned sparse matrix kernels. In Journal of Physics: Conference Series, volume 16, page 521.
IOP Publishing, 2005.

[32] Jee W Choi, Amik Singh, and Richard W Vuduc. Model-driven autotuning of sparse matrix-
vector multiply on gpus. In ACM sigplan notices, volume 45, pages 115–126. ACM, 2010.

[33] MKL Intel. Intel math kernel library. 2007.

[34] CUsparse Toolkit Documentation. v7. 5, nvidia corporation, sep 2015.

[35] Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick, and James
Demmel. Optimization of sparse matrix-vector multiplication on emerging multicore platforms.
In Supercomputing, 2007. SC’07. Proceedings of the 2007 ACM/IEEE Conference on, pages
1–12. IEEE, 2007.

[36] Salvatore Filippone, Valeria Cardellini, Davide Barbieri, and Alessandro Fanfarillo. Sparse
matrix-vector multiplication on gpgpus. ACM Transactions on Mathematical Software (TOMS),
43(4):30, 2017.

[37] B. Bohnenstiehl, A. Stillmaker, J. Pimentel, T. Andreas, B. Liu, A. Tran, E. Adeagbo, and
B. Baas. KiloCore: A fine-grained 1,000-processor array for task parallel applications. IEEE
Micro, 37(2):63–69, March 2017.

[38] B. Bohnenstiehl, A. Stillmaker, J. Pimentel, T. Andreas, B. Liu, A. Tran, E. Adeagbo, and
B. Baas. KiloCore: A 32 nm 1000-processor array. In IEEE HotChips Symposium on High-
Performance Chips, August 2016.

[39] Aaron Stillmaker, Brent Bohnenstiehl, and Bevan Baas. The design of the kilocore chip. In
ACM/IEEE Design Automation Conference, Austin, TX, Jun. 2017.

92



[40] B. Bohnenstiehl, A. Stillmaker, J. Pimentel, T. Andreas, B. Liu, A. Tran, E. Adeagbo, and
B. Baas. A 5.8 pJ/Op 115 billion Ops/sec, to 1.78 trillion Ops/sec 32 nm 1000-processor array.
In Symposium on VLSI Circuits, June 2016.

[41] Tinoosh Mohsenin and Bevan M. Baas. Split-row: A reduced complexity, high throughput
LDPC decoder architecture. In IEEE International Conference on Computer Design (ICCD),
October 2006.

[42] Z. Yu and B. M. Baas. High performance, energy efficiency, and scalability with GALS
chip multiprocessors. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
17(1):66–79, January 2009.

[43] Z. Yu and B. M. Baas. A low-area multi-link interconnect architecture for GALS chip
multiprocessors. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 18(5):750–
762, May 2010.

[44] Anh T. Tran and Bevan M. Baas. Achieving high-performance on-chip networks with shared-
buffer routers. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22(6):1391–
1403, June 2014. Date of publication July 3, 2013.

[45] A.T. Tran and B.M. Baas. DLABS: a dual-lane buffer-sharing router architecture for networks
on chip. In Signal Processing Systems, 2010. SiPS 2010. IEEE Workshop on, pages 331–336,
October 2010.

[46] R. W. Apperson, Z. Yu, M. J. Meeuwsen, T. Mohsenin, and B. M. Baas. A scalable dual-clock
FIFO for data transfers between arbitrary and haltable clock domains. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 15(10):1125–1134, October 2007.

[47] Bin Liu and Bevan M. Baas. Parallel AES encryption engines for many-core processor arrays.
Computers, IEEE Transactions on, 62(3):536–547, march 2013.

[48] Tinoosh Mohsenin and Bevan M. Baas. High-throughput LDPC decoders using a multiple split-
row method. In IEEE International Conference on Acoustics, Speech, and Signal Processing,
April 2007.

[49] Aaron Stillmaker, Lucas Stillmaker, and Bevan Baas. Fine-grained energy-efficient sorting on a
many-core processor array. In Parallel and Distributed Systems (ICPADS), 2012 IEEE 18th
International Conference on, pages 652–659, December 2012.

[50] Jon J. Pimentel and Bevan M. Baas. Hybrid floating-point modules with low area overhead
on a fine-grained processing core. In IEEE Asilomar Conference on Signals, Systems and
Computers, November 2014.

[51] Z. Yu, M. Meeuwsen, R. Apperson, O. Sattari, M. Lai, J. Webb, E. Work, T. Mohsenin,
M. Singh, and B. Baas. An asynchronous array of simple processors for DSP applications. In
IEEE International Solid-State Circuits Conference (ISSCC), volume 49, pages 428–429, 663,
February 2006.

[52] Zhiyi Yu, Michael Meeuwsen, Ryan Apperson, Omar Sattari, Michael Lai, Jeremy Webb, Eric
Work, Dean Truong, Tinoosh Mohsenin, and Bevan Baas. AsAP: An asynchronous array of
simple processors. IEEE Journal of Solid-State Circuits (JSSC), 43(3):695–705, March 2008.

[53] Z. Yu and B. M. Baas. Implementing tile-based chip multiprocessors with GALS clocking styles.
In IEEE International Conference on Computer Design (ICCD), October 2006.

93



[54] Z. Yu and B. Baas. Performance and power analysis of globally asynchronous locally synchronous
multi-processor systems. In IEEE Computer Society Annual Symposium on VLSI, March 2006.

[55] Bevan Baas, Zhiyi Yu, Michael Meeuwsen, Omar Sattari, Ryan Apperson, Eric Work, Jeremy
Webb, Michael Lai, Tinoosh Mohsenin, Dean Truong, and Jason Cheung. AsAP: A fine-grained
many-core platform for DSP applications. IEEE Micro, 27(2):34–45, March 2007.

[56] D. N. Truong, W. H. Cheng, T. Mohsenin, Z. Yu, A. T. Jacobson, G. Landge, M. J. Meeuwsen,
A. T. Tran, Z. Xiao, E. W. Work, J. W. Webb, P. Mejia, and B. M. Baas. A 167-processor
computational platform in 65 nm CMOS. IEEE Journal of Solid-State Circuits (JSSC),
44(4):1130–1144, April 2009.

[57] D. Truong, W. Cheng, T. Mohsenin, Z. Yu, T. Jacobson, G. Landge, M. Meeuwsen, C. Watnik,
P. Mejia, A. Tran, J. Webb, E. Work, Z. Xiao, and B. Baas. A 167-processor computational array
for highly-efficient DSP and embedded application processing. In IEEE HotChips Symposium
on High-Performance Chips, August 2008.

[58] A. T. Tran, D. N. Truong, and B. M. Baas. A reconfigurable source-synchronous on-chip
network for GALS many-core platforms. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 29(6):897–910, June 2010.

[59] D. Truong, W. Cheng, T. Mohsenin, Z. Yu, T. Jacobson, G. Landge, M. Meeuwsen, C. Watnik,
P. Mejia, A. Tran, J. Webb, E. Work, Z. Xiao, and B. Baas. A 167-processor 65 nm computational
platform with per-processor dynamic supply voltage and dynamic clock frequency scaling. In
Symposium on VLSI Circuits, pages 22–23, June 2008.

[60] Bin Liu, Mohammad H. Foroozannejad, Soheil Ghiasi, and Bevan M. Baas. Optimizing power
of many-core systems by exploiting dynamic voltage, frequency and core scaling. In IEEE
International Midwest Symposium on Circuits and Systems (MWSCAS), Aug. 2015.

[61] A.T. Tran, D.N. Truong, and B.M. Baas. A GALS many-core heterogeneous DSP platform
with source-synchronous on-chip interconnection network. In Networks-on-Chip, 2009. NoCS
2009. 3rd ACM/IEEE International Symposium on, pages 214–223, May 2009.

[62] Anh Tran, Dean Truong, and Bevan Baas. A complete full-rate 802.11a baseband reciever
implemented on an array of programmable processors. In Asilomar Conference on Signals,
Systems and Computers, October 2008.

[63] Anh Tran and Bevan Baas. Design of an energy-efficient 32-bit adder operating at subthreshold
voltages in 45-nm CMOS. In International Conference on Communications and Electronics,
August 2010.

[64] Paul Husted and Bevan Baas. Method and apparatus for transient frequency distortion
compensation, March 2008. US Patent 7,340,265.

[65] Jon Pimentel. Methods for Reducing Floating-Point Computation Overhead. PhD thesis,
University of California, Davis, CA, USA, August 2017. http://vcl.ece.ucdavis.edu/pubs/
theses/2017-2.pimentel/.

[66] Georgios Goumas, Kornilios Kourtis, Nikos Anastopoulos, Vasileios Karakasis, and Nectarios
Koziris. Understanding the performance of sparse matrix-vector multiplication. In Parallel,
Distributed and Network-Based Processing, 2008. PDP 2008. 16th Euromicro Conference on,
pages 283–292. IEEE, 2008.

94

http://vcl.ece.ucdavis.edu/pubs/theses/2017-2.pimentel/
http://vcl.ece.ucdavis.edu/pubs/theses/2017-2.pimentel/


[67] Stephen A Jarvis, Steven A Wright, and Simon D Hammond. High performance computing
systems. Performance modeling, benchmarking and simulation: 4th International Workshop,
PMBS 2013, Denver, CO, USA, November 18, 2013. Revised Selected Papers, volume 8551.
Springer, 2014.

[68] William M Holt. 1.1 moore’s law: A path going forward. In Solid-State Circuits Conference
(ISSCC), 2016 IEEE International, pages 8–13. IEEE, 2016.

95


	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Motivation
	Thesis Organization

	Background
	SpMV on Modern Multi- and Many-core Processors
	Sparse Matrix Compressed Format
	Related Work

	Targeted Many-Core Processor: AsAP3
	Scaling to Many-Core
	Basic Methodology

	Matrix Database

	Implementations of Sparse Matrix-Vector Multiplication on a Many-Core Platform
	Sparse Matrix-Vector Multiplication Kernels
	Matrix Preprocessing
	Nonzero Distribution
	Core Boundary
	Loading Vector into BigMem and DMem
	Sorting Network

	Proposed SpMV Architecture Mapping
	BigMemSnake Accumulation
	BigMemSubPara Accumulation
	BigMemPara Accumulation

	Different Phase Kernels Analysis
	Processing Array Phase
	NNZ Distribution Phase
	Column Index Based Sorting Phase


	Comparison of Sparse Matrix-Vector Multiplication Methods for AsAP3
	Power Efficiency Comparison between different implementations
	Processing array phase
	Distribution network phase
	Sorting network phase
	Summary

	Area Efficiency Comparison between different implementations
	Processing array phase
	Distribution network phase
	Sorting network phase
	Summary


	Comparison of Sparse Matrix-Vector Multiplication Methods on AsAP3 with general-purpose processor and GPU
	Sparse Matrix Data Sets
	Matrix Library
	Details of general-purpose processor and GPU
	Measurement and Simulation Methodology
	Power Efficiency Comparison with other Work
	Small and Sparse Matrix
	Medium Size Matrix
	Large and Dense Matrix

	Area Efficiency Comparison with other Work
	Small and Sparse Matrix
	Medium Size Matrix
	Large and Dense Matrix

	Performance Comparison Summary

	Thesis Summary and Future Work
	Thesis Summary
	Future Work

	Bibliography

