
Energy-Efficient Pattern Matching Methods on a Fine-Grained
Many-Core Platform

By

EMMANUEL OLUFEMI URAI ADEAGBO
B.S. (University of California, Berkeley) June 2009

THESIS

Submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE

in

Electrical and Computer Engineering

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Dr. Bevan M. Baas

Dr. Rajeevan Amirtharajah

Dr. Hussain Al-Asaad

Committee in charge
2016

– i –

© Copyright by Emmanuel Olufemi Urai Adeagbo 2016
All Rights Reserved

Abstract

The matching of one or more occurrences of a keyword within a set of input data is

widely used in many datacenter applications such as large string databases, network intrusion

detection systems, and search engines. As demand for datacenter performance continues to

increase, energy consumption has gone up by nearly 4× within the last decade. It is therefore

desirable to have very low energy dissipation per workload with low area overhead and high

throughput.

This thesis first presents three energy-efficient methods for searching and filtering

streamed data on a fine-grained many-core processor array: parallel, serial, and all-in-

one. All three architectures provide programmable flexibility with low energy consumption.

Experimental results show that for one keyword search, the parallel and serial architectures

consume 2× less energy per workload than the all-in-one architecture. For two or more

keyword searches, the all-in-one architecture achieves up to 2.6× higher throughput per area

over the parallel architecture, and 25.6× over the serial architecture. Scaled results show

that the serial and parallel designs provide 211× increased throughput per area, and yield

155× energy reduction when compared to a traditional processor (Intel Core i7 3667U). The

proposed architectures are modular and easily scalable.

In addition to the proposed three energy-efficient methods for searching and filtering

strings, this thesis also presents two self-adaptive string search filters for further reducing

energy consumption and improving throughput of string search via self-reprogramming.

Results show that the self-adaptive implementation with separated statistics block achieves

about 2.8× to 4× higher throughput and throughput per area on average than the imple-

mentation with combined statistics block in statistics mode. Other performance parameters

such as energy per workload, throughput and throughput per area of the main filters are

approximately equal.

Next, this thesis investigates regular expression processing and its applications on

the AsAP2 fine-grained many-core processor. Results show that ~99% of activity occurs

– ii –

within the first core of the regular expression filter and less than 27% activity in subsequent

cores. The regular expression filters achieve a throughput of 309 MB/s on average when

running at the maximum voltage of 1.3 V and 17 MB/s when running at the minimum

voltage of 0.675 V.

Finally, this thesis provides brief descriptions of completed projects, and future work.

The future work focuses on expanding the capabilities of the regular expression work into a

key application such as developing a more sophisticated web search engine.

– iii –

Acknowledgments

I would like to sincerely thank my adviser Professor Bevan Baas for his support and

guidance throughout my years at UC Davis. I was extremely lucky to have the opportunity of

working in the VLSI Computation Laboratory (VCL) under his supervision, and it was thoroughly

an enriching and delightful experience. I would also like to thank Dr. Rajeevan Amirtharajah for

his constant support and valuable advice through my graduate study. I would like to thank Dr.

Hussain Al-Asaad for his time and consideration in reviewing my thesis.

There were many people, and without their help this work could not be accomplished.

I would like to express my appreciation to Aaron Stillmaker, Jon Pimentel, Brent Bohnenstiehl,

and Timothy Andreas from VCL for helping me with reviewing my work and providing valuable

feedback, helping with tools, and their endless support and valuable advice through projects. I

would also like to thank other VCL members, both current and alumni: Satyabrata Sarangi, Shifu

Wu, Mark Hildebrand, Bin Liu, Jeremy Webb, Michael Braly, Dr. Anh Tran, and Dean Truong

for providing me with a friendly and exciting environment and inspiring me to keep pursuing my

research.

I am grateful for the support from our sponsors at ST Microelectronics, NSF Grants, SRC

GRC Grant 2321.001, NSF CCF Grant No. 1321163, 1018972, 0903549, 0430090, C2S2 Grant

2047.002.014, CAREER Award 0546907, DoD and ARL/ARO grant W911NF-13-1-0090, as well as

the ECE and BME departmental teaching assistant support.

Finally, a special thanks goes to my beloved wife and our families for all their patience

and support throughout the years.

– iv –

Contents

Abstract ii

Acknowledgments iv

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Organization . 4

2 Background 5
2.1 Related Work on String Search and Self-Adaptive Systems 5
2.2 Related Work on Regular Expression Processing in Hardware 6

3 String Search Architectures 8
3.1 Serial Implementation . 9
3.2 Parallel Implementation . 10
3.3 All-In-One (AIO) Implementation . 10
3.4 Data Generation and Test Conditions . 11
3.5 Analysis . 12

3.5.1 Experimental Results . 12
3.5.2 Comparisons . 14

4 Self-Adaptive String Search 18
4.1 Statistics Based Processing . 18

4.1.1 System Overview . 19
4.1.2 Statistics Gathering . 20

4.1.2.1 Separated Statistics Block . 20
4.1.2.2 Combined Statistics Block . 21

4.1.3 Core Reprogramming . 22
4.1.4 Main Filter . 23

4.2 Data Generation and Test conditions . 23
4.3 Analysis . 25

– v –

5 Regular Expression Processing 35
5.1 Introduction . 35

5.1.1 Quantifiers . 35
5.1.2 Grouping and Boolean OR . 36
5.1.3 Regular Expression Types . 36

5.1.3.1 Non-deterministic Finite Automaton (NFA) 36
5.1.3.2 Deterministic Finite Automaton (DFA) 37
5.1.3.3 NFA vs DFA . 37

5.2 Implementation . 39
5.3 Results Summary . 40

6 Summary and Future Work 46
6.1 Completed Projects . 46

6.1.1 Many-Core Digital Oscillator Design in 32 nm SOI 47
6.1.2 Implantable Radio Transmitters for Long Range Health

Monitoring . 47
6.1.3 A Band-Gap Reference with Internal Digital Signal

Processing . 48
6.2 Future Work . 48

Glossary 51

A Input Data Generator (Python) 52

B Main Filter AsAP2 Simulator Code for 3 Keywords (C++/Assembly) 57

C String Search Top Level Script (Python) 65

Bibliography 72

– vi –

List of Figures

1.1 US Environmental Protection Agency Report to Congress on Server and Data Center
Energy Efficiency: Public Law 109-431 (Ernest Orlando Lawrence Berkeley National
Laboratory) . 3

1.2 Self-adaptability spectrum showing different complexity levels. Parameterized algo-
rithms offer a balance between area and energy. 3

2.1 String search implemented within a many-core array acting as a co-processor with a
general purpose CPU. 6

2.2 Top level diagram of proposed regular expression engine by Divyasree et al. 7
2.3 Details of a generic block from proposed regular expression engine by Divyasree et al. 7

3.1 Serial architecture data flow highlighting the major control signals of each filter and
the on-chip memory. The architecture is pipelined with each filter a processor running
Algorithm 1. 10

3.2 Parallel architecture data flow highlighting the major control signals of each filter.
Each filter is a processor running Algorithm 1 directly on inputData. 11

3.3 AIO architecture data flow with combined multiple keyword search operations. The
structure is a processor running Algorithm 1 on multiple keywords. 12

3.4 Mapping assignments of keywords to filters . 13
3.5 Energy per workload versus keyword length for different keywords. 14
3.6 Energy per workload versus area per throughput for different keywords. See Figure 3.5

for legend. 15
3.7 Throughput comparison at each keyword length for different keywords. See Figure 3.5

for legend. 16

4.1 Data flow of the three main blocks of statistics based processing: statistics, reprogram,
and main filters. This version shows statistics and main filters blocks separated. . . 21

4.2 Data flow of the three main blocks of statistics based processing: statistics, reprogram,
and main filters. This version shows statistics and main filters blocks combined. . . 22

4.3 Energy per workload versus keyword length at different keywords for statistics based
processing with separated statistics and main filters blocks. 28

4.4 Energy per workload versus area per throughput at different keywords for statistics
based processing with separated statistics and main filters blocks. See Figure 4.3 for
legend. 29

4.5 Throughput comparison of different keywords for statistics based processing with
separated statistics and main filters blocks. See Figure 4.3 for legend. 30

– vii –

4.6 Energy per workload versus keyword length at different keywords for statistics based
processing with combined statistics and main filters blocks. 31

4.7 Energy per workload versus area per throughput at different keywords for statistics
based processing with combined statistics and main filters blocks. See Figure 4.6 for
legend. 32

4.8 Throughput comparison of different keywords for statistics based processing with
separated statistics and main filters blocks. See Figure 4.6 for legend. 33

5.1 An NFA state diagram showing a transition given no input to reach the final state f [1]. 37
5.2 An NFA state diagram showing a transition given a single input to reach the final

state f [1]. 37
5.3 An NFA state diagram showing a transition based on alternation. The final state f is

reached either through N(s) or N(t) but not through both [1]. 38
5.4 An NFA state diagram showing a transition based on concatenation. The final state f

is reached when conditions for N(s) is satisfied, followed by satisfying the conditions
for N(t) [1]. 38

5.5 An NFA state diagram showing a transition given zero or more of the input to reach
the final state f [1]. 39

5.6 A generated NFA state diagram [2] of “(a|b)*abb” regular expression based on [3, 4] 43
5.7 A generated DFA state diagram of “(a|b)*abb” regular expression [2]. This DFA

also represents a subset construction of the NFA in Figure 5.6 44
5.8 Regular expression flow process, starting from the regular expression main flow tool

(top left) to the parameterized program cells (bottom right) 44
5.9 An example regular expression combined with database sort and statistics [5] 45

– viii –

List of Tables

1.1 SWISS-PROT protein database query response times for different search schemes. . 2
1.2 Comparison of several FPGA-based network intrusion detection string matching

designs. 2

3.1 Scaled energy per workload, throughput and throughput per area for keyword
length of 6. Values are scaled to 22 nm [6]. 16

3.2 Unscaled energy per workload, throughput and throughput per area for keyword
length of 6. 17

4.1 Averaged comparison of the self-adaptive string search architecture with separated
statistics block(SSB) versus combined statistics block(CSB). 34

5.1 NFA vs DFA . 39
5.2 Performance for each parameterized program [5] . 41
5.3 Example regular expression performance comparison 42
5.4 Performance of database regular expression with sort and statistics [5] 42

– ix –

Chapter 1

Introduction

1.1 Motivation

The matching of one or more occurrences of a keyword within a set of input data is widely

used in many datacenter applications such as large string databases [7], network intrusion detection

systems [8], [9], and search engines [10].

For example, in large string databases ranging from employee information to protein

databases [11], performance is measured in terms of response time to queries. For a protein database

containing 122,550 protein strings with an average length of 367 amino acids, with each amino acid

encoded as an ASCII character using 1 byte, a Balanced Approximate Substring Search (BASS) -tree

indexing scheme [7] achieves an average response times of ~0.122 seconds as shown in Table 1.1. The

BASS-tree does this by building a score matrix and making substitutions in different positions based

on similarities between protein sequences (using balanced trees) to optimize both area and response

time. This search scheme is also referred to as approximate string search, since typographical errors

may also lead to a positive match.

The core of network intrusion detection systems rely heavily on high speed string matching

capable of processing streamed data on the order of gigabits per second. For example, the Aho-

Corasick algorithm [17] based bit-split FSM FPGA architecture [8] targets group sizes of 16 strings

with the longest strings between 64 and 128 characters, and achieves throughput of up to 10 Gbit/sec.

Table 1.2 shows comparisons to other FPGA based designs where characters per area (Char/Area)

is how much physical resource the design consumes to store the states needed to process incoming

1

Table 1.1: SWISS-PROT protein database query response times for different search schemes.

Protein
Pattern Length

Response Time (sec)

BASS-tree BLAST QUASAR MRS-index Suffix Tree Linear Scan

[7] [12] [13] [14] [15] [16]

5 0.08 0.81 0.63 2.90 2.10 6.40

10 0.10 1.12 0.95 4.60 3.80 13.80

20 0.13 1.36 1.45 7.50 7.30 22.00

40 0.18 2.05 2.35 12.70 15.20 29.50

Table 1.2: Comparison of several FPGA-based network intrusion detection string matching designs.

Architecture Throughput
(Gbit/sec)

Char/Area
(1/mm2)

Throughput/Area
((Gbit/sec)/mm2)

Bit Split FSM [8] 10.1 55.2 556.3

Pre-coded CAMs [18] 9.7 23.5 228.0

Regular Expressions [19] 0.2 8.1 8.1

Distributed Comparators [20] 2.9 7.9 22.8

NFAs-Shared Decoders [21] 0.8 74.7 59.8

strings. Throughput/Area represents the overall performance of each design in terms of how many

incoming characters are processed for the given area.

As demand for datacenter performance (response time and throughput/area) continues

to increase, energy consumption has gone up by nearly 4× within the last decade [22] as shown in

Figure 1.1. It is therefore desirable to have very low energy dissipation per workload with low area

overhead and high throughput. This thesis presents three string search implementations designed on

a many-core platform. All three implementations offer very low energy dissipation, while individually

offering energy-throughput-area trade-off.

Additionally maintaining low energy dissipation per workload while keeping a low area

overhead and high throughput necessitates the system to adapt to changes in its environment, i.e.

data changes. Stopping the system, tuning or reprogramming the system then turning it back on

is not always an affordable option, and in these cases, the system is left to run with an inefficient

2

Figure 1.1: US Environmental Protection Agency Report to Congress on Server and Data Center
Energy Efficiency: Public Law 109-431 (Ernest Orlando Lawrence Berkeley National Laboratory)

Condi�onal Expressions AlgorithmGeneration, AI-Based Learning

Parameterized Algorithms and
Algorithm Selec�on

Low Area
Low Energy Savings

Large Area
Large Energy Savings

Area-Energy Trade-off

Figure 1.2: Self-adaptability spectrum showing different complexity levels. Parameterized algorithms
offer a balance between area and energy.

algorithm (from an energy standpoint). It is therefore also desirable to have a system that is able

to self-adapt to changes while running [23]. Figure 1.2 shows the spectrum of self-adaptability [24].

On one extreme of the spectrum are conditional expressions where the system chooses a behavior

based on the evaluation of an expression. Although simplistic, these designs tend to have low area

overhead. On the other extreme is evolutionary programming which consists of algorithm generation

and AI-based learning. The trade-off for these complex systems is the large area required for

resource management and other tasks associated with adapting the system. This thesis also presents

parameterized string search implementations that adapts to changing data trend by gathering

statistics on the history of processed data. The design goal is to further reduce energy consumption

3

while increasing throughput with modest area trade-off. Once this is achieved, creating regular

expressions out of the strings allows the system to find a more concise and flexible way of directly

automating the matched patterns.

1.2 Thesis Organization

The remainder of this thesis is as follows: The first part of Chapter 2 discusses related

work on string search architecture and some traditional methods for string search. The latter

part of Chapter 2 briefly discusses related work on self-adaptive systems and their application

to string search. Chapter 3 discusses three main implementations of string search, their imple-

mentations and comparison to a traditional CPU implementation of string search. Chapter 4

elaborates on self-adaptive string search and techniques for further optimizing the search algorithm.

Two implementations are presented and their performances are evaluated. Chapter 5 introduces

regular expression processing in hardware and previous work in the field. A regular expression

implementation is provided and is applied to database sorting for generating statistics and its

performance is also evaluated. Chapter 6 summarizes the thesis, discusses other major projects

completed by the author, and provides directions for future work.

4

Chapter 2

Background

2.1 Related Work on String Search and Self-Adaptive Systems

Previous work in string search has used FPGA [25, 26], traditional CPUs [7], and GPU [27],

with increasing throughput often the primary focus. FPGAs and GPUs can provide high performance

but typically have high energy demands compared to traditional CPUs and fine-grained many-core

arrays [28]. Traditional CPUs and GPUs offer ease of programming, while fine-grained many-core

processor arrays can compute complex workloads with high performance and high energy efficiency

while being smaller than the aforementioned platforms [29].

String search may also be augmented to other applications such as sorting on the same

processor array [30], where the first phase would use string search to filter out undesired data

then sort the remaining data. The many-core array would work as a co-processor handling the

computationally intense string search and sorting while a general purpose CPU administrates more

complex tasks such as deciding the input data to the many-core array, and processing the results,

as shown in Figure 2.1.

Self-adaptive systems have been studied in various areas from artificial intelligence and

machine learning to biology, all centralizing around the idea of feedback loops [31], where the system

monitors system behavior then automatically adjusts itself either for higher performance, increase

in accuracy or some other desirable metric such as robustness [24]. By applying the concept of

self-adaptability to string search, it may be possible to further reduce energy consumption and

achieve higher throughput adjusting to changes in data trend.

5

String
Search

...

...

...

General
Purpose
CPU

Many-Core
Array

Many-Core Array

Memory

String
Search

String
Search

Other
process Sort

Sort...

...

Figure 2.1: String search implemented within a many-core array acting as a co-processor with a
general purpose CPU.

2.2 Related Work on Regular Expression Processing in Hardware

Regular expression is a computationally intensive problem requiring high bandwidth and

memory [32]. Although there are software implementations of regular expression, increase in data-

rate requirements has created a demand for hardware solutions. Divyasree et al. [26] proposed an

NFA based regular expression engine for its reduction in logic and parallelism via simultaneous

state transitions. Furthermore, the main engine was also designed to be dynamically re-configurable.

Figure 2.2 shows a top level diagram of the proposed architecture which consists of several generic

blocks cascaded together. Figure 2.3 shows details for one of these generic blocks, where a basic

block consists of an AND gate followed by a flip flop for matching functionality. The overall system

was built on a Xilinx Virtex2Pro FPGA is targeted at traffic screening for network security and

achieved a throughput of 0.8 Gbps.

Bonesana et al. [33] proposed a regular expression architecture that does not follow the

NFA or DFA conventions of regular expression typically seen. The design is a processor that reads

regular expression in parallel from instruction memory and matches the expression to input from

data memory. The authors explored regular expression design space using several Xilinx based

6

Generic
Block

Generic
Block

3 3

Character
Decoder
Input1

Character
Decoder
Input2

Generic
Block

3

Character
Decoder
Input3

Generic
Block

3

Clk Asyn_Rst Clk Asyn_Rst

(Prefix Match)
Sel1 Sel2 Sel3 Sel5Sel4 Sel1 Sel2 Sel3 Sel5Sel4 Sel6

5 5
Op_In

Cnt_En_In
Syn_Rst_In
GrpIn_In

GrpR_In
Ip_In

GrpL_Out

Sel6
5

Clk Asyn_Rst

Sel1 Sel2 Sel3 Sel6

Op_Out
Cnt_En_Out
Syn_Rst_Out

Ip_Out

GrpR_Out

GrpIn_Out

(Syntax_Match)
Sel4 Sel5

GrpL_In

(a)

(b)

5

Clk Asyn_Rst

(Prefix Match)
Op_In

Sel1 Sel2 Sel3 Sel5Sel4 Sel6

Op_Out
(Syntax_Match)

Cnt_En_In Cnt_En_Out
Syn_Rst_OutSyn_Rst_In

GrpIn_In
GrpL_In
GrpR_In

Ip_In Ip_Out

GrpR_Out
GrpL_Out
GrpIn_Out

Character
Decoder
Input

Figure 2.2: Top level diagram of proposed regular expression engine by Divyasree et al.

Block
Basic

Character
De coder
I nput

Count
Decoder

8
8−bit
Counter

Clk Asyn_Rst

Match_Reg

MUX_IPa

00

01

10

11

Sel1a

2

Match
Ip_Out

Op_In

Cnt_Dec_Out

Op_Out

00

01

10

11

Sel2a

2

MUX_OPa

Ip_In

En

Syn_Rst

Clk

OR_OPOR_IP

Figure 2.3: Details of a generic block from proposed regular expression engine by Divyasree et al.

FPGAs by varying RAM data width sizes and the number of regular expression units (clusters)

operating in parallel within their respective systems.

7

Chapter 3

String Search Architectures

The primary component of the proposed string search is the filter, whose main operation is

to match a keyword to input data. The core code is simple and easily replicated, and only requiring

52 assembly instructions. The pseudo code of the basic filter algorithm is shown in Algorithm 1.

The filter starts by reading inputData into a buffer. Since a successful search requires a match of all

the characters in a keyword, the buffer size is greater than or equal to the keyword length. The

strings are scanned using the buffer rather than using more computationally expensive schemes

such as String B-Tree, data structures or hash tables [27], [34]. Once filled, the buffer entries are

compared to individual characters of the keyword. This process is repeated for as long as the

following conditions are true: 1) the number of matches is less than the keyword length, 2) there

is more input data to process. Since partial matches are possibilities during mismatches, most of

the buffer entries must be preserved while replacing the earliest entry with a new one. The output

control block sends out a “1 (True)” when the entire keyword matches, or “0 (False)” when the

input data terminates prior to a keyword match. A natural requirement of the proposed string

search is that the entire set of strings (e.g. a document) must be preserved when finding multiple

keywords. The need to preserve the document presents some challenges for small-memory processors

if the data is too large to fit in a processor’s local memory.

8

Algorithm 1 filter
1 while true do
2 buffer ← inputData[0 : keywordLength−1]
3 i← 0
4 localMatch← 0
5 while inputData[0] 6= EOF and localMatch== 0 do
6 if buffer [i] == keyword[i] then
7 if i== keywordLength then
8 localMatch← 1
9 else

10 i++
11 end if
12 else
13 buffer << 1 char
14 buffer [0]← inputData[0]
15 i← 0
16 end if
17 end while
18 if firstF ilter then
19 output← localMatch
20 else
21 Wait for inMatch
22 output← (inMatch and localMatch)
23 end if
24 end while

3.1 Serial Implementation

The serial implementation is a pipelined architecture with preallocated (e.g. 16 KB) block

of memory per processor on the many-core array. Each filter in Figure 3.1 is a processor running

Algorithm 1. Processing begins when inputData streams into both Filter 1 and Memory 1 in

parallel. If Filter 1 outputs a “True” Match, it is sending a “1” signal to both Memory 1 and

Filter 2. Data streams from Memory 1 to Filter 2 and Memory 2 in parallel after which Filter 2

starts processing Data. Filter-memory pairs in the latter parts of the chain conditionally run based

on match results of previous filter-memory pairs. Filter N produces a “True” Merged Boolean Match

if all subsequent searches were a success. Due to the sequential nature of the serial architecture, if

less common or rare keywords are programmed into earlier filters in the chain, subsequent filters are

less likely to run as frequently because of the restrictive nature of the filter chain.

9

Merged
Boolean
MatchMatchMatch

MatchMatch

Memory 1
Data

Memory
N-1 Data

inputData
Filter 1 Filter N-1 Filter N

Figure 3.1: Serial architecture data flow highlighting the major control signals of each filter and the
on-chip memory. The architecture is pipelined with each filter a processor running Algorithm 1.

3.2 Parallel Implementation

Each filter in Figure 3.2 is a processor running Algorithm 1 where inputData is streamed

to all of them in parallel for processing. Each Match output is boolean merged to Matches of

subsequent filters and Filter N produces a “True” Merged Boolean Match if all subsequent searches

are a success. Filters shutdown either if they find a match and wait for other processors, or if

inputData is empty. The modularity of the parallel architecture enables it to easily scale to larger

search queries.

3.3 All-In-One (AIO) Implementation

The AIO architecture combines multiple keyword search operations into the minimum

required filter, typically one processor as shown in Figure 3.3. The processor runs Algorithm 1 on

multiple keyword searches by using its internal data memory to manage the keywords and Matches.

When Match is “True”, a flag corresponding to the matched keyword is asserted thereby disabling

future searches of the keyword. When all keyword flags are asserted or when inputData is empty,

AIO produces Merged Boolean Match. Multiple AIO architectures working together allow for dense

search queries.

10

Filter 1

Filter 2

Filter N

Merged
Boolean
Match

Match

Match

inputData

Figure 3.2: Parallel architecture data flow highlighting the major control signals of each filter. Each
filter is a processor running Algorithm 1 directly on inputData.

3.4 Data Generation and Test Conditions

The string search architecture performances are evaluated using a list of keywords containing

~350,00 words that are randomly generated from the English dictionary [35]. The input data is

generated in 8 KB sizes. For a set of keywords, a page excluding these keywords is first generated.

A real dictionary is used instead of generating a page of random characters because real words

result in more realistic performance data that closely matches real world workloads. Once the pages

are generated, the keywords are then inserted in random locations within those pages as shown in

Figure 3.4.

The input data for the architectures is generated using three parameters. The first

parameter is the number of keywords, and it sets the number of filters per keyword. The second

parameter is the keyword length which sets the size of a keyword at one byte per character. The

last parameter is the location of a keyword in a data page. When a keyword is chosen, it is assigned

11

Keyword 1
Match Flag

Keyword 2
Match Flag

Keyword N
Match Flag

inputData
Filter 1
Filter 2

Filter N

Merged
Boolean
Match

Figure 3.3: AIO architecture data flow with combined multiple keyword search operations. The
structure is a processor running Algorithm 1 on multiple keywords.

a random location on a page. 1000 iterations are carried out to produce consistent averaged results.

3.5 Analysis

3.5.1 Experimental Results

The serial, parallel and AIO architectures are simulated on a simulator that uses measured

values from the AsAP2 chip [28] operating at a supply voltage of 1.3 V, with 164 independently-

clocked homogeneous programmable processors running at 1.2 GHz. Each processor uses 63 simple

instruction types within its instruction set. The chip also includes three 16 KB memories with

the entire chip connected via a 2D-mesh, allowing for nearest neighbor communication and long

distance communication. Each processor contains 128x35-bit instruction memory, 128x16-bit data

memory, and two dual clock 64 x 16-bit FIFO buffers for communication between processors [30].

The chip was fabricated in 65 nm technology with each processor occupying 0.17 mm2.

Energy per workload for each architecture is defined as the total energy consumed when

processing inputData divided by the total number of bytes in inputData. Figure 3.5 shows that

for one keyword, the serial and parallel implementations consume 2× less energy per workload

12

Figure 3.4: Mapping assignments of keywords to filters

than the AIO implementation. For five keywords, the AIO implementation consumes 1.5× less

energy per workload over the serial and parallel implementations with majority of its energy

consumption from branching overhead. The serial, parallel, and AIO implementations consume

22.55 nJ/byte, 21.16 nJ/byte, and 15.06 nJ/byte, respectively, making the AIO implementation

the most energy efficient. The energy overhead in the serial architecture comes from the energy

required for communication between its filters and the inclusion of the 16KB memory block(s).

For a given architecture and 16-bit word size, area per throughput is defined as the area

occupied by the programmable processors and memory divided by how quickly inputData is processed

in units of mm2/(MWords/sec), where a word is 16 bits wide. Figure 3.6 plots the trade offs between

energy per workload vs area per throughput for each implementation. For one keyword, the serial

and parallel architectures consume approximately 2× less energy per workload and 1.5× less area

per throughput than the AIO architecture. For three keywords, AIO occupies approximately 2×

and 7× less area per throughput than the parallel and serial architectures, respectively. In contrast,

the serial and parallel architectures consumes approximately 2.6× less energy per workload than

the AIO architecture, with similar trends at five keywords.

13

2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

Keyword Length (bytes)

E
n
er
g
y/
W
o
rk
lo
ad
(n
J/
b
ty
e)

AIO w/ 1 Keyword
Parallel w/ 1 Keyword
Serial w/ 1 Keyword
AIO w/ 3 Keywords
Parallel w/ 3 Keywords
Serial w/ 3 Keywords
AIO w/ 5 Keywords
Parallel w/ 5 Keywords
Serial w/ 5 Keywords

5 Keywords

3 Keywords

1 Keyword

Figure 3.5: Energy per workload versus keyword length for different keywords.

Figure 3.7 shows that for one keyword, the parallel and serial architectures achieve 1.6×

higher throughput than the AIO architecture. For five keywords, the parallel architecture is 5.8×

higher in throughput than the AIO architecture, and 5× over serial. Longer keyword lengths require

more processing, which lead to an average throughput drop from 33 to 6 MWords/sec.

In the case of one keyword, the parallel and serial architectures have the exact same

energy, throughput, and area because the serial architecture only requires memory for two or more

keywords. The AIO architecture for the one keyword case still has a complexity overhead and

therefore consumes slightly more energy with a slightly lower throughput.

3.5.2 Comparisons

As a reference point for how well the architectures perform, similar data inputs are processed

in C++ on an Intel Core i7 3667U processor (22 nm fabrication technology) for comparison. The

14

10
−2

10
−1

10
0

0

5

10

15

20

25

Area/Throughput (mm 2/MWords/sec)

E
ne

rg
y/

W
or

kl
oa

d
(n

J/
bt

ye
)

Figure 3.6: Energy per workload versus area per throughput for different keywords. See Figure 3.5
for legend.

fabrication technology for the serial, parallel, and AIO architectures are 65 nm. The results in

Table 3.1 and Table 3.2 are for 6 char keyword lengths (6 bytes) showing both unscaled and scaled

results. In the scaled columns, the values are scaled from 65 nm to the 22 nm node to match the

many-core platform on which the workload was performed to the Intel Core i7 [6]. Table 3.1 shows

for one keyword that the serial and parallel architectures provide 155× in energy savings, and with

a 211× increased throughput per area over the Intel Core i7 3667U. For five keywords, the AIO

architecture provides 17× in energy savings, and with 69× in increased throughput per area over

the Intel Core i7 3667U.

15

2 3 4 5 6 7 8 9 10
10

0

10
1

Keyword Length (bytes)

T
h

ro
u

g
h

p
u

t
(M

W
o

rd
s/

se
c)

Figure 3.7: Throughput comparison at each keyword length for different keywords. See Figure 3.5
for legend.

Table 3.1: Scaled energy per workload, throughput and throughput per area for keyword length of 6.
Values are scaled to 22 nm [6].

Architecture
Scaled

Energy/Workload
(nJ/byte)

Scaled
Throughput
(MWords/sec)

Scaled
Throughput/Area

((MWords/sec)/mm2)

1
K
ey
w
or
d

Intel Core-i7
3667U 77 408 13.8

Serial 0.50 55 2910

Parallel 0.50 55 2910

AIO 0.80 36 1920

5
K
ey
w
or
ds

Intel Core-i7
3667U 41 256 9.02

Serial 2.8 11 35.1

Parallel 2.6 54 362

AIO 2.4 12 621

16

Table 3.2: Unscaled energy per workload, throughput and throughput per area for keyword
length of 6.

Architecture
Unscaled

Energy/Workload
(nJ/byte)

Unscaled
Throughput
(MWords/sec)

Unscaled
Throughput/Area

((MWords/sec)/mm2)

1
K
ey
w
or
d

Intel Core-i7
3667U 77 408 13.8

Serial 2.8 14.1 83.0

Parallel 2.8 14.1 83.0

AIO 4.4 9.31 54.7

5
K
ey
w
or
ds

Intel Core-i7
3667U 41 256 9.02

Serial 16 2.82 0.920

Parallel 15 14.0 10.3

AIO 14 3.00 17.7

17

Chapter 4

Self-Adaptive String Search

This Chapter is an extension of Chapter 3, and explores other methods for further reducing

energy consumption during string search. Energy consumption by the string search filters are data

and structure dependent. For example, in the serial implementation in Figure 3.1, if keywords in

the first few filters occur frequently, majority of the chain will process data more often and therefore

consume more energy. In an opposite case where keywords in earlier filters occur less frequently in

the data stream, majority of the chain will most likely run less frequently since the less common

keywords will filter out most of the pages and thereby keep latter filters idle. This will lead to

an overall lower power consumption by the architecture. Knowing the data trend ahead of time

allows the designer to program a specific sequence of keywords that will lead to the lowest energy

consumption per workload. Even then, once the architecture starts running, if the data trend begins

to change, the once efficient design starts operating inefficiently, thereby requiring a reprogramming

of the system. If the system is able to somehow detect the changes in the data trend, it can be

designed to adapt to these changes.

4.1 Statistics Based Processing

Statistics based processing is a form of self-adaptive string search with basic blocks derived

from the string search implementations in the Chapter 3. Three main blocks are developed: statistics,

reprogram, and main filters shown in Figure 4.1. Details of each are described in their respective

sections below.

18

4.1.1 System Overview

The system starts in a state where keyword placement within each filter is random. This

is the training state during which the statistics block counts the number of keyword matches within

inputData. Filter N of the statistics block outputs Keyword Match Frequencies containing the

number of occurrences for each keyword. The main filters block run in parallel with the statistics

block and also processes the same inputData. The reprogram block, using the Keyword Match

Frequencies sorts the keyword(s) according to configuration conditions then reprograms the main

filter blocks using the sorted Keywords. Once the reprogram is done the main filters processes new

keywords as a reorganized block, sending out final Merged Boolean Matches.

The self-adaptive string search filters use an optimized version of the basic filter algorithm

introduced in Chapter 3. The pseudo code of the filter is shown in Algorithm 2. When a filter begins,

every character has an equal but low probability of been chosen. Once the first character matches,

the probability of matching a second character within the keyword increases with subsequent matches

which is attributed to character correlation within a word set. The minimum keyword length for

filtering is two characters because single character keywords are ubiquitous. Therefore the first

step is to check for the first two matching characters in the data stream is a loop. This process

is sped up by doing multiple checks via loop unrolling (not shown in pseudo-code for clarity) for

the first two matching characters in inputData. Core instruction memory size limits the number

of times the check for the first two characters may be loop unrolled. Keyword lengths of two

characters end processing at this point and the localMatch counter increments if a match is found.

For longer keyword lengths, the filter reads inputData into a buffer then starts checking the buffer

for matches referred to as “main match check”. When a character in the buffer does not match the

corresponding keyword character, the algorithm does a partial match check starting with the second

oldest character in the buffer. Once the partial match check goes through the bufferLength, the

partial match will either end up discarding just the earliest entry in the buffer and going back to

main match check if the partial match(es) is/are successful or, flush the entire buffer if there are

zero matches and begin a new search for the first two characters in the keyword. Once the filter

reaches the end of the data stream (EOF), it sends out keyword matches (inMatches) from prior

filters if any as well as the current filter’s localMatch.

19

Algorithm 2 Optimized Filter
1 while true do
2 readControl← 0
3 i← 0
4 localMatch← 0
5 while inputData[0] 6= EOF do
6 buffer ← inputData[0 : 1]
7 if (buffer [0] == keyword[0]) and (buffer [1] == keyword[1]) then
8 if keywordLength== 2 then
9 localMatch++

10 readControl← 1
11 else
12 keywordCounter← 2
13 i← 2
14 partialMatchCounter = 0
15 while (keywordCounter 6= keywordLength) or
16 (partialMatchCounter! = bufferLength) do
17 buffer [0]← inputData[0]
18 i++
19 if buffer [i] == keyword[keywordCounter] then
20 keywordCounter++
21 else
22 keywordCounter← 0
23 while partialMatchCounter! = bufferLength do
24 partialMatchCounter++
25 if buffer [partialMatchCounter] == keyword[keywordCounter] then
26 keywordCounter++
27 else
28 keywordCounter← 0
29 end if
30 end while
31 end if
32 end while
33 if keywordCounter == keywordLength then
34 localMatch++
35 readControl← 1
36 end if
37 end if
38 end if
39 end while
40 end while

4.1.2 Statistics Gathering

4.1.2.1 Separated Statistics Block

Statistics based processing requires the training state in order to adjust the main filters to

suit the incoming data trend. This adjustment period can be considered overhead since the system

can only be reprogrammed after collecting statistics on some data first. The architecture of the

20

Data

Merged
Boolean
Matches

Memory Filter 1 Filter N-1 Filter N

Read
Control

Filter 1

Filter 2

Filter N

Matches

Matches

inputData

Keyword Match Frequencies
Sort Forward Forward

Reprogram

Keywords
2 to N

Keyword
N

Keyword 1 Keyword N-1 Keyword N

Sta�s�cs

Main Filters

Read
Control

Read
Control

Matches ,
<Data>

Matches ,
<Data>

Figure 4.1: Data flow of the three main blocks of statistics based processing: statistics, reprogram,
and main filters. This version shows statistics and main filters blocks separated.

Algorithm 3 self-adaptive string search main filter control
1 if thisF ilter 6= firstF ilter then
2 repeat
3 output← inMatches
4 until inMatches is empty
5 end if
6 output← localMatches

statistics block sets the latency as well as throughput of the Keyword Match Frequencies. Analysis

from Chapter 3 shows that the parallel architecture is well suited for the statistics gathering role

and is therefore the design base for the statistics block as shown in Figure 4.1. Each of the statistics

block filters run Algorithm 2 (excluding readControl). Additionally, the statistics block filters also

run Algorithm 3 for sending out Keyword Match Frequencies.

4.1.2.2 Combined Statistics Block

The additional area overhead from a SSB is eliminated by combining the statistics block’s

functionality with that of main filters. Figure 4.2 shows the result of combining the two blocks,

achieved by restructuring the statistics block as a serial based implementation.

21

Data Merged BooleanMatches

Memory Filter 1 Filter N-1 Filter N

Read
Control

Forward Forward Sort

Reprogram

Keyword
1

Keywords
N-1 to 1

Keyword 1 Keyword N-1 Keyword N

Sta�s�cs and Main Filters Combined

Read
Control

Read
Control

Matches ,
<Data>

Matches ,
<Data>

inputData

Keyword Match Frequencies

Figure 4.2: Data flow of the three main blocks of statistics based processing: statistics, reprogram,
and main filters. This version shows statistics and main filters blocks combined.

During the training state, the system passes all processed keywords from one filter to the

next regardless of zero matches. Once the training state produces Keyword Match Frequencies, the

reprogram block sorts the keyword(s) according to configuration conditions then reprograms the

main filter blocks using the sorted Keywords. Once the reprogram is done the main filters processes

new keywords as a reorganized block, sending out final Merged Boolean Matches.

4.1.3 Core Reprogramming

The designed system self organizes main filters based on results from the statistics block.

The self-organization may occur as one of two methods: 1) replace assembly instructions of cores as

a form of reprogramming or 2) replace the keywords in the data memory. It is more efficient from a

programming standpoint to replace the data memory keywords of the filters than to completely

replace instructions because the filters are mostly homogeneous with their biggest difference being

their respective data memory where keywords are stored. Prior to reprogramming, Keyword Match

Frequencies are sorted using an adaptive merge-sort algorithm referred to as timsort [36, 37] for

speed and memory efficiency. Once sorted, the reprogram block writes the data memory of each

22

main filter block with the sorted keywords. The forward sub-blocks act as helpers for forwarding

appropriate keywords to their respective main filters. The reprogram block completes when the last

keyword in the forward chain completes.

4.1.4 Main Filter

The main filters block is based on the serial architecture from Chapter 3 with some

structural differences. In the serial architecture, each additional filter in the chain also requires

an additional pre-allocated block of memory effectively increasing the total area by more than the

additional cores. In contrast, the main filters block uses one memory unit for all filters in the

chain and uses a readControl signal between the filters to communicate with the memory. Each

filter runs Algorithm 2, and Algorithm 4 for output control. The control algorithm for the parallel

based statistics block and the serial based main filters block differ by the inputData forwarding

required by the main filters. When a filter has greater than zero matches, when it reaches the

end of inputData it sends a “True” readControl signal (represented by “1”) to the previous filter

to forward a fresh read of inputData for the next filter. The first filter passes the readSignal to

memory. A “0” readSignal indicates a write of new inputData to memory. Filters in the latter parts

of the main filters block conditionally run based on the match results of previous filters. Filter N

produces the final Boolean Matches of all previous searches. Due to the sequential nature of the

serial architecture, if less common or rare keywords are programmed into earlier filters in the chain,

subsequent filters are less likely to run as frequently because of the restrictive nature of the filter

chain. Appendix B contains a sample code of main filter designed for 3 keywords.

4.2 Data Generation and Test conditions

Similar to the string search architectures in Chapter 3, the performance of the self-adaptive

string search architecture is evaluated using a list of unique keywords containing ~350,000 words that

are randomly generated from the English dictionary. The input data is generated in 8 KB sizes. For

a set of keywords, a page excluding these keywords is also first generated. The difference between

tests in this architecture versus the string search architectures from the previous Chapter is the

additional degree of freedom of keyword probabilities. In the previous Chapter all keywords have an

23

Algorithm 4 Self-adaptive string search main filter control
1 if thisF ilter 6= firstF ilter then
2 repeat
3 output← inMatches
4 until inMatches is empty
5 end if
6 output← localMatches
7 while readControl == 1 do
8 if thisFilter == firstFilter then
9 Memory ← readControl

10 end if
11 repeat
12 output← inputData
13 until inputData == EOF
14 end while

equal probability of appearing within inputData and do not change over time which will be referred

to as non-statistic(constant) searching. In contrast the processing of inputData where keywords

have unequal probabilities of appearance and in addition may change over time will be referred

to as statistic(dynamic) searching. Dynamic searching is used for the self-adaptive string search

architecture because it is able to adequately test the self-organization of the design better than

a constant search would. The unequal probabilities between the keywords leads to an unbalance

between the total amount of each keyword which leads to a trend that the system may adapt to.

For realistic performance, keyword probabilities are modeled according to real world data, i.e. the

Corpus of Contemporary American English frequency data [38, 39] containing ~450 million words

(including their lemmas and variations). Corpora such as these allow testing for occurrences of

words. For example, the most common word is "the" with a probability of 22,038,615/450,000,000 = 0.049

. The 100th most common is "well" with a probability of 411,776/450,000,000 = 0.0009, while the 5000th

most common is "till" with a probability of 5079/450,000,000≈0.0.

inputData for the architectures is generated using four main parameters. The first parameter

is the number of keywords, and it sets the number of filters per keyword. The second parameter is

keyword probability which leads to the frequency of keywords in inputData. The third parameter is

the keyword length which sets the size of a keyword at one byte per character. The last parameter

is the location of a keyword in a data page. When a keyword is chosen, it is assigned a random

location on a page. 1000 iterations are carried out to produce consistent averaged results. Please

refer to Appendix A for the generator code.

24

4.3 Analysis

The self-adaptive string search architecture with separate statistics and combined statistics

block are both simulated on a simulator that uses measured values from the AsAP2 chip. A top

level script written in Python scripting language is used to sort and forward intermediate results,

automating tasks such as generating parameters and inputs to the simulator, and post simulation

analysis. Further details on the top level script may be found in Appendix C. MATLAB is used to

create the resulting plots, and each design is bench-marked based on Keyword Match Frequencies

generated by the statistics block and used to reprogram the main filters for 3 cases: 1) reprogram

based on HTLF 2) reprogram based on LTHF 3) unsorted frequency of keywords. Figure 4.3,

Figure 4.4, and Figure 4.5 plot the self-adaptive filter with SSB and show how this separation

affects the design’s performance. For one keyword only a single filter is necessary therefore all

implementations have equal performance. For two or more keywords Keyword Match Frequencies

and reprogramming is employed. Figure 4.3 shows that for three keywords, LTHF reprogrammed

main filters consume 1.1× less energy than non-reprogrammed main filters and 1.2× less energy

than HTLF reprogrammed filters. The LTHF reprogrammed main filters block consumes 1.06×

more energy than statistics block, suggesting that a parallel design consumes approximately the

same amount of energy as a serial based reprogrammed main filter for small keywords. For five

keywords LTHF reprogrammed main filters consume 7.7× less energy than non-reprogrammed main

filters and 6.6× less energy than HTLF reprogrammed filters. In addition, the LTHF reprogrammed

main filters block consumes 6.6× less energy than the statistics block. At five keywords, the LTHF

reprogrammed main filters, the HTLF reprogrammed filters, the non-reprogrammed main filters, and

the statistics block consume on average 7.7 nJ/byte, 30.9 nJ/byte, 27.9 nJ/byte, and 20.3 nJ/byte,

making the LTHF reprogrammed filters the most energy efficient. As longer and more keywords are

processed, the potential to save more energy increases because sorting by low to high frequency

priorities rare occurring keywords in front of the main filters chain. Subsequent filters that contain

more common words remain idle longer and run only when the rare keywords have been found. The

system thereby saves the most energy by only running the needed parts of the main filters.

Figure 4.4 plots the trade-offs between energy per workload vs area per throughput for each

implementation. For three keywords, the statistics block consumes approximately 1.2× less energy

25

per workload and 1.6× less area per throughput than the LTHF reprogrammed main filters block,

while consuming approximately 1.5× less energy per workload and 3× less area per throughput than

either the HTLF reprogrammed or the non-reprogrammed main filters block. For five keywords, the

LTHF reprogrammed main filters block consumes approximately 5× less energy per workload and

1.5× less area per throughput than the statistics block, while consuming as low as 6.5 to 7.5× less

energy per workload and 6 to 7× less area per throughput than either the HTLF reprogrammed or

the non-reprogrammed main filters block, respectively.

Figure 4.5 shows that for three keywords, the statistics block achieves 1.4× and 2.6× higher

throughput on average than the LTHF reprogrammed main filters block or the non-reprogrammed

main filters block, respectively. This implies that the throughput bottleneck at three keywords

is the serial based main filters block before and after it is reprogrammed. Therefore a parallel

non-reprogrammed structure operates faster than a reprogrammed serial based main filter on smaller

sets of keywords. For five keywords, the LTHF reprogrammed main filters block achieves 1.7×

higher throughput on average than the statistics block, and 5.8× over the non-reprogrammed main

filters block. More keywords and longer keyword lengths require more processing time, thereby

shifting the throughput bottleneck to the statistics block. The reprogrammed main filters block

also achieves a throughput increase of 5.8× over the non-reprogrammed main filters block, with an

average throughput of 270 MWords/sec after reprogramming.

Figure 4.6, Figure 4.7, and Figure 4.8 plot the self-adaptive string search architecture with

CSB’s performance. From one keyword to three keywords there is no change in performance between

the different modes of operation. Figure 4.6 shows that for five keywords the LTHF reprogrammed

main filters consume approximately 8× less energy than non reprogram and 12× less energy than

when in statistics mode.

Figure 4.7 plots the trade offs between energy per workload vs area per throughput for each

mode of the self-adaptive filter with CSB. For five keywords, the LTHF reprogrammed main filters

block consumes approximately 11.5× less energy per workload and 8× less area per throughput than

when in statistics mode, while consuming as low as 8× less energy per workload and 7× less area

per throughput than either the HTLF reprogrammed or the non-reprogrammed modes, respectively.

Figure 4.7 shows that for five keywords, the LTHF reprogrammed main filters block

achieves 8× higher throughput on average than in statistics mode, and 6× higher throughput than

26

non-reprogrammed mode, with an average throughput of 313 MWords/sec after reprogramming.

Table 4.1 compares the performance of the two self-adaptive string search architectures

with SSB versus CSB. The SSB and CSB main filters consume roughly the same amount of energy,

while the SSB statistics consumes as low as 2× less energy than CSB in statistics mode at 5 keywords.

For three keywords, the SSB main filters achieve about 1.8× higher throughput on average over the

CSB main filters, while for five keywords the CSB main filters achieve about 1.2× higher throughput

on average than the SSB main filters. For three keywords, the SSB statistics achieves about 2.8×

higher throughput than CSB in statistics mode and increasing to 4× higher throughput at five

keywords. This is due to the fact that the SSB statistics operates on multiple keywords in parallel

while CSB in statistics mode operates on keywords sequentially. For three keywords, the SSB

statistics achieves about 2.7× higher throughput per area on average than CSB in statistics mode,

and increasing to 3.9× higher throughput per area at five keywords. Although the trade-off for the

SSB statistics’ higher throughput is a larger area (since extra cores are used for the SSB statistics),

this trade-off has a negligible impact on the SSB statistics’ throughput per area versus CSB in

statistics mode.

27

2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Keyword Length (bytes)

E
n
er
g
y/
W
o
rk
lo
ad
(n
J/
b
ty
e)

Figure 4.3: Energy per workload versus keyword length at different keywords for statistics based
processing with separated statistics and main filters blocks.

28

10
−1

10
0

10
1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Area/Throughput (mm2/MWords/sec)

E
n
er
g
y/
W
o
rk
lo
ad
(n
J/
b
ty
e)

Figure 4.4: Energy per workload versus area per throughput at different keywords for statistics
based processing with separated statistics and main filters blocks. See Figure 4.3 for legend.

29

2 3 4 5 6 7 8 9 10
10
1

10
2

10
3

Keyword Length (bytes)

T
h
ro
u
g
h
p
u
t
(M
W
o
rd
s/
se
c)

Figure 4.5: Throughput comparison of different keywords for statistics based processing with
separated statistics and main filters blocks. See Figure 4.3 for legend.

30

2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Keyword Length (bytes)

E
n
er
g
y/
W
o
rk
lo
ad
(n
J/
b
ty
e)

Figure 4.6: Energy per workload versus keyword length at different keywords for statistics based
processing with combined statistics and main filters blocks.

31

10
−1

10
0

10
1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Area/Throughput (mm2/MWords/sec)

E
n
er
g
y/
W
o
rk
lo
ad
(n
J/
b
ty
e)

Figure 4.7: Energy per workload versus area per throughput at different keywords for statistics
based processing with combined statistics and main filters blocks. See Figure 4.6 for legend.

32

2 3 4 5 6 7 8 9 10
10
1

10
2

10
3

Keyword Length (bytes)

T
h
ro
u
g
h
p
u
t
(M
W
o
rd
s/
se
c)

Figure 4.8: Throughput comparison of different keywords for statistics based processing with
separated statistics and main filters blocks. See Figure 4.6 for legend.

33

Table 4.1: Averaged comparison of the self-adaptive string search architecture with separated
statistics block(SSB) versus combined statistics block(CSB).

Architecture: Block (Reprog Mode) Energy/Workload
(nJ/byte)

Throughput
(MWords/sec)

Throughput/Area
((MWords/sec)/mm2)

1
K
ey
w
or
d

SSB: Main Filters (LTHF) 0.6 136 4.6

CSB: Main Filters (LTHF) 0.6 139 4.7

SSB: Main Filters (No Reprog) 0.6 136 4.6

CSB: Main Filters (No Reprog) 0.6 139 4.7

SSB: Statistics 0.6 136 4.6

CSB: Statistics 0.6 139 4.7

3
K
ey
w
or
ds

SSB: Main Filters (LTHF) 2 112 0.63

CSB: Main Filters (LTHF) 2.5 62.2 0.35

SSB: Main Filters (No Reprog) 2.5 60.2 0.34

CSB: Main Filters (No Reprog) 2.6 58.2 0.33

SSB: Statistics 1.8 161 0.91

CSB: Statistics 2.6 58.1 0.33

5
K
ey
w
or
ds

SSB: Main Filters (LTHF) 0.9 270 1.14

CSB: Main Filters (LTHF) 0.8 313 1.33

SSB: Main Filters (No Reprog) 3.4 49.6 0.21

CSB: Main Filters (No Reprog) 3.4 50.3 0.21

SSB: Statistics 2.5 158 0.67

CSB: Statistics 4.8 40.0 0.17

34

Chapter 5

Regular Expression Processing

5.1 Introduction

While string search represents the matching of one or more occurrences of a keyword within

a set of input data, regular expression offers a broader construct for the types of occurrences and

keywords. In particular, regular expressions represent a set of strings in terms of adjacency, repetition,

and alternation, and are a general-purpose method of describing and matching patterns [26, 40, 32].

The main purpose of regular expression sequences is to find the most concise and flexible way of

directly automating matched patterns e.g. text processing.

5.1.1 Quantifiers

The simplest example of a regular expression is string of characters such as “xyz” where

xyz is the fixed pattern of interest. From here different symbols known as quantifiers may be used

to express more complex terms:

• “+” the plus quantifier indicates one or more occurrences of the preceding character

– e.g. ab+a matches “aba”, “abba”, “abbba” and so on.

• “*” the asterisk quantifier indicates zero or more occurrences of the preceding character

– e.g. ab*a matches “aa”, “aba”, “abba” and so on.

• “?” the question mark quantifier indicates zero or one occurrences of the preceding character

35

– e.g. ab?a matches “aa”, “aba”, but not “abba” since “b” occurs twice.

• “[a-z]” or “[0-9]” the range quantifiers match any element within the square parenthesis,

inclusive.

– e.g. ab[0-8]a matches “ab0a”, “ab8a”, “ab5a” and so on.

5.1.2 Grouping and Boolean OR

In addition to quantifiers multiple regular expressions may be grouped with “()” and

Boolean OR’ed with “|” to indicate alternatives [41].

• For example, “x(y|z)*(a|b|c)” matches “xa”, “xya”, “xzc”, “xyzzzyzyyyzb” and so on.

The previously described basic regular expressions are used in forming more complex regular

expressions depending on system and platform [40]. A system changes a regular expression into a

state machine then uses the machine to match incoming strings.

5.1.3 Regular Expression Types

There are two major types of regular expression, NFA and DFA both of which determine

how a regular expression engine is constructed.

5.1.3.1 Non-deterministic Finite Automaton (NFA)

An NFA is a state machine that allows simultaneous state transitions as well as state

transitions with no input. The NFA algorithm described in this Chapter is based on Thompson’s

NFA graph algorithm [3]which is converted to regular expression [4]. The NFA regular expression

building blocks are as follows:

• No input state transition

– ε = no input

• Single input state transition

• OR/alternation state transition

36

Figure 5.1: An NFA state diagram showing a transition given no input to reach the final state f [1].

Figure 5.2: An NFA state diagram showing a transition given a single input to reach the final state f
[1].

• AND/concatenation state transition

• Star state transition

The NFA construction for a regular expression such as “(a|b)*abb” would look like

Figure 5.6 where the generated state diagram is based on the rules for the NFA building blocks

described above.

5.1.3.2 Deterministic Finite Automaton (DFA)

A DFA is a state machine that takes a finite number of input sequences before arriving

at its final state. In contrast to an NFA, a DFA state machine does not allow simultaneous state

transitions and every state transition also requires an input [32].

Figure 5.7 shows the DFA construction for the regular expression “(a|b)*abb”. This

DFA is also referred to as a subset construction of its NFA since it only shows a subset of state

transitions that lead to the final state rather than all possible states that lead to the final state.

5.1.3.3 NFA vs DFA

Table 5.1 shows the advantages and disadvantages of NFA and DFA that aid with deciding

what regular expression type to employ.

DFAs only allow single state transitions, which implies that they require only a single

memory operation per character processed. This makes DFAs more attractive in applications such

37

Figure 5.3: An NFA state diagram showing a transition based on alternation. The final state f is
reached either through N(s) or N(t) but not through both [1].

Figure 5.4: An NFA state diagram showing a transition based on concatenation. The final state f is
reached when conditions for N(s) is satisfied, followed by satisfying the conditions for N(t) [1].

as high speed networking [32]. On the other hand, complex regular expressions lead to exponentially

large number of states in DFAs where this would not be the case in an NFA. This limits the

complexity of regular expressions DFA based regular expression processors can handle.

NFAs are able to accept more complex regular expressions than DFAs since NFAs allow

multiple state transitions as well as empty inputs [41]. An NFA that has n states may have

an equivalent DFA with exponentially larger states. The low state requirement leads to a low

memory requirement for NFA based regular expression processing. NFA, as the name suggests is

non-deterministic, meaning state transitions are not necessarily finite. This increases the NFA’s

time complexity since every path that leads to its final state must be checked. This also creates a

problem in construction since computing systems have finite space, often requiring converting the

NFAs to equivalent DFAs in practice.

38

Figure 5.5: An NFA state diagram showing a transition given zero or more of the input to reach the
final state f [1].

Table 5.1: NFA vs DFA

NFA DFA

Advantage Low Memory Requirement
O(n)

Constant processing time complexity
O(1)

Disadvantage Linear processing time complexity
O(n)

Large memory requirement
O(2n)

Comment Often requires conversion to DFA Requires simplification of complex
regular expressions

5.2 Implementation

Every regular expression can be converted into an equivalent finite automaton and vice

versa. In addition, each state of the automaton can be executed on parallel hardware to efficiently

implement the regular expression. A DFA based regular expression processor was implemented on

the AsAP2 [28] to benchmark AsAP2’s performance and show the feasibility of developing regular

expression on the platform. In order to program the AsAP2 chip an external tool flow was designed

to streamline the process as shown in Figure 5.8.

The tool accepts one or several regular expressions and parses them for the AsAP2. The

parsed regular expression is separated into smaller cells that could then be programmed on the

AsAP2’s the 2D mesh of processors. Though the programmable cells have been generated, the route

placement of these cells on the chip affects activity and thus power consumption. To counter this

issue, a BAMSE developed by Mohammad H Faroozannejad [42] was integrated into the process.

BAMSE is a constructive approach that incrementally maps the concurrent tasks (e.g. parsed

39

regular expression cells) of a task graph into the cores of the given hardware platform. The key

idea is to arrange the concurrent tasks in a sequence called Task Sequence and read through this

sequence to gradually construct the final mapping solution. The algorithm can have as high as 65%

improvement over manual placing and routing in terms of longest connection, thereby guaranteeing

a higher level of optimization of the cell placement and routing on the AsAP2 chip. Several regular

expression elements were created and tested. A cell to be programmed on the AsAP2 contains

a parameterized program that interprets each pattern as having a literal or special meaning. An

element may be interpreted as an alphanumeric character, space or a “.” which stands for any

character. Compatible expressions and their implications are as follows:

• “fixed_d” tagged cells signify possible trailing empty space up until the element within that

cell is matched.

• “fixed_s” tagged cells matches just the element within that cell.

• “+” tagged cells match when the element within the cell occur one or more times

• “*” tagged cells match when the element within the cell occur zero or more times

• “?” tagged cells match when the element within the cell occur zero or one time only

• “range [a-z]” or “range [0-9]” “?” tagged cells match when the element within the specified

range occurs once.

5.3 Results Summary

Most activity (99%) occurred within the first core, allowing scaling down of the supply

voltage for subsequent cores which had less than 27% activity. Table 5.2 shows the average

throughput performance throughput as ~587 M/sec for each parameterized program.

40

Table 5.2: Performance for each parameterized program [5]

Parameterized
program

Example
regexp

Program
size

(# intruc.)

Throughput

miss - hit @ 1.2 GHz
(chars/sec)

fixed_s ^ab.d 29 1.29 - 3.26 527 M/sec

fixed_d .*a..d 28 1.29 - 3.09 548 M/sec

range [d-v] 28 1.20 - 2.30 686 M/sec

quest a? (0 or 1) 25 2.25 - 2.25 533 M/sec

plus b+ (1 or more) 27 1.20 - 2.30 686 M/sec

star c* (0 or more) 27 2.20 - 2.20 545 M/sec

With an example regular expression such as thal*ia_*. . . [a-z]n+e_*.._Davis? the imple-

mentation achieved a throughput of 309 MB/s @ 1.3 V Dynamic Voltage Frequency Scaling (DVFS)

using 59 mW and 181 pJ/Byte as shown in Table 5.3 [5]. Minimizing power consumption to 1.4 mW

and using only 76 pJ/Byte allows the design to achieve 17 MB/s throughput @ 0.675 V. Additionally

Table 5.3 compares performance results to related works on regular expression processing in hardware.

Unfortunately the respective authors often reported max frequency and throughput but not the

power consumption or energy per byte.

41

Table 5.3: Example regular expression performance comparison

Platform
Supply
Voltage
(V)

Max
Frequency
(MHz)

Throughput
(MB/s)

Power
(mW)

Energy
(pJ/Byte)

Virtex2Pro [26] 2.5 (typical) Not reported 800 Not reported Not reported

Virtex2Pro [33] 2.5 (typical) 103 664 (Averaged) Not reported Not reported

Virtex-IV [33] 3.3 (Commercial) 132 860 (Averaged) Not reported Not reported

Spartan3 [33] 3.3 (Commercial) 58 377 (Averaged) Not reported Not reported

AsAP2 [5] 1.3 1210 309 133 411

AsAP2 [5] 1.3, DVFS 1210 309 59 181

AsAP2 [5] 1.2, DVFS 1070 273 44 154

AsAP2 [5] 0.675 66 17 1.4 76

Regular expression processing can be expanded to other applications. Figure 5.9 shows

a diagram of how regular expression was combined with database sorting to generate statistics

and histograms [5]. Performance results are shown in Table 5.4. The results were generated using

200-Byte records achieving a throughput of 1520 MB/s at 1.2 V while using 47 mW at 30 pJ/Byte.

Table 5.4: Performance of database regular expression with sort and statistics [5]

Supply
Voltage
(V)

Max
Frequency
(MHz)

Throughput
(MB/s)

Power
(mW)

Energy
(pJ/Byte)

1.2 1070 1520 47 30

0.75 260 369 3.4 8.8

0.675 66 94 0.61 6.2

42

0

1

ε

3

ε

4

ε

6

ε

2

ε

ε

8

a

5

a

ε

7

b

ε

9

b

10

b

Figure 5.6: A generated NFA state diagram [2] of “(a|b)*abb” regular expression based on [3, 4]

43

0

1

a

2

b

a

3

b

a

b

a

4

b

a

b

Figure 5.7: A generated DFA state diagram of “(a|b)*abb” regular expression [2]. This DFA also
represents a subset construction of the NFA in Figure 5.6

Figure 5.8: Regular expression flow process, starting from the regular expression main flow tool
(top left) to the parameterized program cells (bottom right)

44

Figure 5.9: An example regular expression combined with database sort and statistics [5]

45

Chapter 6

Summary and Future Work

Three energy-efficient architectures are presented utilizing a fine-grained many-core pro-

cessor array for searching and filtering streamed data. The serial architecture is optimal for small

keyword searches while the parallel architecture is well suited for larger keyword searches. The

all-in-one architecture combines filtering operations and ensures the smallest area footprint. The de-

signs achieve 211× increased throughput per area, and yield 155× energy reduction when compared

to string search on a traditional processor (Intel Core i7 3667U).

Two self-adaptive string search filters are also presented for further reducing energy

consumption and improving throughput of string search via self-reprogramming. The optimized

self-adaptive string search filters consume 5× less energy and achieve 4.8× higher throughput

over the three previously designed string-search architectures. The self-adaptive implementation

with separated statistics block achieves about 2.8× to 4× higher throughput and throughput per

area on average than the implementation with combined statistics block in statistics mode. Other

performance parameters such as energy per workload, throughput and throughput per area of the

main filters are approximately equal. The area trade-off for having a separated statistics block has

negligible impact on the performance of the overall system.

6.1 Completed Projects

In addition to energy-efficient string search methods on a fine-grained many-core platform,

the author has also worked extensively on several other major projects listed below.

46

6.1.1 Many-Core Digital Oscillator Design in 32 nm SOI

The VLSI Computation Laboratory designed four generations of many-core processing

arrays. The author was a member of the design team responsible for creating the third generation

1000 core generation chip (Kilocore). The author helped with the physical design and wrote several

tests programs for verifying logic and functionally. In the fourth generation chip, the author designed

and implemented the digital oscillators for the on-chip cores and routers. The oscillator features

course and fine tuning delay stages, and two clock dividers with short-cycle prevention circuitry.

VCL has published papers on Kilocore [43], [44], with another submitted for publication [45]. The

fourth generation chip has been fabricated and is currently under testing with results soon to be

published as well.

6.1.2 Implantable Radio Transmitters for Long Range Health

Monitoring

In this project, surveys and simulations are carried out on several implantable radio

transmitters for health monitoring. The first half of this project focuses on gathering data on recent

research in the area of Medical Implant Communication Systems (MICS), a standard aimed at

improving communication distances to ~2 meters. Next we broaden our scope of coverage to include

other bands outside the MICS band which achieve link distance over 2 meters by investigating

Ultra Wide Band (UWB) systems and other potential long range radios. In addition we discuss

various link performance parameters between several papers to gain a better understanding of the

system. Finally we run several simulations, using ADS Momentum to model the power gain between

an implanted transmitter antenna (loop) in muscle tissue to a receiver antenna (dipole) in free

space. Using data collected and the results from the simulations, a performance metric is formed

for quantifying the power gain as a function of free space, tissue depth, and frequency. Please see

technical report [46] for further details.

47

6.1.3 A Band-Gap Reference with Internal Digital Signal

Processing

The project objective was to design a low-power band-gap voltage reference that uses

internal digital processing to compute its analog output. A conventional band-gap reference creates

an output voltage by summing scaled incoming voltages in the analog domain. The idea behind

this project was that by digitizing the incoming voltages, the sum and scaling is carried out in the

digital domain, which may be less expensive in die area and power dissipation than using standard

analog techniques in modern CMOS processes. Please see technical report [47] for further details.

6.2 Future Work

The author has published the three energy-efficient architectures [48], with self-adaptive

string search filters the continuation of that work. The next step is to make the regular expression

filters to include self-adaptive, similar to the implementation in Chapter 4. This will involve changing

the regular expressions into state machines, mapping them to the many-core array then configuring

them to work with statistics and reprogram blocks. Once the work is extended to regular expressions

it may be used in several key applications. For example a more sophisticated web search engine may

be developed where the system would support complex searches that are not supported by pre-built

index tables. The self-adaptive search algorithm would run simultaneously across many cores and

assign scores to each page of result, then merge results based on those scores. The searches would

support both basic string search, regular expressions, and page-level expressions.

48

Acronyms

AIO all-in-one. vii, 10, 12–17

AsAP2 Asynchronous Array of simple Processors, 2nd version. 12, 25, 39, 40, 42

BAMSE Balanced Mapping Space Exploration Algorithm. 39

BASS Balanced Approximate Substring Search. 1, 2

BLAST Basic Local Alignment Search Tool. 2

CSB Combined Statistics Block. ix, 26, 27, 34

DFA Deterministic Finite Automaton. viii, ix, 6, 36–39, 44

FPGA Field Programmable Gate Array. 5–7

GPU Graphics Processing Unit. 5

HTLF High To Low Frequency. 25, 26

LTHF Low To High Frequency. 25, 26, 34

MRS Multi Resolution String Index. 2

NFA Non-deterministic Finite Automaton. viii, ix, 6, 36–39, 43, 44

QUASAR Q-gram Alignment based on Suffix ARrays. 2

SSB Separated Statistics Block. ix, 21, 25, 27, 34

49

Glossary

AsAP2 A 167-Processor Computational Platform in 65 nm CMOS with 164 independently-clocked

homogeneous programmable processors running at 1.2 GHz. Each processor uses 63 simple

instruction types within its instruction set. The chip also includes three 16 KB memories

with the entire chip connected via a 2D-mesh, allowing for nearest neighbor communication

and long distance communication. Each processor contains 128x35-bit instruction memory,

128x16-bit data memory, and two dual clock 64 x 16-bit FIFO buffers for communication

between processors. 12

BASS Balanced Approximate Substring Search (BASS) is a fully balanced tree that organizes all

position points by recursively grouping together position points that lead similar segments in

the string database. 1

BLAST A tool that finds regions of similarity between biological sequences. The program compares

nucleotide or protein sequences to sequence databases and calculates the statistical significance.

2

DFA A state machine that takes a finite number of input sequences before arriving at its final

state. 36

filter A string search component whose main operation is to match a keyword to input data. vii,

viii, 8–11, 13, 18–33, 46, 48

NFA A state machine that allows simultaneous state transitions as well as state transitions with

no input. 36

50

QUASAR A database searching algorithm that was designed to quickly detect sequences with

strong similarity to the query in a context where many searches are conducted on one database.

2

String B-Tree A combination of B-trees and Patricia tries for internal-node indices that is made

more effective by adding extra pointers to speed up search and update operations. 8

Suffix Tree A substring of text defined by its starting position and continuing to the right as far

as possible to make the string unique. 2

51

Appendix A

Input Data Generator (Python)

1 """

2 Author: Eman Adeagbo (Created: Sept/11/2014)

3 Description: Generates keywords and a page of 8192 characters

4 based on defined metrics

5 """

6 import gen_excel_dat, clear_directory

7 import os,shutil, itertools, re, random

8 from numpy.random import choice, random_integers

9 from tables import table

10
11 #Any, all, or none of the input parameters to this function may be set before calling this function.

12 #page_locations='random' when it is not replaced by the caller

13 #Mainly for compatibility with older code that calls generate_pages() with no input args but use a parameter file

14 def generate_pages(dynamic_in=None,keyword_popsize_in=None,number_of_keywords_in=None,keyword_probs_in=None,

15 keyword_lengths_in=None, page_locations_in=['random'],page_size_limit_in=8192):

16 """

17 Main page generation module

18 """

19
20 #Clear working directory

21
22 clear_directory.rm_all(os.path.join(os.path.dirname(os.curdir),'..','..','GeneratePage','GeneratePage','out_pages'))

23
24
25 if dynamic_in is None: #For now, keep old generate_pages code separate from new one

26
27 pass

28 #### -- Old Code --- ####

29
30 #

31 #

32 #

33
34 ##

35
36 ##############*************** ---- NEW CODE BELOW ----- *****************#########################

37
38 ##

39 else:

52

40
41 #generate_pages(dynamic,keyword_popsize,number_of_keywords,keyword_probs,keyword_lengths)

42 #generate_pages(dynamic_in=None,keyword_popsize_in=None,number_of_keywords_in=None,keyword_probs_in=None,

43 #keyword_lengths_in=None, page_locations_in='random'):

44
45 number_of_keywords = number_of_keywords_in

46 keyword_lengths = keyword_lengths_in

47
48 keywords_sizes_list_len = len(keyword_lengths)

49 keyword_list = []

50
51 #Generate a random distribution of keyword appearances within document streams

52 multiple_pages = 2 #choice(5) #2 = 2*8KB (8KB=8192) Start low for now, then randomize to a larger value later

53
54 if len(keyword_probs_in) != number_of_keywords:

55 raise AssertionError("length of keyword_probs_in, "+str(len(keyword_probs_in))+

56 " does not match number of keywords, "+str(number_of_keywords))

57
58 #Generate the list of keywords needed for search within pages

59 for k in range(number_of_keywords):

60 for i in keyword_lengths:

61 keyword_list.append(gen_keyword.keyword(i))

62 #keyword_list.append('')

63
64 with open(os.path.join(os.path.dirname(os.curdir),'..','..',

65 'GeneratePage','GeneratePage','out_pages','keyword_list.txt'),'w') as f:

66 for k in range(number_of_keywords):

67 for i in range(keywords_sizes_list_len):

68 f.write(keyword_list[keywords_sizes_list_len*k+i]+'\n')

69
70 #Generate page of 8192 characters -> adjust payload to 8175

71 page_size_limit = page_size_limit_in-17 #8192 #128 is padded 16 times and #129 is padded once into the file in StringtoAscii

72
73 word = ''

74
75 no_kw_page = []

76
77 #first create the page without worrying about overflow of words

78 #make sure to exclude keywords

79 for page_count in range(multiple_pages):

80 page = []

81 page_size = 0

82 while page_size < page_size_limit:

83 word = choice(gen_keyword.word_list)

84 if word not in keyword_list:

85 page.append(word+' ')

86 page_size = page_size+len(word)+1

87
88 #trim the page down since the last word might have gone over the page limit

89 no_kw_page = trim_page(page, page_size_limit)

90
91 locations = page_locations_in #['random'] #['top','mid','bot']

92 #locations_num = [0.1,0.5,0.9]

93 histogram = [keyword_list,[]]

94 for _ in range(len(keyword_list)):

95 histogram[1].append(0)

96 #Generate the pages

53

97
98 for loc_index in range(len(locations)):

99 for num_kw in range(number_of_keywords): #******#******#******

100
101 #enumerate the keywords

102 keywords_enum = []

103 keyword_probs_limited = []

104 for kw in range(num_kw+1):

105 keywords_enum.append(kw+1)

106 keyword_probs_limited.append(keyword_probs_in[kw])

107
108 #generate the keyword distribution for set number_of_keywords

109 pop_size = choice(keyword_popsize_in)

110 keyword_distr = randsample(keywords_enum, pop_size, keyword_probs_limited)

111 #print(keyword_distr)

112 for kw_length in keyword_lengths: #******#******#******

113
114 #Make a new copy of the generated page that had no keywords

115 new_page = []

116 for chunk in no_kw_page:

117 new_page.append(chunk)

118
119
120 pruned_keyword_list = []

121 for keyword in keyword_list:

122 if len(keyword) == kw_length:

123 if len(pruned_keyword_list) < num_kw+1:

124 pruned_keyword_list.append(keyword) #contains all keywords of interest

125
126 ############################ Only want to insert keywords that are in the keyword_distribution list

127 ############################ At the corresponding keyword length

128 ############################ For example if keyword_distr is 1 1 1 3, then only randomly insert keywords 1, 3 times then

129 ############################ randomly insert keyword 3 once

130
131 #Go through randomly sampled keyword list

132 for rand_picked_kw in keyword_distr:

133 #Randomize every placement of each inserted keyword

134 #Calculate the location of where to insert the keywords

135 stop_loc = random_integers(page_size_limit-55) #limit stop location to

136 #no more than end of page minus 10 characters to prevent keyword overflow.

137 char_count = 0

138 loc_in_page = 0

139 for char in no_kw_page:

140 char_count += len(char)

141 if (char_count < stop_loc):

142 loc_in_page += 1

143
144 #insert randomly picked keyword into random location in page

145 new_page.insert(loc_in_page,pruned_keyword_list[rand_picked_kw-1]+' ')

146
147 new_page = trim_page(new_page, page_size_limit) #Reduce the page size down to the page limit

148
149 #*****Debug code start*******#

150 temp_pg_size = 0

151 for temp_word in new_page:

152 temp_pg_size += len(temp_word)

153 #print('size of new_page after trim: '+str(temp_pg_size))

54

154 if temp_pg_size != page_size_limit:

155 raise AssertionError("Trimmed size, "+str(temp_pg_size)+

156 " does not match page size limit, "+str(page_size_limit))

157
158 #*****Debug code end*******#

159
160
161 #Write out for each set of keyword at a given length

162 out_page_name = os.path.join(os.path.dirname(os.curdir),'..','..',

163 'GeneratePage','GeneratePage','out_pages','loc_'+

164 locations[loc_index]+'_num_keywrd_'+

165 str(num_kw+1)+'_keywrd_len_'+

166 str(kw_length)+'.txt')

167
168 with open(out_page_name,'a') as f:

169 #Write finished generated page to output file

170 f.writelines("%s" % line for line in new_page)

171
172 #Create histogram for number of keywords, not for each length

173 histogram = hist(new_page,page_size_limit,keyword_list,histogram)

174
175 with open(os.path.join(os.path.dirname(os.curdir),'..','..',

176 'GeneratePage','GeneratePage','out_pages','loc_'+

177 locations[loc_index]+'_num_keywrd_'+

178 str(num_kw+1)+

179 '_histogram'+'.txt'),'a') as f:

180 #Write histogram to output file

181 for index in range(len(keyword_list)):

182 f.write("{}\t\t{}\n".format(histogram[1][index],histogram[0][index]))

183
184 histogram = [keyword_list,[]]

185 for _ in range(len(keyword_list)):

186 histogram[1].append(0)

187
188 """

189 Essential function(s)

190 """

191
192 #customized randsample that behaves similar to MATLAB function randsample.

193 #Given elements, a population size, and a list of corresponding probabilities, returns

194 #a list of the elements of the the population size according to their weighted probabilities.

195 #numpy.choice seems unreliable

196 def randsample(elements,population_size,weights):

197 if len(elements) != len(weights):

198 raise IndexError("Elements size must match probability list size. \nElement size: "+

199 str(len(elements))+" weight size: "+str(len(weights)))

200 def weighted_choice(weights):

201 rnd = random.random() * sum(weights)

202 for i, w in enumerate(weights):

203 rnd -= w

204 if rnd < 0:

205 return i

206 sampled_pop = []

207 pop_size = population_size

208 for _ in range(pop_size):

209 sampled_pop.append(elements[weighted_choice(weights)])

210 return sampled_pop

55

211
212
213 #trim_page trims a page (characters) down to the set limit, and returns the resulting new page

214 def trim_page(in_page, page_size_limit):

215 """ Function for trimming down a page to the page_size_limit """

216 word = ''

217 end_of_page_size = 0

218 page_sz = 0

219 out_page =[]

220 #confirm the size of the incoming page

221 for chunk in in_page:

222 page_sz += len(chunk)

223
224 #print('last few words before trim in trimFunc are: \n'+in_page[-3]+'\n'+in_page[-2]+'\n'+in_page[-1]+'\n')

225 while page_sz > page_size_limit :

226 word = in_page.pop()

227 page_sz = page_sz - len(word)

228
229 end_of_page_size = page_size_limit - page_sz #calculate space between last word and page_limit

230 last_word=''

231 for num in range(end_of_page_size):

232 last_word += ' '

233 page_sz_check = 0

234 for chunk in in_page:

235 out_page.append(chunk)

236 page_sz_check += len(chunk)

237 out_page.append(last_word)

238 page_sz_check += len(last_word)

239 return out_page

240
241
242 def hist(in_page, page_size_limit, keyword_list, kw_match_tally_list):

243 """Function for creating a histogram of keywords within a page """

244 #for each keyword in the keyword list count how many times it occurs in the page

245
246 for word in in_page:

247 word = word.rstrip(' ')

248 if word in keyword_list:

249 kw_match_tally_list[1][keyword_list.index(word)] +=1 #increment the corresponding kw position

250 return kw_match_tally_list

251
252 def keyword(size):

253 with open(os.path.join(os.path.dirname(os.curdir),'..','..','GeneratePage','GeneratePage',

254 'dictionary_words','dictionary.txt')) as f:

255 word_list = list(word.strip().lower() for word in f)

256 out_word = ''

257 while len(out_word) != size:

258 out_word = random.choice(word_list)

259
260
261 return out_word

56

Appendix B

Main Filter AsAP2 Simulator Code

for 3 Keywords (C++/Assembly)

1 #include "stdafx.h"

2 #include "asapsim.h"

3
4 Function(Filter)

5
6
7 //Convert variables to something more convenient

8 #define keyword_char_pi ag0pi

9 #define keyword_char ag0

10 #define work_buf_char_pi ag1pi

11 #define work_buf_char ag1

12 #define input_char Ibuf0

13 #define work_buf_counter DMEM[1]

14 #define keyword_counter DMEM[2]

15 #define keyword_length DMEM[3]

16 #define eop DMEM[4]

17 #define temp DMEM[0]

18
19 Start_Initialization

20
21
22 switch(m->storage[0]){

23 case 1: //core 0 1

24 //begin 1,0

25 // DCMEM 0 set's the keywords APTR0

26 // DCMEM 1 set's the work buffer end APTR2

27 MOVI(DCMEM[2], 32) // ag0 br=0, dir=1, shr_amt=0

28 MOVI(DCMEM[3], 1536) //ag0 start = DMEM 6 and end addresses = 0 (change end address at runtime) keyword ptr

29 MOVI(DCMEM[4], 383) // ag0 stride=1, sml=1111111

30 MOVI(DCMEM[5], 32512) // ag0 and_mask=1111111 or_mask = 0000000

31 MOVI(DCMEM[6], 32) // ag1 br=0, dir=1, shr_amt=0

32 MOVI(DCMEM[7], 25856) //ag1 start = DMEM 101 and end addresses = 0 (change end address at runtime) work buf ptr

33 MOVI(DCMEM[8], 383) // ag1 stride=1, sml=1111111

34 MOVI(DCMEM[9], 32512) // ag1 and_mask=1111111 or_mask = 0000000

57

35
36 // DMEM 0 temp

37 // DMEM 1 **Not currently used *****

38 // DMEM 2 contains keyword counter

39 //MOVI(DMEM[3], 3) // keyword length

40 MOVI(DMEM[4], 128) // Code for end of page

41 MOVI(DMEM[5], 6) // Value of 6 represents the address to

42 // DMEM 6 = the first char in keyword chars list

43
44
45 //MOVI(DMEM[6], 112) // keyword char 1 "p"

46 //MOVI(DMEM[7], 108) // keyword char 2 "l"

47 //MOVI(DMEM[8], 97) // keyword char 3 "a"

48 //MOVI(DMEM[9], 99) // keyword char 4 "c"

49 //MOVI(DMEM[10], 97) // keyword char 5 "a"

50 //MOVI(DMEM[11], 116) // keyword char 6 "t"

51 //MOVI(DMEM[12], 105) // keyword char 7 "i"

52 //MOVI(DMEM[13], 111) // keyword char 8 "o"

53 //MOVI(DMEM[14], 110) // keyword char 9 "n"

54 //MOVI(DMEM[15], 115) // keyword char 10 "s"

55
56 MOVI(DMEM[99], 512) //for RPT block

57 MOVI(DMEM[100], 101) // Value of 101 represents the address to DMEM 101

58 //DMEM 101 and below reserved for work buffer, with size = keyword length

59
60 //Additional required constants for keyword ptr reset (ag0) and work buf resets ag1

61 MOVI(DMEM[125], 1536) //Reset for keyword ptr reset (ag0)

62 MOVI(DMEM[126], 25856) //Reset for work buf reset (ag1)

63 MOVI(DMEM[127], 26112) //Reset for work buf reset, then advance by 1 (ag1) skip oldest char

64 break;

65 case 2: //core 0 2

66 //begin 2,0

67 output(east, west)

68 //#longdist coreinLdis LDinLen LDoutL2R

69 // DCMEM 0 set's the keywords APTR0

70 // DCMEM 1 set's the work buffer end APTR2

71 MOVI(DCMEM[2], 32) // ag0 br=0, dir=1, shr_amt=0

72 MOVI(DCMEM[3], 1536) //ag0 start = DMEM 6 and end addresses = 0 (change end address at runtime) keyword ptr

73 MOVI(DCMEM[4], 383) // ag0 stride=1, sml=1111111

74 MOVI(DCMEM[5], 32512) // ag0 and_mask=1111111 or_mask = 0000000

75 MOVI(DCMEM[6], 32) // ag1 br=0, dir=1, shr_amt=0

76 MOVI(DCMEM[7], 25856) //ag0 start = DMEM 101 and end addresses = 0 (change end address at runtime) work buf ptr

77 MOVI(DCMEM[8], 383) // ag1 stride=1, sml=1111111

78 MOVI(DCMEM[9], 32512) // ag1 and_mask=1111111 or_mask = 0000000

79 // DMEM 0 temp

80 // DMEM 1 **Not currently used *****

81 // DMEM 2 contains keyword counter

82 //MOVI(DMEM[3], 3) // keyword length

83 MOVI(DMEM[4], 128) // Code for end of page

84 MOVI(DMEM[5], 6) // Value of 6 represents the address to

85 // DMEM 6 = the first char in keyword chars list

86 //MOVI(DMEM[6], 101) // keyword char 1 "e"

87 //MOVI(DMEM[7], 110) // keyword char 2 "n"

88 //MOVI(DMEM[8], 100) // keyword char 3 "d"

89 //MOVI(DMEM[9], 101) // keyword char 4 "e"

90 //MOVI(DMEM[10], 114) // keyword char 5 "r"

91 //MOVI(DMEM[11], 108) // keyword char 6 "l"

58

92 //MOVI(DMEM[12], 105) // keyword char 7 "i"

93 //MOVI(DMEM[13], 110) // keyword char 8 "n"

94 //MOVI(DMEM[14], 39) // keyword char 9 "'"

95 //MOVI(DMEM[15], 115) // keyword char 10 "s"

96
97 MOVI(DMEM[99], 512) //for RPT block

98 MOVI(DMEM[100], 101) // Value of 101 represents the address to DMEM 101

99 //DMEM 101 and below reserved for work buffer, with size = keyword length

100
101 //Additional required constants for keyword ptr reset (ag0) and work buf resets ag1

102 MOVI(DMEM[125], 1536) //Reset for keyword ptr reset (ag0)

103 MOVI(DMEM[126], 25856) //Reset for work buf reset (ag1)

104 MOVI(DMEM[127], 26112) //Reset for work buf reset, then advance by 1 (ag1) skip oldest char

105 break;

106 case 3: //core 0 3

107 //begin 2,0

108 output(east)

109 //#longdist coreinLdis LDinLen LDoutL2R

110 // DCMEM 0 set's the keywords APTR0

111 // DCMEM 1 set's the work buffer end APTR2

112 MOVI(DCMEM[2], 32) // ag0 br=0, dir=1, shr_amt=0

113 MOVI(DCMEM[3], 1536) //ag0 start = DMEM 6 and end addresses = 0 (change end address at runtime) keyword ptr

114 MOVI(DCMEM[4], 383) // ag0 stride=1, sml=1111111

115 MOVI(DCMEM[5], 32512) // ag0 and_mask=1111111 or_mask = 0000000

116 MOVI(DCMEM[6], 32) // ag1 br=0, dir=1, shr_amt=0

117 MOVI(DCMEM[7], 25856) //ag0 start = DMEM 101 and end addresses = 0 (change end address at runtime) work buf ptr

118 MOVI(DCMEM[8], 383) // ag1 stride=1, sml=1111111

119 MOVI(DCMEM[9], 32512) // ag1 and_mask=1111111 or_mask = 0000000

120
121 // DMEM 0 temp

122 // DMEM 1 **Not currently used *****

123 // DMEM 2 contains keyword counter

124 //MOVI(DMEM[3], 3) // keyword length

125 MOVI(DMEM[4], 128) // Code for end of page

126 MOVI(DMEM[5], 6) // Value of 6 represents the address to

127 // DMEM 6 = the first char in keyword chars list

128
129 //MOVI(DMEM[6], 101) // keyword char 1 "e"

130 //MOVI(DMEM[7], 110) // keyword char 2 "n"

131 //MOVI(DMEM[8], 100) // keyword char 3 "d"

132 //MOVI(DMEM[9], 101) // keyword char 4 "e"

133 //MOVI(DMEM[10], 114) // keyword char 5 "r"

134 //MOVI(DMEM[11], 108) // keyword char 6 "l"

135 //MOVI(DMEM[12], 105) // keyword char 7 "i"

136 //MOVI(DMEM[13], 110) // keyword char 8 "n"

137 //MOVI(DMEM[14], 39) // keyword char 9 "'"

138 //MOVI(DMEM[15], 115) // keyword char 10 "s"

139
140 //MOVI(DMEM[99], 512) //for RPT block

141 MOVI(DMEM[100], 101) // Value of 101 represents the address to DMEM 101

142 //DMEM 101 and below reserved for work buffer, with size = keyword length

143
144 //Additional required constants for keyword ptr reset (ag0) and work buf resets ag1

145 MOVI(DMEM[125], 1536) //Reset for keyword ptr reset (ag0)

146 MOVI(DMEM[126], 25856) //Reset for work buf reset (ag1)

147 MOVI(DMEM[127], 26112) //Reset for work buf reset, then advance by 1 (ag1) skip oldest char

148 break;

59

149 }

150 NOP(nop3)

151
152 End_Initialization

153
154 //begin 1,0 (measure activity, measure energy)

155 prestart:

156 if(m->storage[0] == 1){

157
158 output(west) // Set output direction to MC1 control input

159 NOP(nop3)

160 MOVE(Obuf, _0) // Send request to MC1 to write first page to mem16k

161 NOP(nop3)

162 MOVE(Obuf, _1) // Send request to MC1 to read first page from mem16k

163 output(east, west) // Reset output direction to normal operation directions

164 NOP(nop3)

165 }

166
167
168 start:

169
170 if(m->storage[0] == 2 || m->storage[0] == 3){

171 XOR(NULL, Ibuf0, _1, NOP2) // start this core if

172 // incoming core was match

173 BRZ(start_1st_char_loop) // truly start by jumping to 1st char loop

174
175 //before_true_start:

176
177
178
179 MOVE(Obuf, _0)

180 BR(start)

181 }

182
183 //true_start:

184
185
186 //Before setting up work buffer scan for first match with loop unrolling

187 start_1st_char_loop:

188 XOR(NULL, Ibuf0, DMEM[6], nop2) //compare input char to first keyword char

189 BRZ(check_2nd_char_block) //branch to second char block if match found

190 XOR(NULL, Ibuf0, DMEM[6], nop2) //compare input char to first keyword char

191 BRZ(check_2nd_char_block) //branch to second char block if match found

192 XOR(NULL, Ibuf0, DMEM[6], nop2) //compare input char to first keyword char

193 BRZ(check_2nd_char_block) //branch to second char block if match found

194 XOR(NULL, Ibuf0, DMEM[6], nop2) //compare input char to first keyword char

195 BRZ(check_2nd_char_block) //branch to second char block if match found

196 XOR(NULL, Ibuf0, DMEM[6], nop2) //compare input char to first keyword char

197 BRZ(check_2nd_char_block) //branch to second char block if match found

198
199
200 XOR(NULL, Ibuf0nap, eop, nop2) //Check to see if at the end of page

201 BRNZ(start_1st_char_loop) //if nothing found, restart loop

202
203 //handle_end_of_page:

204
205 MOVE(Obuf, _0) //Send code to next block indicating no match

60

206
207 ADD(eop,eop,_1,nop3) // Create a modified end of page

208 goto_end_of_page: // Advance Ibuf0 till end of page

209 XOR(NULL, eop, Ibuf0, NOP2) // check if at the end of the page

210 BRNZ(goto_end_of_page) // If not end of page, repeat this block

211 SUB(eop,eop,_1,nop3) //Reset end of page to original

212
213 if(m->storage[0] == 1){

214 output(west) // Set output direction to MC1 control input

215 NOP(nop3)

216 MOVE(Obuf, _1) // Send request to MC1 to read first page from mem16k

217 output(east, west) // Reset output direction to normal operation directions

218 NOP(nop3)

219 }

220 //else if (m->storage[0] == 2 || m->storage[0] == 3){

221 // output(west) // Set output direction to MC1 control input

222 // NOP(nop3)

223 // MOVE(Obuf, _0) // Send "processing done" message to previous filter

224 // NOP(nop3)

225 // output(east) // Reset output direction to normal operation directions

226 // NOP(nop3)

227 //}

228
229 BR(reset_all) //Reset everything once at the end of page

230
231 check_2nd_char_block:

232 XOR(NULL, Ibuf0, DMEM[7], nop2) //compare next input char to 2nd keyword char

233 BRNZ(start_1st_char_loop) //branch to 1st char loop if no match

234
235 //At this point we have both chars matching.

236 SUB(NULL, DMEM[3], _2,nop2) //check if keyword length reached.

237 BRZ(send_match_result) //if reached send out approriate code

238
239 //More words to search through so setup work buffer and use

240 MOVE(work_buf_char_pi, keyword_char_pi, nop3) //save 1st char match to work buffer

241 MOVE(work_buf_char_pi, keyword_char_pi, nop3) //save 2nd char match to work buffer

242 MOVI(keyword_counter, _2) //update the keyword counter to reflect the 2 matched chars

243 MOVI(work_buf_counter, _2) //update the work buffer counter to reflect the 2 matched chars

244
245 variable_char_check_block:

246
247 MOVE(work_buf_char, input_char, nop3) //grow work buffer by 1 char from input buffer

248 ADD(work_buf_counter, work_buf_counter, _1, nop3) //grow work buffer by 1

249 XOR(NULL, keyword_char_pi, work_buf_char_pi, nop2) //compare the 3rd/var keyword char to 3rd/var char in work buffer

250 BRNZ(var_char_nomatch) //handle matched char

251
252 //Character matched

253 ADD(keyword_counter, keyword_counter, _1, nop3) //increment keyword counter

254 XOR(NULL, keyword_length, keyword_counter, nop2) //check if all keyword chars checked

255 BRNZ(variable_char_check_block) //If chars left, branch back up

256
257 //All chars matched

258 BR(send_match_result)

259
260 //Character did not match

261 var_char_nomatch:

262 //SUB(work_buf_counter, work_buf_counter, _1) //Need to decrease work buf size by one

61

263 MOVE(DCMEM[3], DMEM[125]) //Reset keyword pointer (ag0)

264 MOVE(DCMEM[7], DMEM[127]) //Reset work buf ptr (ag1)to second to oldest work buf location

265 MOVI(keyword_counter, _0) //Reset keyword counter

266 MOVI(temp, _1, nop3) //Reset temp which is used here as sub work buf counter (ignore oldest char)

267
268 //Submatch check

269 submatch_check:

270
271 ADD(temp, temp, _1) //increment sub work buf counter

272 XOR(NULL, work_buf_char_pi, keyword_char_pi, nop2) //compare char from work buf to keyword char

273 BRZ(submatch_check_success)

274
275 //submatch check fail

276 XOR(NULL, temp, work_buf_counter, nop2) //check if search is at the end of the work buffer

277 BRZ(partial_reset) //if at the end of work buffer continue main character checking block

278
279
280 //Some chars left in work buf to check

281 MOVE(DCMEM[3], DMEM[125]) //Reset keyword pointer (ag0)

282 NOP()

283 MOVI(keyword_counter, _0, nop2) //Reset keyword counter

284 BR(submatch_check) //Need to check the remaining chars in work buf

285
286
287 partial_reset:

288 MOVE(DCMEM[3], DMEM[125], nop2) //Reset keyword pointer (ag0)

289 MOVE(DCMEM[7], DMEM[126], nop3) //Reset work buf ptr (ag1)

290 BR(start_1st_char_loop) //After resetting everything go back to first char loop

291
292
293 reset_all:

294 MOVE(DCMEM[3], DMEM[125], nop2) //Reset keyword pointer (ag0)

295 MOVE(DCMEM[7], DMEM[126], nop3) //Reset work buf ptr (ag1)

296
297 if(m->storage[0] == 1){//Filter 1

298 BR(prestart) //After resetting everything go back to prestart

299 }else{//all other filters

300 BR(start) //full reset for all other filters

301 }

302
303 submatch_check_success:

304 ADD(keyword_counter, keyword_counter, _1) //increment keyword counter

305 NOP()

306 XOR(NULL, temp, work_buf_counter, nop2) //check if search is at the end of the work buffer

307 BRZ(variable_char_check_block) //if at the end of work buffer continue main character checking block

308
309 BR(submatch_check) //Need to check the remaining chars in work buf

310
311
312
313 send_match_result:

314
315 ADD(eop,eop,_1,nop3) // Create a modified end of page

316 zip_to_end_of_page: // Advance Ibuf0 till end of page

317 XOR(NULL, eop, Ibuf0, NOP2) // check if at the end of the page

318 BRNZ(zip_to_end_of_page) // If not end of page, repeat this block

319 //SUB(eop,eop,_1,nop3) //Reset end of page to original

62

320
321 if(m->storage[0] == 1){

322 MOVE(Obuf, _1) //Send code to next block indicating successful match

323 //--For filter 2 and 3 --

324 //These cores by definition only runs when previous core output==1

325 //therefore if current core matches send out a 1

326 }else if(m->storage[0] == 2){

327 MOVE(Obuf, _1) //Send code to next block indicating successful match

328 //--For filter 2 and 3 --

329 //These cores by definition only runs when previous core output==1

330 //therefore if current core matches send out a 1

331 }else{//Filter 3

332 MOVE(Obuf, _1) //Send code to next block indicating successful match

333 //--For filter 2 and 3 --

334 //These cores by definition only runs when previous core output==1

335 //therefore if current core matches send out a 1

336 }

337 NOP(nop3)

338
339
340 if(m->storage[0] == 1){//Filter 1

341 //Configure current core as a pass-through until last filter finishes

342 //MOVI(DMEM[98],_0)

343 //ADD(eop,eop,_1)

344 //fresh_read_out:

345 output(east) // Reset output direction to normal operation directions

346 //NOP(nop3)

347
348 //set pass-through

349 pass_through:

350 RPT(DMEM[99],NOP3)

351 MOVE(Obuf, Ibuf0) // broadcast input to outputs. Loop unroll rather than branch

352 }

353
354 XOR(NULL, eop, Ibuf0nap, NOP2) //Next core completes when the last sent char is eop

355 //Technically eop+1 since the SUB earlier was commented out

356 BRNZ(pass_through) //continue to set current core as pass_through if not (eop+1)

357
358
359 SUB(eop,eop,_1) //Reset end of page to original

360 XOR (NULL, Ibuf1, _0, NOP2) // check if next core wants a fresh read of document or not

361 BRZ(reset_all) // Restart program since subsequent cores are done

362
363 ////////---------loop unroll(last few lines modified)---------

364
365 //set fresh read out

366 output(west) // Set output direction to MC1 control input

367 ADD(eop,eop,_1) // Create a modified end of page

368 //XOR(NULL, DMEM[98], _1, NOP2)

369 //BRZ(prestart)

370 //ADD(DMEM[98],DMEM[98],_1)

371 NOP(nop2)

372 MOVE(Obuf, _1) // Send request to MC1 to read page from mem16k

373 //NOP(nop3)

374
375 output(east) // Reset output direction to normal operation directions

376 //NOP(nop3)

63

377
378 //set pass-through

379 pass_through_1rpt:

380 RPT(DMEM[99],NOP3)

381 MOVE(Obuf, Ibuf0) // broadcast input to outputs. Loop unroll rather than branch

382 }

383
384 XOR(NULL, eop, Ibuf0nap, NOP2) //Next core completes when the last sent char is eop

385 //Technically eop+1 since the SUB earlier was commented out

386 BRNZ(pass_through_1rpt) //continue to set current core as pass_through if not (eop+1)

387
388
389 SUB(eop,eop,_1) //Reset end of page to original

390 //XOR (NULL, Ibuf1, _0, NOP2) // check if next core wants a fresh read of document or not

391 BR(reset_all) // Restart program since subsequent cores are done

392
393 ///////////-----------------------

394
395 //BR(fresh_read_out) //jump back to fresh_read_out label

396 }else if(m->storage[0] == 2){//Filter 2

397 //Configure current core as a pass-through until last filter finishes

398 //ADD(eop,eop,_1)

399 output(east) // Reset output direction to normal operation directions

400 //NOP(nop3)

401
402 //set pass-through

403 pass_through_2:

404 RPT(DMEM[99],NOP3)

405 MOVE(Obuf, Ibuf0) // broadcast input to outputs. Loop unroll rather than branch

406 }

407
408 XOR(NULL, eop, Ibuf0nap, NOP2) //Next core completes when the last sent char is eop

409 //Technically eop+1 since the SUB earlier was commented out

410 BRNZ(pass_through_2) //continue to set current core as pass_through if not (eop+1)

411
412 output(east, west) // Set output direction to MC1 control input

413 SUB(eop,eop,_1) //Reset end of page to original

414 //NOP(nop3)

415 BR(reset_all) // Restart program since subsequent cores are done

416 }else{ //Filter 3

417 SUB(eop,eop,_1) //Reset end of page to original

418 BR(reset_all) // Restart program

419 }

420 //NOP()

421 }//end

64

Appendix C

String Search Top Level Script

(Python)

1 """

2 Author: Eman Adeagbo (Created: Jul/07/2015)

3 Description: Manages the statistics based filters.

4 Generates the config and input files for the simulator,

5 calls the simulator, parses the statistics,

6 programs the proper cores, calls simulator again,

7 parses the resulting output and

8 creates the appropriate excel files for data plots etc.

9 """

10
11 #python system modules

12 import subprocess, sys, os, shutil, time, operator, itertools

13
14 #custom modules

15 import sim_keywords_cfg, clear_directory, gen_excel_dat, gen_page , StringtoAscii

16
17 architectures = ['statistic','mainfilter','mainfilter_compare','mainfilter_compare_reverse'] #must make sure that statistic runs first

18 #In post processing statistics -> statistics , mainfilter -> mainfilter_sorted_descend ,

19 #mainfilter_compare -> mainfilter_unsorted, mainfilter_compare_reverse -> mainfilter_sorted_ascend

20
21 keyword_lengths = [2,3,4,5,6,7,8,9,10]

22 number_of_keywords = 5 #5

23 dynamic = 1 #1 = probability based string search, 0 = constant string search, no probability

24 keyword_probs = [0.049, 0.0009, 0.025, 0.0000011, 0.0] # These don't necessarily have to sum up to 1.0 but each value must be less than 1.0

25 keyword_popsize = 10000 #Keyword population size sets the limit on the number of keywords per set.

26 #For example: for 3 unique keywords, and keyword_popsize of 100, any of the 3 unique keywords

27 #can occur multiple times(based on weighted probability), but their sum must be 100 or less.

28
29 #Note, the value below must also be changed in gen_page.py to take effect

30 #maybe not...Checking....

31 page_locations = ['random'] #,'top','bot'] #'mid'

32 page_size_limit = 8192 #Page limit set as a consequence of Asap2 memory size

33
34

65

35 num_iterations = 1000

36
37
38 #absolute paths

39 gen_page_path = os.path.join(os.path.dirname(os.curdir),'..','..','GeneratePage','GeneratePage')

40
41 main_sim_path = os.path.join(os.path.dirname(os.curdir),'..','..','SBFProjManager','SBFProjManager','simulation')

42 string_to_ascii_path = os.path.join(os.path.dirname(os.curdir),'..','..','StringtoAscii','StringtoAscii')

43
44
45
46 #Create the input files needed for the simulator

47
48
49 #Before generating the input files and running the simulator, need to remove any old files

50 #excluding the .exe sim program from the current simulation directory

51
52 for architecture in architectures:

53 for cur_num_kw in range(number_of_keywords):

54 cur_sim_path = os.path.join(main_sim_path,architecture,str(cur_num_kw+1)+'keywords')

55 clear_directory.rm_files_ext(cur_sim_path,'txt')

56
57
58 for iteration in range(num_iterations):

59 #Reset the keyword list

60 keyword_list = []

61 #Clear the generation path output directory

62 clear_directory.rm_files(os.path.join(gen_page_path,'out_pages'))

63 #Next, execute page generation script

64 #gen_page_script = os.path.join(gen_page_path,'gen_page.py')

65 #arguments = ""

66
67
68 #os.system(gen_page_script)

69 gen_page.generate_pages(dynamic,keyword_popsize,number_of_keywords,keyword_probs,keyword_lengths,page_locations,page_size_limit)

70
71
72 #Import the created keywords from the page generation out_pages directory

73 with open(os.path.join(gen_page_path,'out_pages','keyword_list.txt')) as f:

74 for keyword in f:

75 if keyword is not '\n': #skip new lines

76 keyword_list.append(keyword)

77
78 for architecture in architectures:

79 if architecture is 'mainfilter':

80 #At this point statistic gathering is done

81
82 for pg_loc in page_locations:

83 for cfg_f_num_of_keywrds in range(number_of_keywords):

84 for kw_length in keyword_lengths:

85 pcr_list = [] #per core raw list

86 pcr_group_list = [] #make groupings of 3s for the per core raw list for each keyword

87 #[(keyword1,output1,energy1),...,(...)]

88 #relative path

89 cur_sim_path = os.path.join(main_sim_path,

90 'statistic',

91 str(cfg_f_num_of_keywrds+1)+

66

92 'keywords')

93 with open(os.path.join(cur_sim_path,'pcr_iter_'+str(iteration+1)+'_'+'loc_'+

94 pg_loc+'_num_keywrd_'+

95 str(cfg_f_num_of_keywrds+1)+

96 '_keywrd_len_'+str(kw_length)+

97 '.txt')) as f_pc_raw:

98 pcr_list=list(f_pc_raw.readlines())

99 #print(int(len(pcr_list)/3))

100 for groupings in range(int(len(pcr_list)/3)):

101 #pcr_kw_list.append(str(pcr_list[(item+1)%1]))

102 #pcr_out_list.append(int(pcr_list[(item+1)%2]))

103 #pcr_energy_list.append(float(pcr_list[(item+1)%3]))

104 pcr_group_list.append([str(pcr_list[groupings*3+0]),

105 int(pcr_list[groupings*3+1]),

106 float(pcr_list[groupings*3+2])])

107
108
109 pcr_group_list.sort(key=operator.itemgetter(2),reverse=True) #0=keyword, 1=output, 2=energy

110 #At this point pcr_group_list is sorted in ascending order (highest to lowest)

111
112 #Reconfigure the work cores with the code below##########

113
114 #Extract only the sorted keywords from the sorted group list

115 sorted_keyword_list =[]

116 for core_stat in pcr_group_list:

117 #sorted_keyword_list.append(core_stat[0].rstrip('\n'))

118 sorted_keyword_list.append(core_stat[0])

119 config_list = []

120 config_list = sim_keywords_cfg.config(architecture,sorted_keyword_list,

121 cfg_f_num_of_keywrds+1,kw_length)

122 #write config file to 'mainfilter' sim directory

123 #relative path

124 cur_sim_path = os.path.join(main_sim_path,architecture,str(cfg_f_num_of_keywrds+1)+'keywords')

125 cfg_name = 'cfg_num_keywrd_'+str(cfg_f_num_of_keywrds+1)+'_keywrd_len_'+str(kw_length)+'.txt'

126 with open (os.path.join(cur_sim_path,cfg_name),'w') as f: #TODO: make it iterate up to 5 later

127 #Special case for singular filter. core location should be configured to [0][0]

128 if cfg_f_num_of_keywrds+1 is 1:

129 config_list[1] = '0\n'

130 config_list[2] = '0\n'

131 f.writelines("%s" % line for line in config_list)

132
133 elif architecture is 'mainfilter_compare':

134 #Need to measure how much better the reprogrammed mainfilter is

135 #Run a version of the mainfilter as if it were not repgrogrammed

136 for pg_loc in page_locations:

137 for cfg_f_num_of_keywrds in range(number_of_keywords):

138 for kw_length in keyword_lengths:

139 pcr_list = [] #per core raw list

140 pcr_group_list = [] #make groupings of 3s for the per core raw list for each keyword

141 #[(keyword1,output1,energy1),...,(...)]

142 #relative path

143 cur_sim_path = os.path.join(main_sim_path,'statistic',str(cfg_f_num_of_keywrds+1)+'keywords')

144 with open(os.path.join(cur_sim_path,'pcr_iter_'+

145 str(iteration+1)+'_'+'loc_'+pg_loc+'_num_keywrd_'+

146 str(cfg_f_num_of_keywrds+1)+

147 '_keywrd_len_'+str(kw_length)+

148 '.txt')) as f_pc_raw:

67

149 pcr_list=list(f_pc_raw.readlines())

150
151 for groupings in range(int(len(pcr_list)/3)):

152 pcr_group_list.append([str(pcr_list[groupings*3+0]),

153 int(pcr_list[groupings*3+1]),

154 float(pcr_list[groupings*3+2])])

155
156 unsorted_keyword_list =[]

157 for core_stat in pcr_group_list:

158 #sorted_keyword_list.append(core_stat[0].rstrip('\n'))

159 unsorted_keyword_list.append(core_stat[0])

160 config_list = []

161 config_list = sim_keywords_cfg.config(architecture,unsorted_keyword_list,

162 cfg_f_num_of_keywrds+1,kw_length)

163 #write config file to 'mainfilter' sim directory

164 #relative path

165 cur_sim_path = os.path.join(main_sim_path,architecture,str(cfg_f_num_of_keywrds+1)+'keywords')

166 cfg_name = 'cfg_num_keywrd_'+str(cfg_f_num_of_keywrds+1)+'_keywrd_len_'+str(kw_length)+'.txt'

167 with open (os.path.join(cur_sim_path,cfg_name),'w') as f: #TODO: make it iterate up to 5 later

168 #Special case for singular filter. core location should be configured to [0][0]

169 if cfg_f_num_of_keywrds+1 is 1:

170 config_list[1] = '0\n'

171 config_list[2] = '0\n'

172 f.writelines("%s" % line for line in config_list)

173
174 elif architecture is 'mainfilter_compare_reverse':

175 #At this point statistic gathering is done

176
177 for pg_loc in page_locations:

178 for cfg_f_num_of_keywrds in range(number_of_keywords):

179 for kw_length in keyword_lengths:

180 pcr_list = [] #per core raw list

181 pcr_group_list = [] #make groupings of 3s for the per core raw list for each keyword

182 #[(keyword1,output1,energy1),...,(...)]

183 #relative path

184 cur_sim_path = os.path.join(main_sim_path,'statistic',str(cfg_f_num_of_keywrds+1)+'keywords')

185 with open(os.path.join(cur_sim_path,'pcr_iter_'+str(iteration+1)+'_'+'loc_'+pg_loc+

186 '_num_keywrd_'+str(cfg_f_num_of_keywrds+1)+'_keywrd_len_'+

187 str(kw_length)+'.txt')) as f_pc_raw:

188 pcr_list=list(f_pc_raw.readlines())

189 for groupings in range(int(len(pcr_list)/3)):

190 pcr_group_list.append([str(pcr_list[groupings*3+0]),

191 int(pcr_list[groupings*3+1]),float(pcr_list[groupings*3+2])])

192
193
194 pcr_group_list.sort(key=operator.itemgetter(2),reverse=False) #0=keyword, 1=output, 2=energy

195 #At this point pcr_group_list is sorted in ascending order (lowest to highest)

196
197 #Reconfigure the work cores with the code below##########

198
199 #Extract only the sorted keywords from the sorted group list

200 sorted_keyword_list =[]

201 for core_stat in pcr_group_list:

202 #sorted_keyword_list.append(core_stat[0].rstrip('\n'))

203 sorted_keyword_list.append(core_stat[0])

204 config_list = []

205 config_list = sim_keywords_cfg.config(architecture,sorted_keyword_list,

68

206 cfg_f_num_of_keywrds+1,kw_length)

207 #write config file to 'mainfilter' sim directory

208 #relative path

209 cur_sim_path = os.path.join(main_sim_path,architecture,str(cfg_f_num_of_keywrds+1)+'keywords')

210 cfg_name = 'cfg_num_keywrd_'+str(cfg_f_num_of_keywrds+1)+'_keywrd_len_'+str(kw_length)+'.txt'

211 with open (os.path.join(cur_sim_path,cfg_name),'w') as f: #TODO: make it iterate up to 5 later

212 #Special case for singular filter. core location should be configured to [0][0]

213 if cfg_f_num_of_keywrds+1 is 1:

214 config_list[1] = '0\n'

215 config_list[2] = '0\n'

216 f.writelines("%s" % line for line in config_list)

217
218 else: #architecture is statistic

219 for cfg_f_num_of_keywrds in range(number_of_keywords):

220
221 #relative path

222 cur_sim_path = os.path.join(main_sim_path,architecture,str(cfg_f_num_of_keywrds+1)+'keywords')

223
224 #generate the config file

225 for kw_length in keyword_lengths:

226 config_list = []

227 config_list = sim_keywords_cfg.config(architecture,keyword_list, cfg_f_num_of_keywrds+1,kw_length)

228 #write config file to appropriate sim directory

229 cfg_name = 'cfg_num_keywrd_'+str(cfg_f_num_of_keywrds+1)+'_keywrd_len_'+str(kw_length)+'.txt'

230 with open (os.path.join(cur_sim_path,cfg_name),'w') as f:

231 #Special case for singular filter. core location should be configured to [0][0]

232 if cfg_f_num_of_keywrds+1 is 1:

233 config_list[1] = '0\n'

234 config_list[2] = '0\n'

235 f.writelines("%s" % line for line in config_list)

236
237
238 #Regardless of which architecture run all the code below

239
240 for cfg_f_num_of_keywrds in range(number_of_keywords):

241
242 #relative path

243 cur_sim_path = os.path.join(main_sim_path,architecture,str(cfg_f_num_of_keywrds+1)+'keywords')

244
245
246 for kw_length in keyword_lengths:

247 #config file name

248 cfg_name = 'cfg_num_keywrd_'+str(cfg_f_num_of_keywrds+1)+'_keywrd_len_'+str(kw_length)+'.txt'

249 #Next, convert corresponding page from page generation directory to ASCII and place in simulation directory

250
251 for pg_loc in page_locations:

252 #clear string, ascii, and temp workspace directories prior to using them

253 clear_directory.rm_files(os.path.join(string_to_ascii_path,'string_files'))

254 clear_directory.rm_files(os.path.join(string_to_ascii_path,'ascii_files'))

255 clear_directory.rm_files(os.path.join(main_sim_path,'temp_workspace'))

256
257 #copy over page from page generation out_pages directory to string to ascii string directory

258 page_name = 'loc_'+pg_loc+'_num_keywrd_'+str(cfg_f_num_of_keywrds+1)+'_keywrd_len_'+str(kw_length)+'.txt'

259 shutil.copy2(os.path.join(gen_page_path,'out_pages',page_name),

260 os.path.join(string_to_ascii_path,'string_files'))

261
262 #set page line count and multiple eop insertion flag. 1 if mainFilter, 0 for statistics based architectures

69

263 with open(os.path.join(string_to_ascii_path,'input_params','params.txt'),'w') as f:

264 f.write('SBFProjManager'+'\n')

265 if architecture is 'statistic': #Disable line count plus eop padding insertion if

266 #statistic (Not really used in StringToAscii.py but left as placeholder)

267 f.write(str(0)) #This assumes parallel based structure

268 else: #Enable mainFilter architecture

269 f.write(str(1)) #This assumes parallel based structure

270
271 #Next, execute string to ascii script

272 #string_to_ascii_script = os.path.join(string_to_ascii_path,'StringtoAscii.py')

273 #os.system(string_to_ascii_script)

274 StringtoAscii.strings_to_ascii(page_size_limit)

275
276 #Confirm script ran successfully and output ascii file is in the temporary workspace

277 if not os.path.isfile(os.path.join(main_sim_path,'temp_workspace','input.txt')):

278 raise FileNotFoundError(

279 "input.txt, the converted string to ascii file was not created. "+

280 "\nMake sure StringtoAscii script was properly"+

281 "called and it's string_files directory is not empty")

282
283 #move ascii page from temporary workspace to simulation directory

284 shutil.move(os.path.join(main_sim_path,'temp_workspace','input.txt'),os.path.join(cur_sim_path,page_name))

285
286 #

287 #

288 ####SIM SHOULD ALWAYS RUN THE STATISTICS FIRST

289 #THEN REPROGRAM THE MAIN FILTERS OTHERWISE ERROR####

290 #

291 #

292
293 #Finally run the simulator with the config file and input file in the simulation directory

294 #Input format: <cfg filename> <input_data filename> <sim_out filename> <stats filename> <raw_data filename>

295 #print("Now running: "+cur_sim_path+'_out_'+page_name+'\n')

296 program = os.path.join(cur_sim_path,'Generic_asap.exe')

297 arg_cfg = os.path.join(cur_sim_path,cfg_name)

298 arg_input = os.path.join(cur_sim_path,page_name)

299 arg_output = os.path.join(cur_sim_path,'out_'+page_name)

300 arg_stats = os.path.join(cur_sim_path,'stats_'+page_name)

301 arg_all_cores_raw = os.path.join(cur_sim_path,'raw_iter_'+

302 str(iteration+1)+'_'+page_name)

303 arg_per_core_raw = os.path.join(cur_sim_path,'pcr_iter_'+

304 str(iteration+1)+'_'+page_name) #needed for statistic arch run

305 try:

306 subprocess.check_output([program, arg_cfg,arg_input,

307 arg_output,arg_stats,arg_all_cores_raw,

308 arg_per_core_raw],shell=True,

309 stderr=subprocess.STDOUT)

310 #retcode = subprocess.call("mycmd" + " myarg")

311 except OSError as e:

312 print("Execution failed:", e, file=sys.stderr)

313
314 #check if output from sim was 1

315 #time.sleep(1) #Give the program time to finish writing out the output to file

316 out = ''

317 retry = 0 #Number of times to retry a failed run to success

318 t_delay = 0

319 while (os.stat(os.path.join(cur_sim_path,'out_'+page_name)).st_size <= 0) and (t_delay <100):

70

320 subprocess.check_output([program, arg_cfg,arg_input,arg_output,

321 arg_stats,arg_all_cores_raw,arg_per_core_raw],

322 shell=True,stderr=subprocess.STDOUT)

323 t_delay +=1

324 time.sleep(t_delay) #Give the program time to finish writing out the output to file

325
326 if os.stat(os.path.join(cur_sim_path,'out_'+page_name)).st_size <= 0:

327 raise AssertionError("Failed. Blank output file: ")

328 #sort energy and other metrics here

329 print("\nPost processing...\n")

330
331 #Average out the raw data iterations

332 for architecture in architectures:

333 for cur_num_kw in range(number_of_keywords):

334 cur_sim_path = os.path.join(main_sim_path,architecture,str(cur_num_kw+1)+'keywords')

335 for pg_loc in page_locations:

336 for kw_length in keyword_lengths:

337 page_name = 'loc_'+pg_loc+'_num_keywrd_'+str(cur_num_kw+1)+'_keywrd_len_'+str(kw_length)+'.txt'

338 with open(os.path.join(cur_sim_path,'raw_'+page_name),'w') as f:

339 performance_params = [0,0,0,0,0]

340 for iteration in range(num_iterations):

341 with open(os.path.join(cur_sim_path,'raw_iter_'+str(iteration+1)+

342 '_'+'loc_'+pg_loc+'_num_keywrd_'+str(cur_num_kw+1)+

343 '_keywrd_len_'+str(kw_length)+'.txt')) as f_raw:

344 temp = list(f_raw.readlines()) #Needed values in list must be converted to floats!!!

345 performance_params[0] += float(temp[0])

346 performance_params[1] += float(temp[1])

347 performance_params[2] += float(temp[2])

348 performance_params[3] += float(temp[3])

349 performance_params[4] += float(temp[4])

350 # Energy (uJ) = performance_params[0]

351 # Throughput (MWords/sec) = performance_params[1]

352 # Runtime (ms) = performance_params[2]

353 # Core Area = performance_params[3]*Unit_Area

354 # Mem Area = performance_params[4]*2*Unit_Area

355 f.write(str(performance_params[0]/num_iterations)+'\n')

356 f.write(str(performance_params[1]/num_iterations)+'\n')

357 f.write(str(performance_params[2]/num_iterations)+'\n')

358 f.write(str(performance_params[3]/num_iterations)+'\n')

359 f.write(str(performance_params[4]/num_iterations))

360
361
362
363 #Put together the generated raw files and stats to be processed by excel

364 gen_excel_dat.combine_data_and_stats(main_sim_path,

365 main_sim_path,number_of_keywords,

366 keyword_lengths,

367 keyword_list,

368 page_locations,

369 architectures)

71

Bibliography

[1] E. Bendersky, “Finite state machines and regular expressions,” June 2013. [On-
line]. Available: https://www.gamedev.net/resources/_/technical/general-programming/
finite-state-machines-and-regular-expressions-r3176

[2] HackingOff, “Regular expression to nfa (non-deterministic finite automata) generator,” 2012.
[Online]. Available: http://hackingoff.com/compilers/regular-expression-to-nfa-dfa

[3] K. Thompson, “Programming techniques: Regular expression search algorithm,”
Commun. ACM, vol. 11, no. 6, pp. 419–422, Jun. 1968. [Online]. Available:
http://doi.acm.org/10.1145/363347.363387

[4] R. McNaughton and H. Yamada, “Regular expressions and state graphs for automata,” IRE
Transactions on Electronic Computers, vol. EC-9, no. 1, pp. 39–47, March 1960.

[5] E. Adeagbo et al., C2S2 Annual Review, Carnegie Melon University, Pittsburgh, PA. Team
members: Regular Expression Processing: E. Adeagbo, J. Pimentel, M. Braly, Statistics and
Histogram: J. Pimentel, Database Sorting and Table of Performances: A. Stillmaker, Regular
Expression Processing, Database Sorting and Statistics Figure: B. Baas, Std., October 2011, 5.
[Online]. Available: http://www.ece.cmu.edu/research/sheets/c2s2.pdf

[6] A. Stillmaker, Z. Xiao, and B. Baas, “Toward more accurate scaling estimates of CMOS circuits
from 180 nm to 22 nm,” VLSI Computation Lab, ECE Department, University of California,
Davis, Tech. Rep. ECE-VCL-2011-4, Dec. 2011.

[7] J. Yang, W. Wang, and P. Yu, “BASS: approximate search on large string databases,” in
Scientific and Statistical Database Manage., 2004. Proc. 16th Int. Conf. on, June 2004, pp.
181–190.

[8] L. Tan and T. Sherwood, “A high throughput string matching architecture for intrusion
detection and prevention,” in Comput. Architecture, 2005. ISCA ’05. Proc. 32nd Int. Symp.
on, June 2005, pp. 112–122.

[9] N.-F. Huang et al., “A deterministic cost-effective string matching algorithm for network
intrusion detection system,” in Commun., 2007. ICC ’07. IEEE Int. Conf. on, June 2007, pp.
1292–1297.

[10] S. Rus, R. Ashok, and D. Li, “Automated locality optimization based on the reuse distance of
string operations,” in Code Generation and Optimization (CGO), 2011 9th Annu. IEEE/ACM
Int. Symp. on, April 2011, pp. 181–190.

[11] A. R. Bairoch A, “The SWISS-PROT protein sequence data bank,” in Nucleic Acids Research.
Nucleic Acids Research, 2000. [Online]. Available: http://www.ebi.ac.uk/swissprot/

72

https://www.gamedev.net/resources/_/technical/general-programming/finite-state-machines-and-regular-expressions-r3176
https://www.gamedev.net/resources/_/technical/general-programming/finite-state-machines-and-regular-expressions-r3176
http://hackingoff.com/compilers/regular-expression-to-nfa-dfa
http://doi.acm.org/10.1145/363347.363387
http://www.ece.cmu.edu/research/sheets/c2s2.pdf
http://www.ebi.ac.uk/swissprot/

[12] S. F. Altschul et al., “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215,
no. 3, pp. 403 – 410, 1990. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0022283605803602

[13] S. Burkhardt et al., “Q-gram based database searching using a suffix array (quasar),” in
Proceedings of the Third Annual International Conference on Computational Molecular Biology,
ser. RECOMB ’99. New York, NY, USA: ACM, 1999, pp. 77–83. [Online]. Available:
http://doi.acm.org/10.1145/299432.299460

[14] T. Kahveci and A. K. Singh, “An efficient index structure for string databases,” in VLDB,
vol. 1, 2001, pp. 351–360.

[15] A. Andersson and S. Nilsson, “Efficient implementation of suffix trees,” Software: Practice and
Experience, vol. 25, no. 2, pp. 129–141, 1995.

[16] D. Gusfield, Algorithms on strings, trees and sequences: computer science and computational
biology. Cambridge university press, 1997.

[17] A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to bibliographic
search,” Commun. ACM, vol. 18, no. 6, pp. 333–340, Jun. 1975. [Online]. Available:
http://doi.acm.org/10.1145/360825.360855

[18] I. Sourdis and D. Pnevmatikatos, “Pre-decoded cams for efficient and high-speed nids pattern
matching,” in 12th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines, April 2004, pp. 258–267.

[19] B. L. Hutchings, R. Franklin, and D. Carver, “Assisting network intrusion detection with
reconfigurable hardware,” in Proceedings. 10th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, 2002, pp. 111–120.

[20] Y. H. Cho, S. Navab, and W. H. Mangione-Smith, Specialized Hardware for Deep Network
Packet Filtering, M. Glesner, P. Zipf, and M. Renovell, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2002. [Online]. Available: http://dx.doi.org/10.1007/3-540-46117-5_48

[21] C. R. Clark and D. E. Schimmel, Efficient Reconfigurable Logic Circuits for Matching Complex
Network Intrusion Detection Patterns. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003,
pp. 956–959. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-45234-8_94

[22] M. Pedram, “Energy-efficient datacenters,” Comput-Aided Des. Integr. Circuits Syst., IEEE
Trans., vol. 31, no. 10, pp. 1465–1484, Oct 2012.

[23] F. J. Rammig et al., “Designing self-adaptive embedded real-time software - towards system
engineering of self-adaptation,” Brazilian Symposium on Computing System Engineering,
SBESC, vol. 2015-April, pp. 37–42, 2015.

[24] P. Oreizy et al., “An architecture-based approach to self-adaptive software,” IEEE Intelligent
Systems, vol. 14, no. 3, pp. 54–62, May/June 1999.

[25] I. Sourdis and D. Pnevmatikatos, “Pre-decoded cams for efficient and high-speed NIDS pattern
matching,” in Field-Programmable Custom Comput. Mach., 2004. FCCM 2004. 12th Annu.
IEEE Symp. on, April 2004, pp. 258–267.

73

http://www.sciencedirect.com/science/article/pii/S0022283605803602
http://www.sciencedirect.com/science/article/pii/S0022283605803602
http://doi.acm.org/10.1145/299432.299460
http://doi.acm.org/10.1145/360825.360855
http://dx.doi.org/10.1007/3-540-46117-5_48
http://dx.doi.org/10.1007/978-3-540-45234-8_94

[26] J. Divyasree, H. Rajashekar, and K. Varghese, “Dynamically reconfigurable regular expression
matching architecture,” International Conference on Application-Specific Systems Architectures
and Processors, vol. 2-4, pp. 120–125, July 2008.

[27] W. Ong et al., “A parallel bloom filter string searching algorithm on a many-core processor,”
in Open Syst. (ICOS), 2013 IEEE Conf. on, Dec 2013, pp. 1–6.

[28] D. Truong et al., “A 167-processor computational platform in 65 nm CMOS,” Solid-State
Circuits, IEEE J. of, vol. 44, no. 4, pp. 1130–1144, April 2009.

[29] ——, “A 167-processor 65 nm computational platform with per-processor dynamic supply
voltage and dynamic clock frequency scaling,” in VLSI Circuits, 2008 IEEE Symp. on, June
2008, pp. 22–23.

[30] A. Stillmaker, L. Stillmaker, and B. Baas, “Fine-grained energy-efficient sorting on a many-core
processor array,” IEEE International Conference on Parallel and Distributed Systems, December
2012.

[31] Y. Brun et al., “Engineering self-adaptive systems through feedback loops,” Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 5525 LNCS, pp. 48–70, 2009.

[32] M. Becchi and P. Crowley, “An improved algorithm to accelerate regular expression evaluation,”
in Proceedings of the 3rd ACM/IEEE Symposium on Architecture for Networking and
Communications Systems, ser. ANCS ’07. New York, NY, USA: ACM, 2007, pp. 145–154.
[Online]. Available: http://doi.acm.org/10.1145/1323548.1323573

[33] I. Bonesana, M. Paolieri, and M. D. Santambrogio, “An adaptable fpga-based system for regular
expression matching,” Design, Automation and Test in Europe, pp. 10–14, March 2008.

[34] P. Ferragina and R. Grossi, “The string b-tree: A new data structure for string search in
external memory and its applications,” J. ACM, vol. 46, no. 2, pp. 236–280, Mar. 1999.

[35] Kevina, “Spell checker oriented word lists (scowl),” September 2014. [Online]. Available:
http://app.aspell.net/

[36] T. Peters, “Timsort description,” 2002, http://bit.ly/2kSv2g2.

[37] C. P. Nicolas Auger, Cyril Nicaud, “Merge strategies: from merge sort to timsort
<hal-01212839v2>,” Universit?aris-Est Marne-la-Vallée, HAL, Tech. Rep., 2015. [Online].
Available: https://hal-upec-upem.archives-ouvertes.fr/hal-01212839

[38] M. Davies, “The 400 million word corpus of historical american english (1810-2009),” Irén
Hegedus (ed.) English Historical Linguistics 2010,, 2010.

[39] ——, “Word frequency data (corpus of contemporary american english),” 2008. [Online].
Available: http://www.wordfrequency.info/free.asp?s=y

[40] G. Berry and R. Sethi, “From regular expressions to deterministic automata,”
Theoretical Computer Science, vol. 48, pp. 117 – 126, 1986. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0304397586900885

74

http://doi.acm.org/10.1145/1323548.1323573
http://app.aspell.net/
https://hal-upec-upem.archives-ouvertes.fr/hal-01212839
http://www.wordfrequency.info/free.asp?s=y
http://www.sciencedirect.com/science/article/pii/0304397586900885

[41] R. Sidhu and V. K. Prasanna, “Fast regular expression matching using fpgas,” in Field-
Programmable Custom Computing Machines, 2001. FCCM ’01. The 9th Annual IEEE Sympo-
sium on, March 2001, pp. 227–238.

[42] M. H. Foroozannejad, B. Bohnenstiehl, and S. Ghiasi, “Bamse: A balanced mapping space
exploration algorithm for gals-based manycore platforms,” Asia and South Pacific Design
Automation Conference (ASP-DAC), pp. 22–25, January 2013.

[43] B. Bohnenstiehl et al., “A 5.8 pj/op 115 billion ops/sec, to 1.78 trillion ops/sec 32nm
1000−processor array,” Symposium on VLSI Technology and Circuits, 2016.

[44] ——, “Kilocore: A 32 nm 1000-processor array,” in IEEE HotChips Symposium on High-
Performance Chips, 2016.

[45] ——, “Kilocore: A 32 nm 1000-processor computational array,” IEEE Journal of Solid-State
Circuits (JSSC), In press, 2017.

[46] E. Adeagbo and S. O’Driscoll, “Implantable radio transmitters for long range health mon-
itoring,” VLSI Computation Lab and SSCRL, ECE Department, University of California,
Davis, Tech. Rep. ECE-2010, Dec. 2010, http://vcl.ece.ucdavis.edu/pubs/2010.12.techreport.
implanttransmitter/.

[47] E. Adeagbo and S. Lewis, “A band-gap reference with internal digital signal processing,” VLSI
Computation Lab and SSCRL, ECE Department, University of California, Davis, Tech. Rep.
ECE-2011, Jul. 2011, http://vcl.ece.ucdavis.edu/pubs/2011.07.techreport.dualslopeadc/.

[48] E. Adeagbo and B. Baas, “Energy-efficient string search architectures on a fine-grained many-
core platform,” in Technology and Talent for the 21st Century (TECHCON 2015), 2015.

75

http://vcl.ece.ucdavis.edu/pubs/2010.12.techreport.implanttransmitter/
http://vcl.ece.ucdavis.edu/pubs/2010.12.techreport.implanttransmitter/
http://vcl.ece.ucdavis.edu/pubs/2011.07.techreport.dualslopeadc/

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Motivation
	Thesis Organization

	Background
	Related Work on String Search and Self-Adaptive Systems
	Related Work on Regular Expression Processing in Hardware

	String Search Architectures
	Serial Implementation
	Parallel Implementation
	All-In-One (AIO) Implementation
	Data Generation and Test Conditions
	Analysis
	Experimental Results
	Comparisons

	Self-Adaptive String Search
	Statistics Based Processing
	System Overview
	Statistics Gathering
	Separated Statistics Block
	Combined Statistics Block

	Core Reprogramming
	Main Filter

	Data Generation and Test conditions
	Analysis

	Regular Expression Processing
	Introduction
	Quantifiers
	Grouping and Boolean OR
	Regular Expression Types
	Non-deterministic Finite Automaton (NFA)
	Deterministic Finite Automaton (DFA)
	NFA vs DFA

	Implementation
	Results Summary

	Summary and Future Work
	Completed Projects
	Many-Core Digital Oscillator Design in 32 nm SOI
	Implantable Radio Transmitters for Long Range Health Monitoring
	A Band-Gap Reference with Internal Digital Signal Processing

	Future Work

	Glossary
	Input Data Generator (Python)
	Main Filter AsAP2 Simulator Code for 3 Keywords (C++/Assembly)
	String Search Top Level Script (Python)
	Bibliography

