
Energy-Efficient Computing with Fine-Grained
Many-Core Systems

By

BIN LIU
B.S. (Shanghai Jiao Tong University, Shanghai, China), 2007

M.S. (University of California, Davis), 2010

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Electrical and Computer Engineering

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Dr. Bevan M. Baas, Chair

Dr. Soheil Ghiasi

Dr. Rajeevan Amirtharajah

Committee in charge
2016

– i –

c© Copyright by Bin Liu 2016
All Rights Reserved

Abstract

For the past half century, Moore’s Law has been the fundamental driver of high-

performance computing. The continued CMOS technology scaling doubles the transistor

density of VLSI systems and had provided a predictable 40% performance improvement of

single-core processors for every 18 to 24 months. However, as Dennard Scaling ends, the

era of scaling frequency and performance without increasing power density is over. Since

2005, the semiconductor industry shifted to multi-core and many-core processors in order to

sustain the proportional scaling of performance along with transistor count increases. One

of the critical challenges for many-core system design is to reduce the power dissipation and

improve the energy efficiency of the chip. Researchers are eager to seek innovative low power

architectures and techniques to relieve the “dark silicon” problem and effectively convert

transistors to performance.

To demonstrate that many-core processors with network-on-chip interconnects is a

promising architecture for high-performance energy-efficient computing, 16 Advanced En-

cryption Standard (AES) engines are proposed on a fine-grained many-core system by ex-

ploring different granularities of data-level and task-level parallelism. The smallest design

utilizes only six cores for offline key expansion and eight cores for online key expansion, while

the largest requires 107 cores and 137 cores, respectively. In comparison with published AES

cipher implementations on general purpose processors, the designs have has 3.5–15.6 times

higher throughput per unit of chip area and 8.2–18.1 times higher energy efficiency. More-

over, the design shows 2.0 times higher throughput than the TI DSP C6201, and 3.3 times

higher throughput per unit of chip area and 2.9 times higher energy efficiency than the

GeForce 8800 GTX.

Next, a scalable joint local and global dynamic voltage and frequency scaling (D-

VFS) scheme is proposed to further improve the energy efficiency for many-core systems by

monitoring on-line workload variations. The local algorithms selects the voltage and frequen-

cy pair for each individual core based on its FIFO occupancy and stall information, while

– ii –

the global algorithm tunes the global voltage supplies based on the workload of all active

processors. To demonstrate the effectiveness of the proposed solution, a suite of benchmarks

are tested on a many-core globally asynchronous locally synchronous (GALS) platform. The

experiment results show that the proposed approach can achieve near-optimal power saving

under performance constraints. Different local algorithms are compared in terms of power

saving, voltage switching frequency and response delay to workload variation. The impact of

the number of voltage supplies and global voltage tuning resolution on the global algorithm

is also investigated.

To further improve the energy efficiency beyond traditional DVFS, core scaling is

proposed by introducing an extra dimension beyond supply voltage and clock frequency

scaling. This dissertation addresses the problem of minimizing the power dissipation of

many-core systems under performance constraints by choosing an appropriate number of

active cores and per-core voltage/frequency levels. A genetic algorithm based solution is

proposed to solve the problem. Experiments with real applications show that (1) dynamically

scaling the number of active cores can improve the energy efficiency by 5% to 42% compared

with per-core DVFS for different performance requirements; (2) core scaling favors systems

with more global voltage supplies and high-performance leaky process when the performance

requirement is loose, while it favors systems with fewer global voltage supplies and low-power

less-leaky process when the performance requirement is tight; (3) increasing the number of

global voltage supplies or leakage ratio can reduce the optimal core count by 22% and 50%,

respectively.

– iii –

To my wife Yun, my daughter Hannah, and my parents.

– iv –

Acknowledgments

When I started to write this page, my journey of pursuing the PhD degree is coming to

the end. I have never realized how difficult a task it would be to say ”thank you” for all the help,

support and encouragement given by so many people along the way. Simply and sincerely, I could

not have done it on my own, and there can be no overstating the contributions of a large number

of people who have made the experience rewarding, wonderful and unforgettable.

First and foremost, I would like to express my deepest gratitude to my advisor, Dr. Bevan

Baas, for his valuable guidance, consistent encouragement and remarkable patience throughout this

research. I am grateful that he always made himself available for discussion and advice despite his

busy schedule. His insights, wisdom, enthusiasm and dedication have not only been a great resource

of inspiration for this work, but also taught me how to become a good and respectful researcher,

and would substantially influence my future career.

I would like to thank Professor Soheil Ghiasi and Professor Rajeevan Amirtharajah for

serving on my dissertation committee and providing invaluable feedback on my research. I would

also like to thank Professor Hussain Al-Asaad and Professor Charles Martel for serving on my

qualification committee and giving insightful advice on my research proposal. I would like to thank

Professor Shu Lin, Professor Kent Wilken, Professor Venkatesh Akella, Professor Soheil Ghiasi,

Professor Rajeevan Amirtharajah and Professor Zhi Ding for their exceptional lectures that help

me build solid foundations for my research work. I would also like to thanks all of the staff of the

Electrical and Computer Engineering Department at UC Davis for all of their support.

Being a member of the VLSI Computation Laboratory is a privilege since I had the

opportunity to meet and work with a group of smart and fun people. I would like to thank my friend

Dean Truong for his endless help and enlightening discussions. I would like to thank the fellows

who worked on KiloCore tape out together: Jon Pimentel, Brent Bohnenstiehl, Aaron Stillmaker,

and Emmanuel Adeagbo. I will never forget the days and nights we put together to make the

miracle. I would also like to thank all the previous and current VCL members: Tinoosh Mohsenin,

Anh Tran, Zhibin Xiao, Stephen Le, Lucas Stillmaker, Houshmand Mehr, Nima Mostafavi, Trevin

Murakami, Jeremy Webb, Shifu Wu, Michael Braly, Timothy Andreas, and Satyabrata Sarangi. I

am grateful to have a chance to work with all of these colleagues at UC Davis.

– v –

I would like to express my special appreciation to my beloved wife Yun Duan. This

dissertation would not be possible without her endless love and support. She has been the one to

encourage me when I was stressed out, and the one to share my accomplishments and successes.

Thanks for being my best friend and my best companion. I would also like to thank my parents,

my relatives and my lovely daughter Hannah, for all of their love and support.

Finally, I gratefully acknowledge support from US National Science Foundation (NSF)

CCF Grants 1018972 and 0903549, NSF CAREER Award 0546907, SRC GRC Grants 1598, 1971

and 2321, CSR Grant 1659, C2S2 Grant 2047.002.014, UC Micro, Intel, Intellasys, UC Davis Sum-

mer Researcher Award and UC Davis Travel Grant. I also would like to thank ST Microelectronics

for donating the chip fabrication.

– vi –

Contents

Abstract ii

Acknowledgments v

List of Figures x

List of Tables xii

1 Introduction 1
1.1 From Single To Many . 1
1.2 Dissertation Contributions and Outline . 4

2 Background 8
2.1 Power and Energy Consumption in CMOS Circuits 8

2.1.1 Dynamic Power . 8
2.1.2 Short-Circuit Power . 9
2.1.3 Leakage Power . 9

2.2 Low Power Techniques . 11
2.3 Targeted Many-Core Architecture . 14

2.3.1 Fine-grained Many-core Architecture . 14
2.3.2 Asynchronous Array of Simple Processors . 15
2.3.3 Programming Methodology on AsAP . 17

3 Parallel AES Engines for Many-Core Processor Arrays 20
3.1 Introduction . 20
3.2 Advanced Encryption Standard . 22
3.3 AES Implementations on AsAP . 24

3.3.1 One-task One-processor . 25
3.3.2 Loop-unrolled Nine Times . 26
3.3.3 Loop-unrolled Three Times . 26
3.3.4 Parallel-MixColumns . 29
3.3.5 Parallel-SubBytes-MixColumns . 29
3.3.6 Full-parallelism . 32
3.3.7 Small . 32
3.3.8 No-merge-parallelism . 34
3.3.9 Designs with Longer Keys . 35

3.4 Area Efficiency Analysis . 35

– vii –

3.4.1 Area Optimization Methodology . 36
3.4.2 Area Efficiency Comparison . 36

3.5 Energy Efficiency Analysis . 41
3.5.1 Power Numbers from Chip Measurements . 41
3.5.2 Power Estimation Methodology . 43
3.5.3 Energy Efficiency Comparison . 45

3.6 Related Work and Comparison . 48
3.7 Conclusion . 51

4 Scalable Joint Local and Global Dynamic Voltage and Frequency Scaling for
Many-Core Systems 54
4.1 Introduction . 54

4.1.1 Related Work . 55
4.1.2 Chapter Organization and Contributions . 57

4.2 Preliminaries . 57
4.2.1 Power Model . 57

4.3 Frequency Scaling Versus Voltage Dithering . 59
4.4 Proposed DVFS Local Algorithm . 66

4.4.1 Performance Constrained Systems . 66
4.4.2 Dithering with FIFO Occupancy . 66
4.4.3 Dithering with FIFO Stall Information . 73

4.5 Proposed DVFS Global Algorithm . 76
4.6 Experimental Results . 79

4.6.1 Benchmarks . 80
4.6.2 Case Study: 9-core AES Engine . 83
4.6.3 Local Algorithm Comparison . 84
4.6.4 Global Algorithm Evaluation . 87

4.7 Conclusion . 91

5 Optimizing Power of Many-Core Systems by Exploiting Dynamic Voltage, Fre-
quency and Core Scaling 92
5.1 Introduction . 92
5.2 Problem Formulation . 95
5.3 Proposed Algorithm . 98
5.4 Methodology . 102

5.4.1 Power Model . 102
5.4.2 Benchmark – Eight AES Engines . 105

5.5 Experimental Results . 105
5.5.1 Per-Core DVFCS VS. Per-Core DVFS . 105
5.5.2 Different Number of Global Voltage Supplies 110
5.5.3 Different Leakage Ratio . 114

5.6 Conclusion . 118

6 Conclusion and Future Work 120
6.1 Conclusion . 120
6.2 Future Work . 121

Glossary 123

– viii –

Related Publications 126

Bibliography 128

– ix –

List of Figures

1.1 The maximum clock frequency trend of processors 2
1.2 The trend of the number of cores on single die . 3
1.3 Die photos of four many-core processor arrays . 5

2.1 Leakage power trends in total power consumption . 10
2.2 Illustration of energy saving with voltage and frequency scaling 13
2.3 Block diagram of AsAP2 . 16
2.4 Programming methodology on fine-grained many-core processors. 18

3.1 Block diagram of AES encryption. 23
3.2 Dataflow and AsAP mapping of the One-task One-processor AES engine 26
3.3 Dataflow and AsAP mapping of the Loop-unrolled Nine Times AES engine 27
3.4 Dataflow and AsAP mapping of the Loop-unrolled Three Times AES engine 28
3.5 Dataflow and AsAP mapping of the Parallel-MixColums AES engine 30
3.6 Dataflow and AsAP mapping of the Parallel-SubBytes-MixColumns AES engine . . 31
3.7 Dataflow and AsAP mapping of the Full-parallelism AES engine 33
3.8 AsAP mapping of the Small AES engine . 34
3.9 AsAP mapping of the No-merge-parallelism AES engine 34
3.10 Dataflow and AsAP mapping of the optimized Full-parallelism AES engine 37
3.11 Throughput versus the number of cores for offline AES engines 40
3.12 Maximum frequency and power dissipation of one AsAP2 core 42
3.13 Energy efficiency for AES engines . 46
3.14 Energy overhead for online AES engines . 47
3.15 Delay and power scaling model for different technology nodes 49
3.16 Area and energy efficiency for different software AES platforms 52

4.1 Workload variation on many-core systems . 55
4.2 Power model of the targeted many-core system . 58
4.3 Energy efficiency of different voltage and frequency scaling methods 60
4.4 Voltage noise during voltage switches on AsAP . 61
4.5 Comparison between frequency scaling and voltage dithering 62
4.6 Break even number of clock cycles for Edith < Efreq with different LR 63
4.7 Break even number of clock cycles for Edith < Efreq with different Vhigh 64
4.8 Upstream and downstream performance constraints 65
4.9 Example of FIFO partitions . 68
4.10 9-core AES engine dataflow diagram. 73
4.11 Example of workload distribution change . 78

– x –

4.12 Six basic dataflow patterns . 81
4.13 Power saving of individual cores in the 9-core AES engine. 84
4.14 Power saving of the proposed local algorithms for benchmarks in Table 4.1. 85
4.15 Comparison of local DVFS algorithms . 86
4.16 Power saving comparison between DVFS with and without global optimization . . . 88

5.1 Illustration of core scaling problem . 97
5.2 Chromosome block diagram and solution example of the proposed GA 98
5.3 Crossover and mutation in GA . 101
5.4 Frequency, dynamic power and normalized leakage factor 103
5.5 AsAP mapping of the 59-core AES engine . 104
5.6 Power saving of different voltage/frequency/core scaling methods 106
5.7 Dynamic and leakage power percentage for the 59-core AES engine 108
5.8 Dynamic and leakage power saving for DVFS and DVFCS versus throughput 109
5.9 Optimal core count selected by core scaling with different number of VDDs 112
5.10 Extra power saving brought by core scaling with different number of VDDs 113
5.11 Optimal core count selected by core scaling for different leakage ratios 115
5.12 Extra power saving brought by core scaling for different leakage ratios 116

– xi –

List of Tables

3.1 Execution delays of AES blocks on AsAP2 . 25
3.2 Throughput and the number of cores for different AES engines 39
3.3 Active, stall and leakage power for one AsAP core 42
3.4 Execution cycles and power for offline Full-parallelism AES engine 44
3.5 Comparison of AES engines on different software platforms 50
3.6 Summary of state-of-the-art ASIC and FPGA AES implementations 53

4.1 Number of cores and throughput of different benchmarks 82
4.2 Comparison of optimal frequency and DVFS-selected frequency 83
4.3 Summary of Local Algorithms Performance Evaluation 87
4.4 Power saving of DVFS with and without global optimization 90
4.5 Power saving from global optimization with different tuning resolutions 91

5.1 Comparison of Various Low Power Design Techniques 93
5.2 Number of cores and throughput of different AES engines 104
5.3 Power saving from DVFS and DVFCS with different number of VDDs 111
5.4 Power saving from DVFS and DVFCS for different leakage ratios 117

– xii –

Chapter 1

Introduction

1.1 From Single To Many

For the past half century, Moore’s Law [1] has been the fundamental driver for semicon-

ductor industry, as it predicted that the continued CMOS technology improvement doubles the

available number of transistors on the same die area for every 18 to 24 months. Historically, Den-

nard Scaling was the primary force that supported Moore’s Law. According to Dennard Scaling [2],

if the lithographic dimensions and supply voltages of CMOS are scaled simultaneously by a factor

of κ =
√

2, the power density keeps constant even though the density of transistors is doubled and

the switch speed of transistors is 40% faster. The microprocessor architects exploited the smaller,

faster and more power efficient transistors provided by CMOS technology scaling, and transferred

the extra transistors into new techniques, such as pipelining, branch prediction, out-of-order execu-

tion, and large caches, to further improve the performance of single-core processors. By combining

the speed up from devices and the advanced architecture innovations, the single-core processor

performance sustained a 52% annual improvement rate between 1986 to 2002 [3].

However, since early 2000s, Dennard Scaling started to fail and the supply voltage stopped

scaling down along with the transistor dimensions. There are three major reasons behind that.

First of all, as the CMOS technology scaling, the leakage power becomes a substantial portion of

the power consumption. The leakage current increases exponentially when the threshold voltage

is decreased. To keep the subthreshold leakage power under control, the threshold voltage could

not be lowered further [4]. Secondly, because of the growth in gate oxide tunneling current, gate

1

M
a

x
im

u
m

F
re

q
u

e
n

c
y

(M
H

z
)

1985 1995 2005 2015
10

100

1000

10000

Figure 1.1: The maximum clock frequency trend of processors [8]. Major processors reported by
industry manufacturers.

oxide scaling was also slowed down due to leakage power constraints [5]. Finally, as transistors

approached atomic dimensions, the process variation problem became more prominent that also

limited the supply voltage scaling [6]. Overall, the supply voltage has been stayed at around 1 V

since 90 nm [7].

The failure of Dennard Scaling leads to per-transistor switching power not scaling down at

the pace of Moore’s Law, and causing the power density to increase with successive generations. The

surface temperature of high performance processors were expected to reach as high as a nuclear

reactor by 2005, a rocket nozzle by 2010 and the surface of the sun by 2015, if the frequency

had kept scaling as the existing trajectory [9]. This is recognized as “Power Wall”. Therefore,

the maximum frequency of processors stopped increasing since around 2005 as shown in Fig. 1.1.

Additionally, the growing disparity of speed between CPU and memory (“Memory Wall”), and

the lack of instruction level parallelism (ILP) due to the essential complexity in modern programs

(“ILP Wall”) diminish the performance improvement from building more aggressive pipelining and

complex superscalar single-core processors. Consequently, the computing industry shifted to the

era of multi-core processors in order to sustain the performance improvement at a historical rate

2

N
u
m
b
e
r
o
f
C
o
r
e
s

1985 1995 2005 2015
1

10

100

1000

AsAP

AsAP2

KiloCore

Figure 1.2: The trend of the number of cores on single die [18]. Major processors reported by both
industry manufacturers and university research labs.

along with transistor count increase by exploring thread-level, task-level and data-level parallelism

in addition to ILP. Since 2005, all major processor manufactures, such as Intel, AMD, Sun and

IBM, started to deliver their dual-core processors [10, 11, 12, 13]. Later, the number of cores kept

scaling as the CMOS technology. As shown in Fig. 1.2, quad-core, hexa-core and even octo-core

processors were released to the market [14, 15, 16, 17].

However, after only half decades of the first introduction of multi-core processors, the

era of simply increasing the number of cores came to its end. Due to the lack of high degree of

parallelism and severe energy inefficiency in the transistor level, adding more cores would not be

able to improve the performance at the historic rate [19]. It is predicted that without introducing

novel low power architectures or techniques, more than 50% of the chip has to be turned off due

to power concerns when CMOS technology shrinks to 8 nm [20]. The lack of performance benefits

and the lack of ability to utilize all the transistors provided by new process technologies bring a

gap between the projected performance of multi-core processors and historical anticipation that is

as large as 24× [21]. Researchers and computing industry are eager to seek innovative low power

architectures and techniques to relieve the “dark silicon” problem and effectively convert transistors

3

to performance.

Recently, instead of integrating more complex cores on the same die, both industry and

academia are actively exploring the design space of many-core architectures. Fine-grained multiple

instruction multiple data (MIMD) many-core processor array with network-on-chip interconnects

has been demonstrated as promising architectures for high-performance energy-efficient comput-

ing. Examples include the Tilera 64-core TILE64 [22] and 72-core TILE-Gx72 [23], Intel 80-core

TeraFLOPs processor [24] and 48-core IA-32 processor [25], Kalray 256-core many-core processor

array [26], UC Davis 36-core AsAP [27], 167-core AsAP2 [28] and 1000-core KiloCore [29]. Fig. 1.3

shows the die photos of four of the above many-core processor arrays. In the fine-grained many-core

processor array, each core is smaller, simpler and delivers lower performance than the traditional

large complex cores. However, the total computation throughput is much higher by inherently

exploring parallelism from application-level, task-level, and data-level. Additionally, each core can

be voltage and frequency scaled individually that results in fine grain power management to im-

prove the energy efficiency. Fine-grained many-core processor array has shown its advantage in

terms of energy efficiency compared with traditional processors in various of applications, such as

wireless baseband [30, 31, 32], video processing [33, 34, 35, 36], biomedical signal processing [37],

encryption [38, 39, 40], sorting [41], and error control coding [42].

1.2 Dissertation Contributions and Outline

As the number of cores on a single die keep increasing, several challenges are required

to be addressed such as homogeneous and heterogeneous design, power and thermal management,

network-on-chip interconnection, memory architecture, programming models, application mapping,

and task scheduling. This dissertation focuses on designing and implementing new low power

techniques to improve the energy efficiency of fine-grained many-core processors under performance

constraints. The major contributions are listed as follows.

• It presents 16 Advanced Encryption Standard (AES) engines on a fine-grained many-core

processor array by exploring different granularities of data-level and task-level parallelism.

The design space and the trade-off between performance and the number of cores are examined

comprehensively. The smallest design utilizes only 6 cores for offline key expansion and 8 cores

4

(a) (b)

(c) (d)

Figure 1.3: Some die photos of existing many-core processor arrays. (a) Intel 48-core; (b) Intel
80-core; (c) AsAP; (d) AsAP2.

5

for online key expansion, while the largest requires 107 cores and 137 cores, respectively. In

comparison with published AES cipher implementations on general purpose processors, the

designs have 3.5–15.6 times higher throughput per unit of chip area and 8.2–18.1 times higher

energy efficiency. Moreover, the design shows 2.0 times higher throughput than the TI DSP

C6201, and 3.3 times higher throughput per unit of chip area and 2.9 times higher energy

efficiency than the GeForce 8800 GTX.

• It proposes an online scalable hardware-based joint local and global dynamic voltage and

frequency scaling (DVFS) solution driven by workload variations for many-core processors.

The local algorithms is used to select the voltage and frequency pair for each individual

core based on its FIFO occupancy and stall information, while the global algorithm tunes

the global voltage supplies based on the workload of all active cores. To demonstrate the

effectiveness of the proposed solution, a suite of benchmarks are tested on a many-core globally

asynchronous locally synchronous (GALS) platform. The experiment results show that the

proposed approach can achieve near-optimal power saving under performance constraints.

Different algorithms are compared in terms of power saving, voltage switching frequency and

the response delay to workload variation. The impact of the number of voltage supplies and

the tuning resolution of voltage regulators on the global optimization are also investigated.

• It addresses the problem of minimizing the power dissipation of many-core systems under

performance constraints by choosing an appropriate number of active cores and per-core

voltage/frequency levels (DVFCS). A genetic algorithm based solution is proposed to solve the

problem. Experiments with real applications show that (1) dynamically scaling the number of

active cores can improve the energy efficiency by 5% to 42% compared with per-core DVFS for

different performance requirements; (2) core scaling favors systems with more global voltage

supplies and high-performance leaky process when the performance requirement is loose, while

it favors systems with fewer global voltage supplies and low-power less-leaky process when

the performance requirement is tight; (3) increasing the number of global voltage supplies or

leakage ratio can reduce the optimal core count by 22% and 50%, respectively.

The dissertation is organized as follows. Chapter 2 covers the background information, in-

cluding power and energy dissipation in CMOS circuits, low power techniques and the advantages

6

of fine-grained many-core processor array. It also introduces the targeted many-core processors

and describes the programming and mapping methodology. Chapter 3 presents the 16 AES ci-

pher implementations in detail and provides thorough performance and energy efficiency analysis

and comparison. Chapter 4 describes the proposed joint local and global DVFS algorithms and

demonstrates their effectiveness with real-world application benchmarks. Chapter 5 presents the

motivation and the algorithm for DVFCS. It also investigates the extra power saving brought by the

core scaling compared with traditional DVFS for systems with different performance requirements,

leakage power ratio and the number of global voltage supplies. Finally, Chapter 6 concludes the

dissertation and discusses possible research directions in the future.

7

Chapter 2

Background

2.1 Power and Energy Consumption in CMOS Circuits

The power dissipation in CMOS circuits can be divided into three main components:

dynamic power, short-circuit power and leakage power [43].

2.1.1 Dynamic Power

The dynamic power dissipation (Pdyn) is the power utilized to charge and discharge the

load capacitance at the output of individual CMOS logic cells during state transitions. In a CMOS

design, when the output state toggles from “0” to “1”, the load capacitance CL gets charged through

the PMOS transistors from 0 to VDD by consuming a certain amount of energy from the power

supply. Part of the energy is dissipated as heat during the charging process, while the remainder is

stored on the load capacitance. When the output state changes from “1” to “0”, the stored energy

in CL is dissipated through NMOS devices. The total amount of energy dissipated for each charge

and discharge cycle can be represented as

EVDD
=

∫ ∞
0

iVDD
(t)VDDdt = CLVDD

∫ VDD

0
dvout = CLV

2
DD (2.1)

Considering the circuit switching frequency is f , and the probability of output state transition is

α, then the dynamic power consumption can be obtained as

Pdyn = αCLV
2
DDf = CeffV

2
DDf (2.2)

where α and CL can be combined as Ceff , which is the effective switching capacitance.

8

2.1.2 Short-Circuit Power

When the input voltage level transits from one state to another (high to low, or low to

high), the PMOS and NMOS networks are conducting simultaneously for a short period of time

(tsc) due to the finite slope of the input signal. As a result, a conducting path is formed between

VDD and ground for tsc and leads to a short-circuit energy dissipation per switching as

Esc = VDDIsctsc (2.3)

Similar to the dynamic power, the average short-circuit power consumption is also proportional to

the switching activity and can be obtained as

Psc = αVDDIsctscf = CscV
2
DDf (2.4)

where Csc is the effective capacitance for short-circuit, since αIsctsc has units of electronic charge.

The short-circuit power becomes less important and negligible in deep submicrometer CMOS, since

supply voltages scales much faster than threshold voltages [44].

2.1.3 Leakage Power

Historically, dynamic power is the dominant component in the total power dissipation.

However, as the CMOS technology scaling, leakage power becomes more and more significant.

As shown in Fig. 2.1, the ratio of leakage power to total power consumption has increased to

approximate 50% in 2006. The source of the leakage power includes reverse-bias pn junction

leakage, subthreshold leakage, gate tunneling current, gate current due to hot-carrier injection,

gate induced drain leakage, and channel punchthrough current [46]. Gate tunneling leakage and

subthreshold leakage are the two primary sources of static power [47].

The increase of gate tunneling leakage is caused by the continued oxide thickness scaling.

The high electric field coupled with low oxide thickness results in tunneling of electrons from gate

to substrate and also from substrate to gate through the oxide.

Subthreshold leakage is caused by the incomplete shut off of transistors. A partially

conducting state of transistors leads a drain-source current, even when the gate-source voltage is

smaller than the threshold voltage. The subthreshold current can be approximated by the following

9

Figure 2.1: Leakage power trends in total power consumption [45].

10

equation [46],

Isub = Io exp

(
VGS − VT
nVth

)(
1− exp

(
−VDS
Vth

))
(2.5)

where Io = µ0Cox
W
L V

2
the

1.8, VT is the threshold voltage, Vth = kT/q is the thermal voltage, Cox

is the gate oxide capacitance, and µ0 is the zero bias mobility. Clearly, subthreshold leakage is

a strong function of the threshold voltage VT , since it appears in exponential terms. Historically,

the threshold voltage was high enough that the subthreshold current is negligible. However, the

subthreshold current is increased exponentially as the threshold voltage scaling down along with

transistor lithographic dimensions. Therefore, even at VGS = 0 V , devices still leak. Considering

the billions of transistors on the chip, leakage power becomes a significant portion of the total power

consumption.

By combining all the components discussed above, the total power dissipation of CMOS

circuits can be obtained as

Ptotal = Pdyn + Psc + Pleak

= (αCL + Csc)V
2
DDf + IleakVDD (2.6)

= CeffV
2
DDf + IleakVDD

The short-circuit power dissipation can be merged into dynamic power consumption since both of

them happens during state transitions. As a result, the new Ceff is obtained by combining αCL

and Csc.

2.2 Low Power Techniques

The most commonly used technique to reduce dynamic power is clock gating [48]. It

selectively disables the clock inputs of registers that are not involved in carrying out useful com-

putation, and reduces unnecessary switching activities. Additionally, it also reduces the load of

the clock distribution network by disabling the inactive portions of the clock tree [49]. Overall, it

decreases dynamic power dissipation linearly by reducing the overall effective load capacitance.

Power gating is a widely used technique to reduce leakage power. It uses sleep transistors

to shut-off the idle function blocks from power supply. The sleep transistors are in series of pull-

up and/or pull down networks, and usually built by devices with relative high Vth [50]. The

11

concept of power gating is simple, but the real design requires careful considerations. Increasing

the size of sleep transistors more than necessary would add extra load capacitance, while sizing

them too small would result in a supply current limitation and performance degradation [51].

Additionally, designed power gates can induce significant ground bounce effect that can reduce the

noise margin and induce voltage fluctuations in the power distribution network [52]. The granularity

of power gating can go as fine as a few standard cells [53], to as coarse as memory blocks and even

processors [54].

Multi-Vth is another technique to reduce leakage power dissipation, by utilizing transistor

libraries with multiple threshold voltages on the same die. Transistors with higher Vth have higher

performance, but higher leakage power as well. On the other hand, transistors with lower Vth have

a larger delay but less leakage power dissipation. The logic gates on non-critical paths can be

assigned as high Vth during design time to reduce leakage power, as long as there is no performance

penalty [55, 56]. The multi-Vth can be also combined with multi-VDD [57, 58], and sizing [59] for

further power optimization.

Instead of selecting Vths statically, adaptive body bias is capable of tuning the Vths of gates

during runtime, by controlling the transistor body-source voltage. During standby, a reverse body

bias is applied to increase Vth, thus reducing leakage power dissipation [60, 61]. Alternatively, a

forward body bias increases speed while increasing leakage power. However, body bias effect is

less effective as the CMOS technology scaling due to short channel effects [62]. Besides reducing

leakage power, adaptive body bias can also used to alleviate the impact of process, voltage, and

temperature (PVT) variations [63, 64, 65].

Dynamic voltage and frequency scaling (DVFS) is an effective method to reduce dynamic

power consumption by selecting a trade-off point between clock speed and power based on per-

formance constraints and workload variations. The delay of logic gates is a function of its supply

voltage, threshold voltage and a technology dependent constant β [66]:

tpd ∝
VDD

(VDD − Vth)β
(2.7)

Since the clock frequency f is directly proportional to the gate delay, it can be obtained

f ∝ (VDD − Vth)β

VDD
≈ VDD (2.8)

12

Power

Time

Power

Time

Frequency = F

VDD = V

Energy = P x T

P

T 2T

P/8

Frequency = F/2

VDD = V/2

Energy = 1/4 x P x T

(a) (b)

Figure 2.2: Illustration of dynamic energy saving with DVFS. (a) An application finishes in time
T at frequency F and V . (b) Same application takes twice of the time at half frequency F/2 and
half voltage V/2, while only consumes 1/4 of the initial energy.

where β is set to a typical value of 2. As shown in Eq. 2.6, dynamic power is proportional to

V 2
DD × f . If clock frequency is scaling along with voltage supply as shown in Eq. 2.8, dynamic

power decreases proportional to the cubic power of VDD. Fig. 2.2 illustrates the power reduction

and energy saving by scaling the voltage and frequency of a single task. As frequency F and voltage

V , the application finishes in time T . If both the frequency and voltage are lowered to half of their

initial value, the power is reduced to 1/8 of the initial value. Since the application takes twice of

the time to finish, the total energy consumption is decreased to 1/4.

From the above example, the processor should run as slow as possible in order to achieve

the largest power saving without violating any performance constraints. The most challenge part is

to estimate the workload or slack execution time accurately. Various of methods have been discussed

in the literature, including filtering [67, 68], dynamic slack reclamation [69, 70], FIFO and queue

occupancy [71, 72, 73, 74], architectural runtime statistics [75, 76, 77]. In the above example, the

power model is extremely simplified by only considering dynamic power. In reality, scaling down

the voltage supply can also reduce the leakage power, but at a slower rate than the increase of

execution time especially when VDD is approaching to Vth. As a result, extensive voltage scaling

might increase the total energy consumption when the extra leakage energy dissipation overwhelms

the dynamic energy saving. Therefore, in some cases, it might be more energy efficient to finish

computation faster than necessary and use power gating to cut off the leakage for the rest of the

13

time. Near-threshold computation has been proved to be the most energy efficient point for voltage

scaling by balancing dynamic and leakage energy consumption, any further voltage scaling would

impair the energy efficiency. [78, 79, 80, 81].

Recently, a combination of DVFS and scaling the number of active cores (DVFCS) has

been proposed to further improve the energy efficiency and performance for many-core processors.

Compared to DVFS, DVFCS is capable of tuning an extra dimension, the number of cores, besides

voltage and frequency. The extra orthogonal dimension brings more flexibility for DVFCS to search

the optimal energy efficiency solution with either per-chip level [82, 83] or per-core level DVFS [84].

2.3 Targeted Many-Core Architecture

2.3.1 Fine-grained Many-core Architecture

Performance

According to Pollack’s Rule, the performance increase of an architecture is roughly pro-

portional to the square root of its increase in complexity [85]. The rule implies that if the logic

area is doubled in a processor, the performance of the core speeds up around 40%. On the other

hand, a fine-grained many-core architecture has the potential to provide near linear performance

improvement with complexity. For instance, instead of building a complicated core twice as large

as before, a processor containing two cores (each is identical to the other) could achieve a possible

2× performance improvement if the application can be fully parallelized. Therefore, if the target

application has enough inherent parallelism, an architecture with thousands of small cores would

offer a better performance than one with a few large cores within the same die area [86].

Although the performance gain from many-core systems is highly dependent on the paral-

lelism of the targeted applications according to Amdahl’s Law. Task-level parallelism is naturally

inherent and can be exploited easily in most of the DSP, embedded and even server application-

s, such as encryption [38], baseband communication [31], biomedical signal processing [37], video

encoding [35], sorting [41] and MapReduce [87]. Moreover, multiple applications or multiple in-

stances of one application can execute simultaneously on a single processor, which provides addi-

tional application-level parallelism so that the performance advantage of fine-grained many-core

14

architecture can be fully utilized.

Power

Besides performance improvement, fine-grained many-core architecture also provides sev-

eral potential advantages on power issues.

• Each individual core can be individually voltage and frequency scaled based on its workload.

• Idle cores can be shut down by power gating, thereby reducing leakage.

• The power dissipation can be reduced by parallelizing or pipelining a serial task on a group

of small cores [66].

• The workload can be balanced among different cores to avoid hot spots and produce a low die

temperature. Dies with lower temperature have lower threshold voltage and less leakage [6].

2.3.2 Asynchronous Array of Simple Processors

The targeted Asynchronous Array of Simple Processors (AsAP) architecture is an example

of a fine-grained many-core computation platform, supporting GALS on-chip network and per-core

DVFS [88].

Fig. 2.3 shows the block diagram of AsAP2. The computational platform is composed

of 164 small identical processors, three hardware accelerators and three 16 KB shared memories.

All processors and shared memories are clocked by local fully independent oscillators and are

connected by a reconfigurable 2D-mesh network that supports both nearby and long-distance com-

munication [89]. Since each tile operates on its own frequency, the communication across different

frequency domain is through dual-clock FIFOs [90]. Each tile on the platform can be statically con-

figured to take input data from two links, while sending its output to other processors via dynamic

configuration.

Each simple processor has a 6-stage pipeline, which issues one instruction per clock cycle.

Moreover, no application-specific instructions are implemented. Each processor has a 128× 32-bit

instruction memory and a 128 × 16-bit data memory. Each processor occupies 0.17 mm2 and has

a maximum clock frequency of 1.2 GHz. The 167-processor chip was fabricated in 65 nm CMOS

technology. [91].

15

Figure 2.3: Block diagram of the 167-processor computational platform.

16

A common technique of supplying multiple voltage domains for many-core systems is to

integrate on-chip DC-DC converter for each core [92]. However, the overhead of the approach is

undesirable if the number of cores increases beyond a few. As a result, it is assumed that there

are multiple parallel global power grids in the targeted architecture, and each core can operate

at one of several voltage/frequency levels which are controlled by off-chip voltage regulators. As

shown in Fig. 2.3, each core can run at one of the two global supply voltages. In this paper, it

is assumed that there are multiple discrete global voltage levels (could be more than two) for the

whole chip. The per-core DVFS module is capable of controlling the oscillator of each core and

selecting the optimal voltage from global voltage supplies based on its running frequency. On the

other hand, the global voltage supplies can be adjusted by tuning the off-chip voltage regulators.

Without losing generality, in the following of the dissertation, both the number of global voltage

supplies and the number of cores can be scaled as necessary.

2.3.3 Programming Methodology on AsAP

Fig. 2.4 illustrates the programming methodology on fine-grained many-core processors.

There are basically four steps.

The application is first implemented with a sequential programming language, like C,

C++ and Matlab. The program model is based on traditional general-purpose processors with

shared memory. The program is used to verify the correctness of the implementation.

Then the sequential program is partitioned into multiple parallel tasks. Each task runs

on its own piece of memory, and communicates through message passing interfaces (MPI) with

other tasks. Similar as the sequential program model, the input data flows through all the tasks to

generate outputs. However, all the tasks can run in parallel that would improve the performance

significantly. The partition in this step is still naive that neither performance requirements nor

hardware resource limitations (like instruction memory, the number of available cores and so on)

is taken into consideration.

After the partition, the tasks are assigned to different logical cores. Based on the per-

formance requirement, hardware resource limitation, and the data flow dependency between tasks,

one or more tasks could be assigned to a single core; on the other hand, an individual task could

be partitioned further and assigned to multiple cores if necessary [93].

17

Sequential

Program

Task 0

Task 1

Task 2

Memory

Proc.

Implementation

on AsAP

Parallel MPI

Program

Task 0 Task 1 Task 2

Mem 0 Mem 1 Mem 2

Program

Partition

Task 0 Task 1 Task 2

Mem 0 Mem 1 Mem 2

Task Assignment

Logical

Proc. 1

Logical

Proc. 2

Processor Mapping

P2

P1

Figure 2.4: Programming methodology on fine-grained many-core processors.

18

The final step is to map logical cores on the targeted many-core platform. For example,

three basic steps are required for the mapping on AsAP [94]:

1. Individual programs on each logical core are written in either C or assembly language.

2. The inputs and outputs of different logical cores are interconnected using a configuration file

or a GUI mapping tool [95].

3. The AsAP C compiler, assembler, and automatic mapping tool compile the programs, and

produce a configuration file to load the programs into the physical cores on the chip.

19

Chapter 3

Parallel AES Engines for Many-Core

Processor Arrays

3.1 Introduction

With the development of information technology, protecting sensitive information via

encryption is becoming more and more important to daily life. In 2001, the National Institute of

Standards and Technology (NIST) selected the Rijndael algorithm as the Advanced Encryption

Standard (AES) [96], which replaced the Data Encryption Standard (DES) [97]. Since then, AES

has been widely used in a variety of applications, such as secure communication systems, high-

performance database servers, digital video/audio recorders, RFID tags and smart cards.

To satisfy different applications’ requirements, numerous hardware implementations of

AES have been reported. Verbauwhede et al. described the first AES implementation on silicon,

which can provide a 2.29 Gbps throughput with a non-pipeline architecture [98]. Mukhopadhyay et

al. improved their AES system to 8 Gbps with pipelining [99], which is a common technique used to

enhance the performance of a system [100]. The first AES implementation with a throughput over

10 Gbps was proposed by applying T-box [101], which is a combination of the SubBytes, ShiftRows

and MixColumns phases in the AES algorithm [102]. Furthermore, the area-throughput trade-offs of

fully pipelined AES processors with throughputs between 30 to 70 Gbps have been presented [103].

Recently, Mathew et al. implemented a 53 Gbps AES accelerator in 45 nm CMOS technology [104].

Besides application specific integrated circuit (ASIC) designs, configurable hardware is another

20

choice for AES implementations. For example, there are several FPGA implementations that

achieve a throughput approximately 20 to 30 Gbps [105, 106, 107] by applying loop unrolling and

pipelining. Recently, Qu et al. demonstrated a 73.7 Gbps AES system on a Xilinx XC5VLX85 chip

running at 570 MHz [108].

Although hardware implementations generally offer higher throughput and better energy

efficiency than software designs, they are difficult to upgrade and adapt for future possible proto-

col changes. Moreover, ASIC designs are very time consuming and costly. For example, it takes

generally 18 to 24 months for a full custom ASIC product and costs approximately 50 million USD

to design [109]. One advantage of the Rijndael algorithm is that it is not only fit for hardware

implementations, but also suitable for efficient software designs. Matsui et al. proposed a bitslice

AES implementation on Intel Core 2, which achieves a 9.2 clock cycles per byte throughput for a

data chunk longer than 2048 bytes, equaling 1.85 Gbps when the core is running at its maximum

frequency of 2.13 GHz [110]. The bitslice technique was first proposed by Biham for fast DES

implementation on a software platform with a word size longer than 16 bits [111]. Bernstein et

al. investigated the opportunities of reducing instruction count and cycles by combining different

instructions together for various architectures [112]. Both bitslice and specific sets of instructions

from SSSE3 (Supplemental Streaming SIMD Extensions 3 [113]) are utilized to enhance the perfor-

mance of Intel Core i7 920 as high as 6.92 clock cycles per byte [114]. Besides pure general software

AES implementations, the Intel AES-NI utilizes specialized hardware to support six AES instruc-

tions, and achieves a throughput of 1.28 clock cycles per byte [115]. There is also a trend to use

GPUs (Graphic Processing Units) and DSP processors to implement the AES algorithm. Wollinger

et al. compared different encryption algorithms on a TMS320C6X processor and achieved a 14.25

clock cycles per byte [116]. Manavski presented an AES implementation with a peak throughput

of 8.28 Gbps on a GeForce 8800 GTX chip when the input data block is longer than 8 MB [117].

This chpater presents various software implementations of the AES algorithm with differ-

ent data and task parallelism granularity, and shows that AES implementations on a fine-grained

many-core system can achieve high performance, throughput per unit of chip area and energy ef-

ficiency compared to other software platforms. Both the online and offline key expansion process

for each implementation model are discussed. The reminder of this chapter is organized as follows.

Section 3.2 introduces the AES algorithm. In Section 3.3, various implementations are analyzed by

21

synchronous dataflow (SDF) models, mapped and measured on the targeted platform. Section 3.4

presents the area optimization methodology and compares the area efficiency among different im-

plementations. Section 3.5 compares the energy efficiency. Section 3.6 compares our work with

other software designs. Finally, Section 3.7 concludes the chapter.

3.2 Advanced Encryption Standard

AES is a symmetric encryption algorithm, and it takes a 128-bit data block as input and

performs several rounds of transformations to generate output ciphertext. Each 128-bit data block

is processed in a 4-by-4 array of bytes, called the state. The round key size can be 128, 192 or

256 bits. The number of rounds repeated in the AES, Nr, is defined by the length of the round

key, which is 10, 12 or 14 for key lengths of 128, 192 or 256 bits, respectively. Fig. 3.1 shows

the AES encryption steps with the key expansion process. For encryption, there are four basic

transformations applied as follows:

1. SubBytes: The SubBytes operation is a non-linear byte substitution. Each byte from the

input state is replaced by another byte according to the substitution box (called the S-box).

The S-box is computed based on a multiplicative inverse in the finite field GF(28) and a

bitwise affine transformation.

2. ShiftRows: In the ShiftRows transformation, the first row of the state array remains un-

changed. The bytes in the second, third and forth rows are cyclically shifted by one, two and

three bytes to the left, respectively.

3. MixColumns: During the MixColumns process, each column of the state array is considered

as a polynomial over GF(28). After multiplying modulo x4 + 1 with a fixed polynomial a(x),

given by

a(x) = {03}x3 + {01}x2 + {01}x+ {02} (3.1)

the result is the corresponding column of the output state.

4. AddRoundKey: A round key is added to the state array using a bitwise exclusive-or (XOR)

operation. Round keys are calculated in the key expansion process. If Round keys are calcu-

lated on the fly for each data block, it is called AES with online key expansion. On the other

22

AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

SubBytes

ShiftRows

AddRoundKey

Ciphertext

(Nr -1) loops

Plaintext

Key

KeySubWord

KeyRotWord

KeyXOR

KeySubWord

KeyRotWord

KeyXOR

MUXMUX

(Nr -1) loops

Figure 3.1: Block diagram of AES encryption.

23

hand, for most applications, the encryption keys do not change as frequently as data. As a

result, round keys can be calculated before the encryption process, and kept constant for a

period of time in local memory or registers. This is called AES with offline key expansion. In

this paper, both the online and offline key expansion AES algorithms are examined.

Similarly, there are three steps in each key expansion round.

1. KeySubWord: The KeySubWord operation takes a four-byte input word and produce an

output word by substituting each byte in the input to another byte according to the S-box.

2. KeyRotWord: The function KeyRotWord takes a word [a3, a2, a1, a0], performs a cyclic per-

mutation, and returns the word [a2, a1, a0, a3] as output.

3. KeyXOR: Every word w[i] is equal to the XOR of the previous word, w[i− 1], and the word

Nk positions earlier, w[i − Nk]. Nk equals 4, 6 or 8 for the key lengths of 128, 192 or 256

bits, respectively.

The decryption algorithm applies the inverse transformations in the same manner as the

encipherment. As a result, only the encryption algorithm is considered in this work for simplicity,

since the decipherment yields very similar results.

3.3 AES Implementations on AsAP

In this section, we present 16 different complete and fully-cunctional AES ciphers. The

throughput of each design is measured from simulations on a cycle-accurate Verilog RTL model of

the actual silicon chip.

Table 3.1 shows the execution delays of different processors on a single AsAP2 chip. For

example, MixColumns-16 executes the MixColumns process on a whole 16-byte data block, while

MixColumns-4 performs on a single 4-byte column. The execution time of MixColumns-4 is more

than one fourth of the delay of MixColumns-16 due to programming overhead on AsAP. Similarly,

SubBytes-16 requires 132 clock cycles to process a 16-byte data block, and it takes 10 clock cycles

for SubBytes-1 to substitute one byte. In our proposed implementations, the key expansion process

is divided into two processing units, KeySubWord and KeySchedule. Each KeySchedule processor

contains two steps of the key expansion process, KeyRotWord and KeyXOR.

24

Table 3.1: Execution delays of processors on AsAP2. Each data block is a 4-by-4 byte array.

Processors Execution Delays on AsAP2 IMEM Usage

SubBytes-1 10 cycles/byte 9%

SubBytes-4 40 cycles/four bytes 9%

SubBytes-16 132 cycles/block 10%

ShiftRows 38 cycles/block 18%

MixColumns-16 266 cycles/block 63%

MixColumns-4 70 cycles/column 31%

AddRoundKey 22 cycles/block 18%

KeySubWord 56 cycles/block 13%

KeySchedule 60 cycles/block 22%

In the following subsections, we present the eight AES implementations with online key

expansion in detail, since the offline implementations can be derived by removing the cores used

for key expansion from the online designs. For simplicity, we focus on the situation with a 128-bit

key and Nr = 10 in this paper, and the impact of different key lengths to our designs is discussed

in detail in Subsection 3.3.9.

3.3.1 One-task One-processor

The most straightforward implementation of an AES cipher is to apply each step in the

algorithm as a task in the dataflow diagram as shown in Fig. 3.2(a). Then, each task in the

dataflow diagram can be mapped on one processor on the targeted many-core platform. This

implementation is called one-task one-processor (OTOP). For simplicity, all of the execution delay

(shown in Table 3.1), input rates, and output rates in the following dataflow diagrams are omitted.

Since the key expansion is processing in parallel with the main algorithm, the throughput of the

OTOP implementation is determined by the nine (Nr − 1 = 9) loops in the algorithm. The OTOP

implementation requires 10 cores on AsAP as shown in Fig. 3.2(b). The throughput of the OTOP

implementation is 3582 clock cycles per data block, equaling 223.875 clock cycles per byte.

25

Nine Loops

OutputInput Sub-

16

Mix-

16
Add

Key

Key

Sub

Key

Sche

Sub-

16

Add

Key
Add

Key

Shift

Rows
Shift

Rows

(a)

(b)

Figure 3.2: One-task One-processor (OTOP) (a) dataflow diagram and (b) 10 cores AsAP mapping.

3.3.2 Loop-unrolled Nine Times

To enhance the AES cipher’s throughput, we apply loop unrolling to the OTOP model and

obtain the Loop-unrolled Nine Times dataflow diagram as shown in Fig. 3.3(a). The loop unrolling

breaks the dependency among different loops and allows the nine loops in the AES algorithm to

operate on multiple data blocks simultaneously. To improve the throughput as much as possible,

we unroll the loops in both the AES algorithm and the key expansion process by Nr − 1 and Nr

times, which equals nine and ten, respectively. After loop unrolling, the throughput of the AES

implementation is increased to 266 cycles per data block, equaling 16.625 cycles per byte. The

mapping of the Loop-unrolled Nine Times model is shown in Fig. 3.3(b), which requires 60 cores.

3.3.3 Loop-unrolled Three Times

To achieve a moderate throughput with fewer cores, we could unroll the main loops in the

AES algorithm by S times (S is divisible by Nr − 1), instead of Nr − 1 times. For this example,

the nine loops in the AES algorithm could be split into three blocks, and each block loops three

times. The dataflow diagram and mapping of the Loop-unrolled Three Times implementation are

26

Add

Key

Input Sub-

16

Mix-

16

Add

Key

Sub-

16

Key

Sub

Sub-

16

Key

Sub

Sub-

16
Shift

Rows

Add

Key

Output

Key

Sub

Key

Sche
Key

Sche

Shift

Rows

(a)

(b)

Figure 3.3: Loop-unrolled Nine Times (a) dataflow diagram and (b) 60 cores AsAP mapping.

27

Add

Key
Sub-

16

Mix-

16

Add

Key

Sub-

16

Key

Sub

Sub-

16

Key

Sub

Sub-

16

Add

Key

Output

Key

Sub

Key

Sche
Key

Sche

Three Loops

Shift

Rows
Shift

Rows

(a)

(b)

Figure 3.4: Loop-unrolled Three Times (a) dataflow diagram and (b) 24 cores AsAP mapping.

28

shown in Fig. 3.4(a) and Fig. 3.4(b), respectively. Compared to the OTOP model, the throughput

is improved to 1098 cycles per data block, which equals 68.625 cycles per byte; while the mapping

requires 24 cores, 36 fewer than the Loop-unrolled Nine Times implementation.

3.3.4 Parallel-MixColumns

Besides loop unrolling, another way to increase the throughput of the OTOP model is

to reduce the main loop’s latency in the AES algorithm. In a single loop, the execution delay of

MixColumns-16 results in 60% of the total latency. Each MixColumns-16 operates on a four-column

data block, and the operation on each column is independent. Therefore, each MixColumns-16

processor can be replaced by four MixColumns-4 s. Each MixColumns-4 actor computes only one

column rather than a whole data block. As a result, the throughput of the Parallel-MixColumns

implementation is increased to 2180 cycles per block, equaling 136.25 cycles per byte. The dataflow

diagram and mapping of the Parallel-MixColumns model are shown in Fig. 3.5(a) and Fig. 3.5(b).

Each core on our targeted computational platform can only support two statically con-

figured input ports. Three cores, each called MergeCore, are used to merge the four data streams

from MixColumns-4 s into one stream for AddRoundKey.

The dependence among bytes in one column diminishes the performance improvement for

further parallelization. For instance, if we parallelize one MixColumns-4 into two MixColumns-2 s,

the effective execution delay of the MixColumns process is reduced to 64 cycles from 70 cycles. This

saves only 6 cycles while it requires eight more processors (four extra MixColumns cores and four

extra MergeCores). Therefore, further parallelization on the MixColumns process would impair the

area and energy efficiency of the entire system without significant performance improvement.

3.3.5 Parallel-SubBytes-MixColumns

In the Parallel-MixColumns implementation, SubBytes-16 requires 132 cycles to encrypt

one data block, which contributes the largest execution delay in one loop. In order to increase

the throughput further, we parallelize one SubBytes-16 into four SubBytes-4 s, which is shown in

Fig. 3.6(a). In this implementation, each SubBytes-4 processes 4 bytes rather than 16 bytes in one

data block. The effective execution delay of the SubBytes process is decreased to 40 cycles per block,

only around one fourth as before. Therefore, the throughput of the Parallel-SubBytes-MixColumns

29

Add

Key

Sub-

16

Mix-

4

Mix-

4

Mix-

4

Mix-

4

Add

Key

Key

Sub

Sub-

16

Add

Key

Key

Sche

Shift
Rows

Shift
Rows

(a)

(b)

Figure 3.5: Parallel-MixColumns (a) dataflow diagram and (b) 16 cores AsAP mapping.

30

Add

Key

Mix-

4

Mix-

4

Mix-

4

Mix-

4

Add

Key

Key

Sub

Sub-

16

Add

Key

Sub-

4

Sub-

4

Sub-

4

Sub-

4

Key

Sche

Shift

Rows

Shift

Rows

(a)

(b)

Figure 3.6: Parallel-SubBytes-MixColumns (a) dataflow diagram and (b) 22 cores AsAP mapping.

31

model is increased to 1350 cycles per block, equaling 84.375 cycles per byte. The mapping graph

of the Parallel-SubBytes-MixColumns implementation on AsAP shown in Fig. 3.6(b) requires 22

cores.

Instead of parallelizing SubBytes-16 into four SubByte-4 s, we can replace it with 16

SubBytes-1 s. The effective execution delay of the SubBytes process is reduced to 10 cycles. As a

result, the latency of one-loop decreases to 120 cycles. Therefore, the throughput of the cipher is

increased to 67.5 cycles per byte. However, it requires seven additional cores dedicated to commu-

nication (four MergeCores and three DispatchCores), which impair the area and energy efficiency

of the implementation.

3.3.6 Full-parallelism

The Full-parallelism AES implementation combines the Parallel SubBytes MixColumns

model and loop unrolling. The dataflow diagram and the mapping of the Full-parallelism model

are shown in Fig. 3.7(a) and Fig. 3.7(b). As expected, the throughput of this design is the highest

among all of the models introduced in this paper since it employs most data and task parallelism.

The throughput of the Full-parallelism model is 70 cycles per block, equaling 4.375 cycles per byte.

It also requires 164 cores, which is the largest implementation of all.

In the Full-parallelism model, the MixColumns-4 processors are the throughput bottle-

necks which determine the performance of the cipher. Therefore, parallelizing the SubBytes process

with more than four processors would only increase the area and power overhead without any per-

formance improvement.

3.3.7 Small

The Small model implements an AES cipher on AsAP with the fewest processors. As

shown in Fig. 3.8, it requires at least eight cores to implement an AES cipher with online key

expansion process, since each core on AsAP has only a 128 × 32-bit instruction memory and a

128×16-bit data memory. The throughput of the Small model is 2678 cycles per data block, which

equals 167.375 cycles per byte.

32

Add

Key

Mix-

4

Mix-

4

Mix-

4

Mix-

4

Add

Key

Key

Sub

Add

Key

Input Output

Sub-

4

Sub-

4

Sub-

4

Sub-

4

Sub-

4

Sub-

4

Sub-

4

Sub-

4

Sub-

4

Sub-

4

Sub-

4

Sub-

4

Key

Sub

Key

Sub

Key

Sub

Shift

Rows

Shift

Rows

Key

Sche

(a)

Input

Sub-

4

Add

Key

Sub-

4

Sub-

4

Key

Sub

Merge

Core

Mix-

4

Shift

Rows

Mix-

4

Output

Sub-

4

Merge

Core

Mix-

4

Mix-

4

Key

Sche

Merge

Core

Merge

Core

Merge

Core
Sub-

4

Add

Key

Sub-

4

Sub-

4

Sub-

4

Sub-

4

Add

Key

Sub-

4

Sub-

4

Sub-

4

Merge

Core

Key

Sub

Merge

Core

Key

Sche

Shift

Rows

Add

Key

(b)

Figure 3.7: Full-parallelism (a) dataflow diagram and (b) 164 cores AsAP mapping.

33

Output

Add

Key

Input Sub-

16

Key

Sub

Key

Sche

Shift &

Mix-16

Add

Key

Shift

Rows

Add

Key

Figure 3.8: 8 cores AsAP mapping of the Small implementation.

Add

Key

Input

Key

Sche

Key

Sub

OutputMix-

8

Key

Sub

Add

Key
Sub-16
& Shift

Mix-

8

Add

Key
Key

Sub

Sub-16
& Shift

Sub-16
& Shift

Key

Sche

Figure 3.9: 59 cores AsAP mapping of the No-merge-parallelism implementation.

3.3.8 No-merge-parallelism

In contrast to the Small model, the No-merge-parallelism model exploits as much paral-

lelism as possible without introducing any cores dedicated to communication, including MergeCores

and DispatchCores. The mapping graph of the No-merge-parallelism implementation on AsAP is

shown in Fig. 3.9. To speed up the implementation, loop unrolling is applied in this model. Each

MixColumns-16 is divided into two MixColumns-8 s, which helps reduce the effective delay of the

MixColumns process. In order to eliminate additional communication processors and simplify the

routing, we combine the SubBytes and the ShiftRows stages in one core. This implementation

requires 59 cores, and has a throughput of 152 cycles per block, equaling 9.5 cycles per byte.

34

3.3.9 Designs with Longer Keys

As introduced in Section 3.2, besides the 128-bit key, the AES algorithm also supports

key lengths of 192 bits and 256 bits. Encrypting with longer keys results in two major areas of

additional computation. Firstly, the number of loops in the AES algorithm is increased. Secondly,

the key expansion cores require more clock cycles to process round keys.

For the designs without loop-unrolling (Small, OTOP, Parallel-MixColumns and Parallel-

SubBytes-MixColumns), no extra cores are required. These mappings operate with longer keys by

increasing the number of round loops, Nr, and reprogramming the key expansion related cores.

The throughputs of these designs are decreased due to the increased number of Nr rounds.

For the designs with loop-unrolling, additional cores are added depending on the number

of rounds required. For example, 12 and 24 more cores are required for the No-merge-parallelism

designs with a 192-bit and 256-bit key, respectively. The throughputs of the Loop-unrolled and the

No-merge-parallelism are kept the same as before, which is determined by the MixColumns opera-

tion. On the other hand, for the Full-parallelism implementation, the throughput is decreased since

the bottlenecks of the system are shifted from the MixColumn-4 processors to the key expansion

cores, due to the overhead of processing longer keys.

Due to the significant effort required, 192-bit and 256-bit designs are not implemented in

this work.

3.4 Area Efficiency Analysis

Area is a significant metric in system design. Less area means less silicon, therefore

less cost. From a many-core processor perspective, area is represented by the number of cores

required to implement applications. Smaller area translates into fewer used cores and leaves more

opportunities for dealing with other applications on the same platform simultaneously. To evaluate

the area efficiency between various AES implementations, a metric called ThroughputPerCore is

defined as the ratio between the throughput of each design to the number of cores used to implement

it,

ThroughputPerCore =
Throughput

Number of Cores
(3.2)

35

3.4.1 Area Optimization Methodology

Before comparing area efficiency among different AES implementations, area optimization

is applied to all of the models without impairing performance. In this subsection, the area opti-

mization methodology is illustrated through a detailed example of minimizing the number of cores

used by the Full-parallelism model. As shown in Fig. 3.7(b), there are 17 cores in one loop of the

Full-parallelism mapping, including five communication-dedicated cores, which are used for routing

only. And the final round operation requires 11 cores. Therefore, the number of cores utilized for

the un-optimized Full-parallelism model is (Nr − 1)×None−loop +Nlast−round = 9× 17 + 11 = 164.

Two optimization steps are applied to the Full-parallelism model. First, since the ShiftRows

process is only byte-rotation, alternating the sequence of the SubBytes and the ShiftRows stages

would not affect encryption results. However, this alternation reduces two MergeCores for each

loop. As a result, 18 cores are reduced from the Full-parallelism model. Secondly, the throughput

of the Full-parallelism model is 70 cycles per block, which is determined by the operation delay of

MixColumns-4 s. Any actors with less execution delay would not impair the performance of the sys-

tem. Therefore, a processor fusion of the ShiftRows in the Nth loop and the AddRoundKey in the

N−1th loop can reduce one more core for each loop, while keeping the same throughput since these

new combination processors take only 60 cycles to process one data block. The dataflow diagram

and mapping of the optimized Full-parallelism model are shown in Fig. 3.10(a) and Fig. 3.10(b),

respectively.

In summary, without losing any performance, the number of cores required by the online

Full-parallelism model is decreased by approximately 16% to 137.

3.4.2 Area Efficiency Comparison

Based on the optimization methods discussed above, the number of cores utilized for each

implementation is optimized as follows:

1. Small: Optimization methods are not applicable.

2. OTOP: The SubBytes and ShiftRows processors in the last round are fused into one processor,

saving one processor.

36

Mix-

4

Mix-

4

Mix-

4

Mix-

4

Key

Sub

Add

Key

Input Output

Sub-

4

Sub-

4

Sub-

4

Sub-

4

Sub-

4

Sub-

4

Sub-

4

Sub-

4

Sub-

4

Sub-

4

Sub-

4

Sub-

4

Key

Sub
Key

Sub

Add&

Shift
Add&

Shift

Key

Sche

Key

Sche

(a)

Input

Sub-

4

Add &

Shift

Sub-

4

Sub-

4

Key

Sub

Mix-

4

Output

Sub-

4

Mix-

4

Key

Sche

Merge

Core

Merge

Core

Merge

Core
Sub-

4

Add &

Shift

Sub-

4

Sub-

4

Sub-

4

Sub-

4

Add &

Shift

Sub-

4

Sub-

4

Sub-

4

Merge

Core

Key

Sub

Merge

Core

Key

Sche

Merge

Core

Add

Key

Mix-

4

Mix-

4

Figure 3.10: Optimized Full-parallelism (a) dataflow diagram and (b) 137 cores AsAP mapping.

37

3. Parallel-MixColumns: The SubBytes and ShiftRows processors in the last round are fused

into one processor, saving one processor.

4. Parallel-SubBytes-MixColumns: The sequence of the SubBytes and the ShiftRows stages is

alternated, which saves three processors. The SubBytes and ShiftRows processors in the last

round are fused into one processor, saving one more processor.

5. Loop-unrolled Three Times: The SubBytes and ShiftRows processors in the last round are

fused into one processor, saving one processor.

6. Loop-unrolled Nine Times: The SubBytes and ShiftRows processors in the same round are

fused into one processor, which saves 10 processors.

7. No-merge-parallelism: Optimization methods are not applicable.

8. Full-parallelism: The optimization has been discussed in detail in Section 3.4.1

Implementations with Online Key Expansion

The number of cores used for each optimized implementation is shown in Column 3 of

Table 3.2. As expected, the Small implementation uses the fewest cores due to its simplicity. On

the other hand, the Full-parallelism model occupies 137 cores, exploiting the greatest range of types

of data parallelism. As a result, the Full-parallelism implementation requires 17× as many cores

as the Small model, while it also gains a 40× throughput increase.

As defined in Equation 3.2, ThroughputPerCore is used to compare the area efficiency

between different models. The higher the throughput, the better the performance. The fewer

the cores used, the smaller the area. As a result, a larger ThroughputPerCore ratio shows a

higher area efficiency. In Table 3.2, Column 5 shows the ThroughputPerCore numbers of various

implementations normalized to the Parallel-MixColumns model with online key expansion. The

No-merge-parallelism implementation has the highest throughput per core rate, since it avoids any

dedicated communication cores and exploits as much parallelism as possible simultaneously. The

Full-parallelism and the Loop-unrolled models also offer high throughput per unit of chip area.

Although the Small model has a relatively low throughput, it still offers a good area efficiency due

to its extremely small area.

38

T
ab

le
3
.2

:
T

h
ro

u
gh

p
u

t
a
n
d

th
e

n
u

m
b

er
o
f

co
re

s
re

q
u

ir
ed

b
y

d
iff

er
en

t
im

p
le

m
en

ta
ti

on
s.

C
om

m
u

n
ic

at
io

n
co

re
s

ar
e

u
se

d
fo

r
ro

u
ti

n
g

on
ly

,
in

cl
u

d
in

g
M

er
ge

C
o
re

s
an

d
D

is
pa

tc
h
C

o
re

s.
A

ll
of

th
e

th
ro

u
gh

p
u

t
p

er
co

re
n
u

m
b

er
s

ar
e

n
or

m
al

iz
ed

to
th

e
P

ar
al

le
l-

M
ix

co
lu

m
n

s
m

o
d

el
w

it
h

on
li

n
e

ke
y

ex
p

an
si

on
.

O
n

li
n

e
K

ey
E

x
p

an
si

on
O

ffl
in

e
K

ey
E

x
p

an
si

on

Im
p

le
m

en
ta

ti
o
n

1/
T

h
ro

u
gh

p
u

t
T

ot
al

C
om

m
.

N
or

m
al

iz
ed

T
ot

al
C

om
m

.
N

or
m

al
iz

ed

(c
y
cl

es
/b

y
te

)
C

or
es

C
or

es
T

h
ro

u
gh

p
u

t/
C

or
e

C
or

es
C

or
es

T
h

ro
u

gh
p

u
t/

C
or

e

S
m

a
ll

1
67

.3
75

8
0

1.
53

6
0

2.
04

O
n

e-
ta

sk
o
n

e-
p

ro
ce

ss
or

2
23

.8
75

9
0

1.
01

7
0

1.
30

P
a
ra

ll
el

-M
ix

co
lu

m
n

s
1
36

.2
50

15
3

1
12

2
1.

25

P
a
ra

ll
el

-S
u

b
B

y
te

s-
M

ix
co

lu
m

n
s

84
.3

75
18

3
1.

35
15

2
1.

61

L
o
op

-u
n

ro
ll

ed
T

h
re

e
T

im
es

68
.6

25
23

0
1.

29
15

0
1.

99

L
o
op

-u
n

ro
ll

ed
N

in
e

T
im

es
16

.6
25

50
0

2.
46

30
0

4.
10

N
o-

m
er

g
e-

p
ar

al
le

li
sm

9.
50

0
59

0
3
.6

5
39

0
5
.5

2

F
u

ll
-p

a
ra

ll
el

is
m

4
.3

7
5

1
3
7

3
0

3.
41

1
0
7

2
0

4.
37

39

5 10 50 100 500
10

1

10
2

10
3

10
4

Number of Cores

T
hr

ou
gh

pu
t (

M
bp

s)

Small
OTOP
Para−Mix
Para−Sub−Mix
Loop−unrolled Three
Loop−unrolled Nine
No−merge
Full−para

1X

2X

4X

Figure 3.11: Throughput versus the number of cores for the AES implementations with offline key
expansion. All processors are running at 1.2 GHz. 1×, 2× and 4× represent the throughput when
each implementation is duplicated once, twice and four times, respectively.

40

Implementations with Offline Key Expansion

Besides the online key expansion AES algorithm, the detailed results of AES with offline

key expansion are also shown in Columns 6, 7 and 8 of Table 3.2. The processors used for key

expansion process can be eliminated for the AES implementations with offline key expansion, which

results in 29% improvement in average throughput per area compared to the implementations with

online key expansion.

The throughput versus the number of cores of the eight offline implementations is shown

in Fig. 3.11. The throughput is obtained when all processors are running at 1.2 GHz. Besides the

basic implementations discussed above, we duplicate each implementation two and four times to

scale the throughput and area. On the targeted platform, for any scaled implementation with a

4× duplication, two merge-cores are required to gather the outputs for the subsequent processor

by assuming each processor could take only two inputs.

3.5 Energy Efficiency Analysis

In this section, the power consumption and energy efficiency of the previously discussed

eight implementations are investigated based on chip measurement results.

3.5.1 Power Numbers from Chip Measurements

Each core on AsAP can operate up to 1.2 GHz at 1.3 V [91]. The maximum frequency and

power consumption of cores on AsAP have a near-linear and quadratic dependence on the supply

voltage, as shown in Fig. 3.12. The average power dissipation of one core and communication link

at 1.3 V and 1.2 GHz is shown in Table 3.3. This supply voltage and clock frequency are used in

the power estimation and optimization case study in the next subsection. The table also shows

during stalls (i.e. non-operation while the clock is active), the processors still consume a significant

portion, approximately 50%, of its active power. The leakage power is decreased to a negligible

number when the clock is halted.

41

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
0

200

400

600

800

1000

1200

Supply Voltage (V)

M
ax

 F
re

qu
en

cy
 (

M
H

z)

P
ow

er
 (

m
W

)

0

10

20

30

40

50

60

Figure 3.12: Maximum operation frequency and 100% active power dissipation of one core versus
supply voltage.

Table 3.3: Average power dissipation measured at 1.3 V and 1.2 GHz [91]

Operation of
100% Active Stall Leakage

(mW) (mW) (mW)

Processor 59.5 31.0 0.13

Nearest-neighbor comm. 5.9 NA ∼0

Long-distance comm. one tile 12.1 NA ∼0

42

3.5.2 Power Estimation Methodology

On our targeted platform, each processor has four states: active, NOP with active clock,

stall with active clock, and standby with halted clock. The active mode means that the processor

is busy with instruction execution, while the NOP with active clock represents the NOP operation

in programs due to data and control hazards. Either an empty input or a full output FIFO is

capable of halting each processor’s clock and causing the processor to sleep in the standby with

halted clock mode. Finally, the stall with active clock is the transition state between active and

stall with halted clock. As a result, the overall power dissipated by all of the processors utilized in

any implementation can be derived by:

PTotal =
∑

PExe.i +
∑

PStall.i

+
∑

PLeak.i +
∑

PComm.i

(3.3)

where PExe.i, PStall.i, PLeak.i and PComm.i are the power consumed by computation execution,

stalling (including NOP) with active clock, standby with halted clock (leakage only) and commu-

nication activities of the ith processor, respectively, and are estimated as follows:

PExe.i = αi·PExeAvg

PStall.i = βi·PStallAvg

PLeak.i = (1− αi − βi)·PLeakAvg

(3.4)

where PExeAvg, PStallAvg and PLeakAvg are the average power of processors while performing 100%

execution, stalling (including NOP with active clock and stall with active clock) or halting (leakage

only); αi, βi and (1 − αi − βi) are the percentages of execution, stall and standby activities of

processor i, respectively. The communication power can be calculated as follows,

PComm.i = γi·PCommNear + δi·PCommLong (3.5)

where γi and δi are the percentages of communication between neighboring and long-distance

processors, respectively. PCommNear is the 100% active power consumed by a link when it is used

for communication between neighboring processors, while PCommLong is for long-distance [118].

The optimized Full-parallelism model with offline key expansion is used as an example

to illustrate the power estimation methodology discussed above. For the ith processor, its αi, βi

43

T
a
b

le
3.

4:
O

p
er

at
io

n
cy

cl
es

an
d

p
ow

er
co

n
su

m
p

ti
on

of
offl

in
e

ke
y

ex
p

an
si

on
F

u
ll

-p
ar

al
le

li
sm

im
p

le
m

en
ta

ti
on

at
1.

3
V

an
d

1.
2

G
H

z.

E
x
ec

u
ti

on
N

O
P

w
it

h
S

ta
ll

w
it

h
S

ta
ll

w
it

h
N

ea
rb

y
L

on
g-

d
is

t.
E

x
ec

u
ti

on
S

ta
ll

L
ea

ka
ge

C
om

m
.
it
h

C
or

e

P
ro

ce
ss

or
N

u
m

b
er

T
im

e
A

C
a

A
C
a

H
C
b

C
om

m
.

C
om

m
.

P
ow

er
P

ow
er

P
ow

er
P

ow
er

P
ow

er

(c
y
cl

es
)

(c
y
cl

es
)

(c
y
cl

es
)

(c
y
cl

es
)

(c
y
cl

es
)

(c
y
cl

es
)

(m
W

)
(m

W
)

(m
W

)
(m

W
)

(m
W

)

A
d

d
K

ey
S

h
if

tR
ow

s
10

3
7

0
18

15
8

8
31

.4
7

7.
97

0.
03

2.
05

40
.1

3

S
u

b
B

y
te

-1
40

2
7

12
16

15
4

0
22

.9
7

12
.4

0
0.

03
0.

34
36

.5
9

M
ix

C
ol

u
m

n
-4

36
6
3

7
0

0
2

2
53

.5
9

3.
10

0
0.

51
57

.2
0

F
in

a
lR

ou
n

d
A

d
d

K
ey

1
1
8

0
40

12
16

0
15

.3
1

17
.7

1
0.

02
1.

35
21

.6
0

M
er

ge
C

o
re

20
1
0

0
44

16
0

8
8.

34
19

.4
9

0.
03

1.
38

18
.6

3

T
o
ta

l
3
.3

5
×

1
0
3

1
.0

9
×

1
0
3

2
.1

2
8
1
.4

4
.5

2
×

1
0
3

a
A

C
st

a
n

d
s

fo
r

a
ct

iv
e

cl
o
ck

.

b
H

C
st

a
n

d
s

fo
r

h
al

te
d

cl
o
ck

.

44

and (1− αi − βi) are derived from Columns 3, 4, 5 and 6 of Table 3.4. Furthermore, γi and δi are

obtained from Column 7 and 8. Note that the throughput of the Full-parallelism implementation

is 70 cycles per block.

Additionally, if the implementation works under 1.3 V and 1.2 GHz, the power consumed

by execution, stalling, standby and communication activities of each processor are listed in Columns

9, 10, 11 and 12. In Column 2, the number of processors with the same operation are listed.

Therefore, the total power number can be derived by the following equation and is listed in the last

row.

PTotal =
∑

Ni·PTotali (3.6)

where Ni is the number of processors with the ith kind of operation, and PTotali is the total

power dissipated by the ith processor. The total power consumption is 4.52 W with a 2.21 Gbps

throughput. The communication power consumed by FIFOs and switches is 81.4 mW, which is

1.8% of the total power, while the leakage power is only 2.12 mW and 0.05% of the total power

dissipation.

3.5.3 Energy Efficiency Comparison

The energy efficiency of a system describes how much energy is consumed for processing a

specific workload. This metric influences a critical design parameter, battery lifetime, made more

important by the increasing popularity of mobile devices. In our discussion, the energy efficiency

is defined as the energy dissipated for processing one bit by

EnergyPerBitV dd = PowerV dd/ThroughputV dd

= (PowerV dd ×Delay)/freqV dd × 128

(3.7)

where PowerV dd and freqV dd are the power dissipation and frequency for one model at supply

voltage V dd. Delay represents the number of clock cycles required for processing one data block.

Since power has a general relationship with supply voltage and operation frequency as Power ∝

V dd2· f , from Eq. 3.7, it is expected that EnergyPerBitV dd ∝ V dd2.

As shown in Fig. 3.13, for the eight offline implementations discussed above, the energy

dissipated for processing one bit is nearly quadratically dependent on supply voltage, which is

consistent with the theoretical analysis. Furthermore, the no-merge model consumes the least

45

0.7 0.8 0.9 1 1.1 1.2 1.3
0

0.5

1

1.5

2

2.5

3

Supply Voltage (V)

E
ne

rg
y

P
er

 B
it

(n
J/

bi
t)

 Small
OTOP
Para−Mix
Para−Sub−Mix
Loop−unrolled Three
Loop−unrolled Nine
No−merge
Full−para

Figure 3.13: Energy consumed for processing one bit of data versus supply voltage. All of the
implementations shown in this figure are associated with offline key expansion.

46

0%

10%

20%

30%

40%

50%

60%

Sm
al

l

O
TO

P
Pa

ra
−M

ix
Pa

ra
−S

ub
−M

ix
U

nl
oo

p
Th

re
e

U
nl

oo
p

N
in

e
N

o−
m

er
ge

Fu
ll−

pa
ra

E
ne

rg
y

O
ve

rh
ea

d

Figure 3.14: Energy overhead of the AES implementations with online key expansion compared
with the ones with offline key expansion.

47

energy to encrypt one bit compared with other implementations, which is from 0.39 to 1.54 nJ/bit

depending on the supply voltage and throughput. On the other hand, the Parallel-MixColumns

implementation shows the lowest energy efficiency, which consumes approximately 2× the energy

to encrypt a data block as the No-merge-parallelism model.

Fig. 3.14 shows that the AES implementations with online key expansion consume 35%

to 55% more energy to process same workload, compared to their counterparts with offline key

expansion.

3.6 Related Work and Comparison

Since the AES ciphers presented in this work are implemented on a programmable platform

without any application-specific hardware, we compare our work with other software implementations

on programmable processors, and do not compare with implementations that contain or are com-

posed of specialized hardware (e.g., ASICs, ASIPs, FPGAs, etc.). AES hardware implementations

have been reported to achieve throughput per area up to tens and even hundreds of Gbps/mm2 [104]

and energy efficiencies in the range of several pJ/bit—they are in an entirely different class both

in efficiencies achieved and in the cost and effort required to design.

A comprehensive comparison of the state-of-the-art software AES implementations is sum-

marized in Table 3.5. In order to make a fair comparison, all of the referenced data are scaled to

65 nm CMOS technology with a supply voltage of 1.3 V. The area data are scaled to 65 nm with a

1/(s2) reduction, where s equals the ratio between the minimum feature size of the old technology

and 65 nm. The delay and power data are scaled by SPICE simulation results of a fanout-of-4

(FO4) inverter under different technologies and supply voltages with predictive technology model

(PTM) [120] as shown in Fig. 3.15.

As discussed in Section 3.4.2, we could always map one of our designs for multiple times to

get a higher throughput while possibly introducing a small overhead. Therefore, it is less meaningful

to compare the throughput solely of each design. In this section, we use the metrics of throughout

per chip area (Mbps/mm2) and energy per workload bit (nJ/bit) to compare the area efficiency and

energy efficiency of various designs. As shown in Table 3.5, compared to the highly optimized AES

ciphers on CPUs with bitslice [110], the proposed AES cipher on AsAP has 3.5–9.2 times higher

48

1.8V

1.2V

1.3V

1.15V
0.9V

0.8V

0

10

20

30

40

50

60

70

80

90

180 90 65 45 32 22

D
e
la
y
(p
s)

Technology Size (nm)

Delay from PTM simulation (ps)

Delay from general scaling rule (ps)

(a) Delay

1.8V

1.2V
1.3V

1.15V

0.9V
0.8V

0

200

400

600

800

1000

1200

180 90 65 45 32 22

P
o
w
e
r
(m

W
)

Technology Size (nm)

Power from PTM simulation (mW)

Power from general scaling rule (mW)

(b) Power

Figure 3.15: Delay and power of a FO4 inverter based on SPICE simulation using predictive
technology model (PTM) [119]; the general scaling rule assumes a 1/s reduction in delay and a
1/(v2) reduction in power where s is the technology scaling factor and v is the voltage scaling factor
[43].

49

T
ab

le
3
.5

:
C

om
p

ar
is

on
o
f

A
E

S
ci

p
h

er
im

p
le

m
en

ta
ti

on
s

on
d

iff
er

en
t

so
ft

w
ar

e
p

la
tf

or
m

s.
T

h
e

or
ig

in
al

d
at

a
ar

e
p

re
se

n
te

d
w

it
h

d
iff

er
en

t
C

M
O

S
te

ch
n

o
lo

g
ie

s
an

d
su

p
p

ly
v
ol

ta
g
es

.
F

or
co

m
p

ar
is

on
,

ar
ea

,
p

er
fo

rm
an

ce
an

d
p

ow
er

co
n

su
m

p
ti

on
ar

e
sc

al
ed

to
65

n
m

te
ch

n
ol

og
y

w
it

h
a

su
p

p
ly

vo
lt

ag
e

o
f

1.
3

V
.

M
ax

S
ca

le
d

S
ca

le
d

S
ca

le
d

S
ca

le
d

P
la

tf
or

m
M

et
h

o
d

T
ec

h
.

A
re

a
V

d
d

F
re

q
.

T
h

ro
u

gh
p

u
t

P
ow

er
T

h
ro

u
gh

p
u

t
A

re
a

T
h

ro
u

gh
p

u
t/

A
re

a
E

n
er

gy
/b

it

(n
m

)
(m

m
2
)

(V
)

(M
H

z)
(c

y
cl

es
/b

y
te

)
(W

)
(M

b
p

s)
(m

m
2
)

(M
b

p
s/

m
m

2
)

(n
J
/b

it
)

P
en

ti
u

m
4

5
61

90
11

2
1.

2
36

00
16

57
.5

25
70

58
.4

2
43

.9
9

17
.5

0

[1
10

]

A
th

lo
n

64
35

00
90

19
3

1.
2

22
00

10
.6

44
.5

23
70

10
1

23
.5

5
14

.6
9

[1
10

]

C
or

e2
D

u
o

B
it

sl
ic

e
65

11
1

1.
3

21
30

9.
19

32
.5

18
54

11
1

16
.7

0
17

.5
3

E
64

0
0

[1
1
0]

C
or

e2
Q

u
ad

B
it

sl
ic

e
65

28
6/

2
1.

3
24

00
9.

32
26

.2
5

20
60

14
3

14
.4

1
12

.7
4

Q
66

00
(o

n
e

co
re

)[
11

4]
+

S
S

S
E

3
=

14
3

C
or

e2
Q

u
ad

B
it

sl
ic

e
45

21
4/

4
1.

15
28

30
7.

59
11

.8
8

13
07

11
2

11
.7

1
21

.1
6

Q
95

50
(o

n
e

co
re

)[
11

4]
+

S
S

S
E

3
=

53
.5

C
or

e
i7

B
it

sl
ic

e
45

26
3/

4
1.

15
26

68
6.

92
16

.2
5

13
51

13
7

9.
84

28
.0

0

9
20

(o
n

e
co

re
)[

11
4]

+
S

S
S

E
3

=
65

.7
5

T
I

C
62

01
18

0
N

A
1.

8
20

0
14

.2
5

N
A

50
9

N
A

N
A

N
A

[1
16

]

G
eF

o
rc

e
8
80

0
T

-b
ox

90
48

4
1.

2
57

5
N

A
67

.5
11

80
0

25
2

46
.8

2
4.

48

G
T

X
[1

17
]

T
h

is
W

o
rk

N
o
-m

er
g
e

65
6.

63
1.

3
12

10
9.

5
1
.5

8
10

19
6
.6

3
1
5
3
.7

0
1
.5

5

A
sA

P
[9

1]
o
ffl

in
e

k
ey

ex
p

a
n

.

50

throughput per unit of chip area and consumes 9.5–11.3 times less energy to encrypt a fixed amount

of data. Besides bitslice, SIMD instructions are applied to improve the throughput and efficiency

of AES implementations on CPUs further [114]. Even so, our design on AsAP still has 10.7–15.6

times higher throughput per unit of chip area and 8.2–18.1 times lower energy per bit. The TI DSP

C6201 is an 8-way VLIW architecture for high performance DSP applications. The referenced data

shows that our design has 2 times higher throughput. The area and power numbers of the TI DSP

C6201 are not available, but we believe that AsAP has significantly higher throughput per unit of

chip area and energy efficiency due to a much smaller core size.

The AES implementation on GeForce 8800 GTX achieves the highest throughput in the

referenced designs, due to its large chip area and the utilization of the T-Box method, which works

effectively for SIMD architectures with large memory [117]. However, our design still shows a 3.3

times higher throughput per unit of chip area and 2.9 times higher energy efficiency.

Fig. 3.16 shows that the software AES implementation on AsAP outperforms other soft-

ware platforms in terms of energy efficiency and performance per area.

3.7 Conclusion

We have presented 16 different AES cipher implementations with both online and offline

key expansion on a fine-grained many-core system. Each implementation exploits different levels

of data and task parallelism. The smallest design requires only 6 processors, equaling 1.02 mm2 in

a 65 nm fine-grained many-core system. The fastest design achieves a throughput of 4.375 cycles

per byte, which is 2.21 Gbps when the processors are running at a frequency of 1.2 GHz. We

also optimize the area of each implementation by examining the workload of each processor, which

reduces the number of cores used as much as 18%. The design on the fine-grained many-core system

achieves energy efficiencies approximately 2.9–18.1 times higher than other software platforms, and

performance per area on the order of 3.3–15.6 times higher. Overall, the fine-grained many-core

system has been demonstrated to be a very promising platform for software AES implementations.

51

0 20 40 60 80 100 120 140 160
0

100

200

300

400

500

600

700

Throughput Per Area (Mbps/mm2)

B
its

 P
er

 µ
Jo

ul
e

Pentium 4
Athlon 64
Core 2 Duo E6400
Core 2 Quad Q6600
Core 2 Quad Q9500
Core i7
GeForce 8800
AsAP (this work)

Figure 3.16: Comparison of peak performance per area and workload per unit energy of pro-
grammable processors. All numbers are scaled based on the PTM simulation results shown in
Fig. 3.15.

52

T
ab

le
3
.6

:
S

u
m

m
ar

y
of

st
at

e-
of

-t
h

e-
ar

t
A

S
IC

an
d

F
P

G
A

A
E

S
im

p
le

m
en

ta
ti

on
s

A
S

IC
T

ec
h

.
V

d
d

F
re

q
.

T
h

ro
u

gh
p

u
t

P
ow

er
A

re
a

T
h

ro
u

gh
p

u
t/

A
re

a
E

n
er

gy
/b

it

Im
p

le
m

en
ta

ti
o
n

s
(n

m
)

(V
)

(M
H

z)
(M

b
p

s)
(m

W
)

(m
m

2
)

(G
b

p
s/

m
m

2
)

(p
J
/b

it
)

M
at

h
ew

et
a
l.

[1
0
4]

4
5

1.
1

21
00

53
,0

00
12

5
0.

15
35

3
2.

36

M
at

h
ew

et
a
l.

[1
2
1]

2
2

0.
9

11
00

43
2

13
0.

00
22

19
6

31

Z
h

an
g

et
a
l.

[1
22

]
4
0

0.
9

13
00

49
4

4.
39

0.
00

43
11

5
8.

85

F
P

G
A

D
ev

ic
e

F
re

q
.

T
h

ro
u

gh
p

u
t

A
re

a
T

h
ro

u
gh

p
u

t/
A

re
a

Im
p

le
m

en
ta

ti
o
n

s
(M

H
z)

(M
b

p
s)

(s
li

ce
s)

(M
b
p

s/
sl

ic
e)

H
o
d

ja
t

et
a
l.

[1
05

]
X

C
2
V

P
20

-7
16

8
21

50
0

51
77

4.
2

C
h

a
n

g
et

a
l.

[1
0
6]

X
C

2V
P

2
30

6
87

6
15

6
5.

6

G
ra

n
ad

o-
C

ri
a
d

o
et

a
l.

[1
0
7]

X
C

2V
6
00

0-
6

24
92

0
35

76
7.

0

Q
u

et
a
l.

[1
08

]
X

C
5V

L
X

85
57

6
73

73
7

22
99

4
3.

2

53

Chapter 4

Scalable Joint Local and Global

Dynamic Voltage and Frequency

Scaling for Many-Core Systems

4.1 Introduction

With the continuous scaling of CMOS technology, a large number of processing elements

(PE) are able to be integrated on a single silicon die, resulting in multi-processor systems-on-

chip (MPSoCs). Many-core processors with network-on-chip (NoC) interconnects are promising

architectures for high performance energy-efficient computing [91], [24]. As the technology scales,

a single chip with 1000+ processors was recently reported [29], [123].

One of the critical challenges for many-core system design is to reduce the power dissipa-

tion and improve the energy efficiency of the chip. It is predicted that without introducing novel

low power architectures or techniques, more than 50% of the chip has to be turned off due to power

concerns when CMOS technology shrinks to 8 nm [21]. Researchers are eager to seek innovative

solutions to relieve the “dark silicon” problem and effectively convert transistors to performance.

Additionally, processors with high energy efficiency not only save millions of dollars in energy costs

for supercomputers and data centers, but also extend the battery life for mobile devices.

As illustrated in Fig. 4.1, due to the diversity of the applications mapped on different

54

1 2

Figure 4.1: Workload varies among cores, and also changes over time in many-core systems.

cores on many-core systems, the workload and performance requirement of each individual core

may be different and also changing over time. There are computationally intensive jobs that re-

quire processors to run at the highest frequency. On the other hand, there are also non-performance

critical jobs which can be computed at a lower frequency while still meeting the performance re-

quirement. Dynamic voltage and frequency scaling (DVFS) exploits the fact that dynamic power

is proportional to V 2× freq, to perform dynamic voltage and frequency scaling in order to provide

“just-enough” processor speed to finish the workload under time/performance constraints, while re-

ducing power dissipation. Many-core processors with per-core DVFS are capable of reducing power

dissipation significantly by adapting each core’s supply voltage and working frequency according

to its workload [124], [125].

4.1.1 Related Work

One of the biggest challenges of DVFS implementation is to estimate the workload accu-

rately so that the potential energy saving can be fully extracted without introducing any perfor-

mance penalty, e.g. missing deadlines or throughput requirements. Chandrakasan et al. proposed

a mechanism to scale the voltage and frequency dynamically by analyzing input data dependency

and predicting computational workload in the future [67]. Sinha and Chandrakasan proposed a

workload prediction algorithm based on adaptive filtering, and compared it with other filtering

55

schemes in terms of performance and energy saving [68].

For real-time applications, Mosse et al. proposed and analyzed several techniques to

dynamically adjust processor speed with slack reclamation [126]. Aydin et al. proposed an intra-

task scheduling algorithm for uniprocessor systems, based on both static worst-case execution time

(WCET) analysis and online speed speculation [69]. Zhu et al. studied a run-time slack reclamation

scheme for tasks sharing a global deadline on multiprocessor systems [70]. Then they extended their

work to address the case of aperiodic tasks with dependency constraints [127].

Additionally, several works focused on developing practical DVFS policies that rely on

architectural runtime statistics to determine the workload. Marculescu proposed a voltage scaling

scheme driven by cache misses [75]. Ghiasi et al. used IPC (instructions per cycle) rate to predict

the workload and scale the voltage [76]. Choi et al. presented a regression-based fine-grained

DVFS model by monitoring on-chip computation and off-chip memory access cycles [128]. Dhiman

and Rosing explored the opportunity by applying an online learning algorithm along with runtime

statistics for further power reduction [77].

Recently, various DVFS schemes based on control system theory have been discussed in

the literature. All existing work can be broadly divided into two categories, one is based on FIFO

(or queue) occupancy, the other is based on FIFO stall information. Wu et al. formally described

a nonlinear model of the queue occupancy, and presented a proportional-integral-derivative (PID)

controller, which requires detailed analysis of the queue behavior before actual hardware imple-

mentation [71]. Alimonda et al. analyzed more complex queue configurations, and developed a

non-linear controller which offers better transient and steady-state performance, as compared with

linear controllers [72]. Orgas et al. presented an adaptive feedback controller based on state-space

models to determine the optimal voltage frequency island (VFI) for different PEs [129]. Garg et

al. extended Orgas’s work by adopting both local and global state feedback to balance the ener-

gy saving and the implementation complexity of the DVFS controller [130]. On the other hand,

Choudhary and Marculescu proposed a method which adopts the stall information, rather than

the occupancy, of FIFOs. The DVFS controller counts the stall cycles from both the producer and

the consumer of a communication link to determine the optimal VFI for PEs in the next control

interval [73].

56

4.1.2 Chapter Organization and Contributions

In this chapter, we propose an online scalable hardware-based joint local and global DVFS

solution driven by the workload variations for many-core processors. The local algorithm is used

to select the voltage and frequency for each individual core based on its workload, while the global

algorithm adjusts the voltage supplies provided for the whole chip according to the workload of all

active cores. We also demonstrate that the coordinated local and global technique can improve the

energy efficiency significantly under performance constraints.

The major contributions provided by this work are: 1) quantitative analysis and compari-

son between frequency scaling and voltage dithering; 2) two different local DVFS algorithms based

on both occupancy and stall information of FIFOs for both upstream and downstream constrained

systems, respectively; and the comparison between the two algorithms in terms of power saving,

voltage switching frequency and response delay to workload variation; 3) a global algorithm to

choose the voltage settings for many-core processors with a limited number of voltage supplies; and

4) analysis of the sensitivity of power saving improvement brought by the global optimization to

different parameters, including the number of global voltage supplies, throughput requirements and

the tuning resolution of voltage regulators.

The remainder of this chapter is organized as follows. Section 4.2 provides the background

of the targeted many-core system and the power model used in our experiments. Section 4.3 com-

pares frequency scaling and voltage dithering in detail. The proposed local and global algorithms

are presented in Section 4.4 and Section 4.5, respectively. Section 4.6 discusses the experiment

results with detailed analysis. Finally, Section 4.7 concludes the chapter.

4.2 Preliminaries

The AsAP2 many-core platform is used in our experiments. The detailed architecture of

AsAP2 has been presented in Section 2.3.2. Fig. 2.3 shows the block diagram of AsAP2.

4.2.1 Power Model

The maximum operation frequency and dynamic power dissipation of cores on AsAP have

a near-linear and quadratic dependence on the supply voltage, as shown in Fig. 4.2(a). The data

57

Supply Voltage (V)

M
a
x

F
re

q
u

e
n

c
y

(M
H

z
)

P
o

w
e

r
(m

W
)

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
0

200

400

600

800

1000

1200

0

10

20

30

40

50

60Max Frequency (MHz)

Power (mW)

(a) Maximum Frequency and Dynamic Power

Supply Voltage (V)

N
o

rm
a
li
z
e
d

L
e
a
k
a
g

e
P

o
w

e
r

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
0.0

0.2

0.4

0.6

0.8

1.0

(b) Normalized Leakage Power

Figure 4.2: (a) Maximum operation frequency and dynamic power of one core; (b) Normalized
leakage power scaling factor.

58

are measured from the silicon chip, and used for the simulations in the following sections.

Since AsAP was fabricated with a high threshold voltage CMOS process, the leakage

power from the chip measurement is negligible. To simulate processors with different leakage ratio

LR = PLEAK/PDYN at 1.3 V, the leakage power scaling factors for different voltage supplies are

generated from a dummy circuit with ST 65 nm CMOS technology. The dummy circuit is composed

of a large number of NAND, NOR and INV gates. Gates have a different number of inputs (1 to

4) and the input states are randomly selected [131]. The normalized leakage power scaling factors

are measured from the HSPICE simulation and shown in Fig. 4.2(b).

4.3 Frequency Scaling Versus Voltage Dithering

For systems with N global discrete voltage supplies (V1, V2, ..., VN) in ascending order,

there are two major voltage and frequency scaling schemes. The first one is called limited DVFS,

which prioritizes frequency scaling over voltage scaling. The processor changes its operation fre-

quency based on its workload, and selects the lowest possible supply voltage from the global power

grids,

Vcore =

Vi, if f(Vi−1) < freq ≤ f(Vi)

V1, if freq ≤ f(V1)

(4.1)

where f(Vi) is the maximum frequency allowed under Vi, and freq is the desired working frequency.

In contrast of prioritizing frequency scaling, voltage dithering only allows processors to

run at the maximum available frequency under a specific voltage, which represents by a voltage

frequency (VF) pair (Vi, fi). Processors swing periodically between the VF pairs above and below

their desired operation frequency to achieve the performance requirements [132]. For example, if

the available normalized frequencies are 0.75 and 0.5, while the desired rate is 0.6, the core would

spend 40% of processing time at the frequency of 0.75, and 60% at 0.5. In general, voltage dithering

can be described as:

Vcore =

P × Vi + (1− P)× Vi−1, if fi−1 < freq ≤ fi

V1, if freq ≤ f1
(4.2)

where P and (1− P) are the percentage of processing time at which the local Vcore is assigned to

59

Normalized Workload

N
o

rm
a
li
z
e
d

E
n

e
rg

y

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Limited DVFS

Voltage Dithering

Unlimited Voltage Levels

Figure 4.3: Normalized energy versus workload of frequency scaling with three voltages, voltage
dithering with three VF pairs and theoretically ideal case with arbitrary levels of voltage domain.

Vi and Vi−1, respectively. P is defined according to the desired core’s frequency as

P =
freq − fi−1
fi − fi−1

if i > 1 (4.3)

As shown in Fig. 4.3, voltage dithering is more energy efficient than limited DVFS, and

very close to the optimal scenario with infinite voltage domains theoretically. However, voltage

dithering introduces two major overheads compared to the limited DVFS in practical implementa-

tions. First, switching between voltage supplies takes more clock cycles compared to adjusting the

clock frequency on the same power grid. As shown in Figure 4.4, the clock is required to be halted

to eliminate the voltage droop and noise during voltage switches. As a result, voltage switches

introduce extra computation delay as overhead. Additionally, the processor requires extra energy

charge whenever Vcore switches from a lower voltage rail to a higher one.

To investigate the overhead brought by voltage switches, we define the energy consumption

60

(a)

(b)

Figure 4.4: Voltage noise measurements on AsAP during voltage switches with (a) active clock and
(b) halted clock.

61

Clk

Clk

Gnd

VddCore

F

S
F

S

pow
sw

pow
sw

VddCore

Gnd

Figure 4.5: Comparison between limited DVFS with frequency scaling only (upper) and voltage
dithering (lower).

Efreq for frequency scaling (limited DVFS) and Edith for voltage dithering, respectively. As shown

in Fig. 4.5, the frequency scaling method lowers down the clock frequency for N cycles, then bumps

it back to the original clock frequency. The Vcore stays on Vhigh during the whole analysis period

T . Therefore, the total energy consumption during T is obtained as

Efreq = αCLV
2
highN + Ileak(Vhigh)VhighT (4.4)

where α is the switching (or activity) factor, CL is the load capacitance for each core, and Ileak is

the leakage current depends on the voltage supply.

On the other hand, the voltage dithering method would stay on Vhigh for F cycles, switch

to Vlow for S cycles and then switch back to Vhigh. The total energy consumption is formulated as

Edith =αCLV
2
highF + Ileak(Vhigh)Vhigh

F

fhigh

αCLV
2
lowS + Ileak(Vlow)Vlow

S

flow

+ CP (Vhigh − Vlow)Vhigh + 2Esw (4.5)

where CP is the power line capacitance for power grid switches, and Esw is the energy consumption

during each voltage switch. Considering the clock is halted during voltage switches, only leakage

62

Normalized Vlow (Vlow/Vhigh)

B
re

a
k

E
v
e
n

N
u

m
b

e
r

o
f

S

0.5 0.6 0.7 0.8 0.9 1.0
0

2

4

6

LR = 30%

LR = 20%

LR = 10%

LR = 5%

AsAP

Figure 4.6: Break even number of S for Edith less than Efreq with different leakage power ratio.
Vhigh = 1.3 V, α = 0.1.

power contributes to Esw. Assume the core is connected with Vhigh half of the switching time, and

with Vlow for the other half, Esw can be calculated as follows

Esw =
1

2
(Ileak(Vhigh)VhighTsw + Ileak(Vlow)VlowTsw) (4.6)

where Tsw is the time duration with stalled clock for each voltage switch. Additionally, both the

number of operation cycles and the total operation time should be identical for the above two cases.

N = F + S (4.7)

T =
F

fhigh
+

S

flow
+ 2Tsw (4.8)

As discussed in Subsection 2.3.2, each AsAP core is capable of switching between voltage

supplies by simply toggling power gates. Therefore, CP is approximately equal to CL. Additionally,

63

Vlow (V)

B
re

a
k

E
v
e
n

N
u

m
b

e
r

o
f

S

0.7 0.8 0.9 1.0 1.1 1.2
5.0

5.5

6.0

6.5 Vhigh=1.3V

Vhigh=1.1V

Vhigh=0.9V

Figure 4.7: Break even number of S for Edith less than Efreq with different Vhigh. The leakage
power is measured from AsAP. α = 0.1

64

(a)

(b)

Figure 4.8: DVFS controllers with constraints from (a) upstream (source) and (b) downstream
(sink).

AsAP pays no penalty for reconfiguring the clock frequency, and only a few stall cycles for every

voltage switch [133]. As shown in Fig. 4.6, the break even number of S for Edith < Efreq is less

than seven cycles for AsAP, which implies that as long as the core executes more than seven cycles

on Vlow, the voltage switching overhead would be overcome by the extra energy saving by switching

to a lower voltage supply. Fig. 4.6 also shows that the break even number of S decreases as leakage

power ratio increasing. The reason is that as leakage power starts to dominate in the total power

consumption, less dynamic power saving is required to break even the switching energy overhead,

which results in less active cycles on Vlow. Fig. 4.7 shows that the break even number of S also

decreases, as Vhigh decreases. For many-core systems with different α, CP , Tsw and LR, the above

analysis is necessary before determining whether frequency scaling or voltage dithering should be

applied. For AsAP, voltage dithering is more energy efficient and will be applied in the following

discussion of this chapter.

65

4.4 Proposed DVFS Local Algorithm

4.4.1 Performance Constrained Systems

In general, there are two categories of real time systems with different performance con-

straints, upstream constraint systems (UCS) and downstream constraint systems (DCS). The con-

straints from upstream are given by the source, which means that the input data has to be processed

at a certain rate to ensure correct operation, like analog-to-digital conversion. On the other hand,

systems could be constrained by downstream. In this case, a certain output rate is required to be

satisfied for correct operation, like video processing, wireless communication and digital-to-analog

conversion. For the completeness of the work, both UCS and DCS are considered for different

algorithms in the rest of the chapter. Fig. 4.8 shows DVFS controllers are tuned by the inputs and

outputs, for systems with upstream and downstream constraints, respectively.

4.4.2 Dithering with FIFO Occupancy

For UCS, the constraints come from the input ports of the system. When input FIFOs

tend to be empty, it means that the processor runs too fast and could slow down by connecting

with a lower VF pair to save energy. On the other hand, if input FIFOs are filled up, it means

that the processor runs too slow and should speed up by tying with a higher VF pair to satisfy the

performance requirement. For DCS, the constraints come from the output ports of the system. The

processor should slow down when the output FIFOs are filled up, while speed up when the output

FIFOs are empty. Two methods to adjust the VF pair based on FIFO occupancy are proposed,

one is even partition (EP), the other is error control (EC).

Even Partition

Suppose there are N discrete VF pairs set by the global algorithm (will be discussed in

Section 4.5), which are (V1, f1), (V2, f2), ..., (VN , fN). Then each FIFO is split into (N + 1) levels

evenly, which are (L1, L2, ..., LN+1). Fig. 4.9(a) shows that the FIFO is divided into four levels

with three VF pairs. For UCS, there are M input FIFO links for the core under test. The FIFO

occupancy of the M input links are (O1, O2, ..., OM), and each of them Oi is represented by Li.

Therefore, the current FIFO occupancy is determined by Ocurr = MAX(O1, O2, ..., OM). Assume

66

Algorithm 1 Even Partition for UCS

1: Ocurr = L1;

2: (Vnext, fnext) = (Vpre, fpre);

3: for i = 1 : M do

4: if Oi > Ocurr then

5: Ocurr = Oi;

6: end if

7: end for

8: if Ocurr == L1 then

9: (Vnext, fnext) = (V1, f1);

10: LastTune = down;

11: else if Ocurr == LN+1 then

12: (Vnext, fnext) = (VN , fN);

13: LastTune = up;

14: else if (Ocurr > (Opre + one level)) OR

15: (Ocurr > Opre AND LastTune == up) then

16: (Vnext, fnext) = (Vpre, fpre) + one level;

17: LastTune = up;

18: else if (Ocurr < (Opre - one level)) OR

19: (Ocurr < Opre AND LastTune == down) then

20: (Vnext, fnext) = (Vpre, fpre) − one level;

21: LastTune = down;

22: end if

23: if Vpre! = Vnext then

24: (Vpre, fpre) = (Vnext, fnext);

25: Opre = Ocurr;

26: end if

67

L1 L2 L3 L4

Empty Full

(a)

1 212 Mid

(b)

Figure 4.9: Example of FIFO partitions for (a) EP and (b) EC with three global VF pairs.

that during the previous voltage switch, the input FIFO occupancy is Opre and the selected VF

pair is (Vpre, fpre). There are four basic policies used for determining (Vnext, fnext) as follows

• If Ocurr equals the lowest FIFO level L1, (V1, f1) is assigned.

• If Ocurr equals the highest FIFO level LN+1, (VN , fN) is assigned.

• Tune up the VF pair if any of the following conditions is satisfied. (1) Ocurr is at least two

levels higher than Opre; (2) Ocurr is higher than Opre AND the previous VF switch is up.

• Tune down the VF pair if any of the following conditions is satisfied. (1) Ocurr is at least two

levels lower than Opre; (2) Ocurr is lower than Opre AND the previous VF switch is down.

Algorithm 1 shows the pseudocode of the even partition for UCS (EP-UCS).

For DCS, it is assumed that there are M output FIFOs from the core under test, where

Oi represents the ith output FIFO occupancy. The current output FIFO occupancy can be derived

as Ocurr = MAX(O1, O2, ..., OM). The four basic VF pair tuning policies are listed as follows

68

Algorithm 2 Even Partition for DCS

1: Ocurr = L1;

2: (Vnext, fnext) = (Vpre, fpre);

3: for i = 1 : M do

4: if Oi > Ocurr then

5: Ocurr = Oi;

6: end if

7: end for

8: if Ocurr == L1 then

9: (Vnext, fnext) = (VN , fN);

10: LastTune = up;

11: else if Ocurr == LN+1 then

12: (Vnext, fnext) = (V1, f1);

13: LastTune = down;

14: else if (Ocurr > (Opre + one level)) OR

15: (Ocurr > Opre AND LastTune == down) then

16: (Vnext, fnext) = (Vpre, fpre) − one level;

17: LastTune = down;

18: else if (Ocurr < (Opre - one level)) OR

19: (Ocurr < Opre AND LastTune == up) then

20: (Vnext, fnext) = (Vpre, fpre) + one level;

21: LastTune = up;

22: end if

23: if Vpre! = Vnext then

24: (Vpre, fpre) = (Vnext, fnext);

25: Opre = Ocurr;

26: end if

69

• If Ocurr equals the lowest FIFO level L1, (VN , fN) is assigned.

• If Ocurr equals the highest FIFO level LN+1, (V1, f1) is assigned.

• Tune down the VF pair if any of the following conditions is satisfied. (1) Ocurr is at least two

levels higher than Opre; (2) Ocurr is higher than Opre AND the previous VF switch is down.

• Tune up the VF pair if any of the following conditions is satisfied. (1) Ocurr is at least two

levels lower than Opre; (2) Ocurr is lower than Opre AND the previous VF switch is up.

Algorithm 2 shows the pseudocode of the even partition for DCS (EP-DCS).

Error Control

The key idea of EC is to keep the FIFO occupancy at around half of the FIFO size

(Sfifo), which implies that the processor runs neither too fast nor too slow. When a sudden change

happens on the performance requirement, the processor would have enough time to adjust its VF

pair before any stall happens. Each FIFO occupancy has an offset error value compared to the

targeted FIFO occupancy. For UCS, a positive offset error means more work is required to be

done than expectation, and the processor should speed up to meet the performance requirement.

A negative offset error means the processor could slow down for extra power saving. The current

offset errors for the M input FIFOs of the core under test can be represented by (e1, e2, ..., eM),

where ei = |Oi − 0.5× Sfifo|, while (epre1, epre2, ..., epreM) are the offset errors during the previous

VF switch. Unlike EP, EC divides half of the FIFO with (N − 1) boundaries (∆1,∆2, ...,∆N−1)

into N uneven segments, where

∆i −∆i−1 = 2× (∆i+1 −∆i) (4.9)

As shown in Fig. 4.9(b), (∆2−∆1) is half of (∆1−Mid) for systems with three global VF pairs. The

uneven partition reduces the algorithm’s response delay to performance requirement adjustments.

For example, if the VF pair keeps tuned up, FIFO space filled during (Vi → Vi+1) is 50% compared

with (Vi−1 → Vi). For each input FIFO, the VF pair is determined as follows

• If ei > eprei AND ei > ∆j ≥ eprei, tune up the VF pair.

• If ei < eprei AND ei < −∆j ≤ eprei, tune down the VF pair.

70

Algorithm 3 Error Control for UCS

1: (Vnext, fnext) = (V1, f1);

2: for i = 1 : M do

3: ei = Oi − 0.5× Sfifo;

4: if ei > eprei AND ei > ∆j ≥ eprei then

5: (Vtemp, ftemp) = (Vpre, fpre) + one level;

6: else if ei < eprei AND ei < −∆j ≤ eprei then

7: (Vtemp, ftemp) = (Vpre, fpre) − one level;

8: else

9: (Vtemp, ftemp) = (Vpre, fpre);

10: end if

11: if Vtemp < Vnext then

12: (Vnext, fnext) = (Vtemp, ftemp);

13: end if

14: end for

15: if Vpre! = Vnext then

16: (Vpre, fpre) = (Vnext, fnext);

17: (epre1, epre2, ..., epreM) = (e1, e2, ..., eM);

18: end if

71

Then the highest VF pair is applied as (Vnext, fnext). Algorithm 3 shows the pseudocode of the

error control for UCS (EC-UCS).

Algorithm 4 Error Control for DCS

1: (Vnext, fnext) = (VN , fN);

2: for i = 1 : M do

3: ei = Oi − 0.5× Sfifo;

4: if ei > eprei AND ei > ∆j ≥ eprei then

5: (Vtemp, ftemp) = (Vpre, fpre) − one level;

6: else if ei < eprei AND ei < −∆j ≤ eprei then

7: (Vtemp, ftemp) = (Vpre, fpre) + one level;

8: else

9: (Vtemp, ftemp) = (Vpre, fpre);

10: end if

11: if Vtemp < Vnext then

12: (Vnext, fnext) = (Vtemp, ftemp);

13: end if

14: end for

15: if Vpre! = Vnext then

16: (Vpre, fpre) = (Vnext, fnext);

17: (epre1, epre2, ..., epreM) = (e1, e2, ..., eM);

18: end if

On the other hand, a positive offset error in the output FIFO of DCS means the processor

could slow down, while a negative offset error implies the processor should speed up. As a result,

for each output FIFO, the VF pair is determined as follows

• If ei > eprei AND ei > ∆j ≥ eprei, tune down the VF pair.

72

Figure 4.10: 9-core AES engine dataflow diagram.

• If ei < eprei AND ei < −∆j ≤ eprei, tune up the VF pair.

Then the lowest VF pair is selected as (Vnext, fnext). Algorithm 4 shows the pseudocode of the

error control for DCS (EC-DCS).

4.4.3 Dithering with FIFO Stall Information

Workload Inheritance for UCS

Although FIFO occupancy is effective to help processors choose appropriate VF pairs,

it provides wrong decisions in some scenarios. Fig. 4.10 shows the dataflow diagram of a 9-core

Advanced Encryption Standard (AES) engine [40]. Considering the AES engine has an upstream

constraint, the VF pairs adjust based on input FIFO occupancy. When the performance require-

ment increases, the input FIFO for the whole engine is filled up, and speeds up AddKey at the front

of the dataflow. Then, FIFO 1 is tend to be full, and Sub-16 in the loop is assigned to a higher

VF pair. In the AES engine, only one 16-byte data block can be processed in the loop at anytime.

Therefore, FIFO 2, 3, and 4 would never be filled up enough to raise the VF pair assignments of

ShiftRows, Mix-16 and AddKey in the loop. As a result, the AES engine fails to meet the desired

throughput requirement. From the above example, it shows that selecting VF pair only based on

FIFO occupancy for UCS may cause failures.

In order to solve the problem, we propose a new technique called workload inheritance

(WI), which is based on FIFO stall information. Assume that one of the coreA input FIFOs is

connected with one of the coreB’s outputs. If coreA is stalled on coreB due to empty on input

73

(EOI), and coreA is not tied with the lowest VF pair, then coreB is considered to inherit workload

from coreA. Each core has a stall counter, Cstall, which counts up if it inherits workload from any

of its output cores; otherwise counts down. For systems with N global VF pairs, there are (N − 1)

stall counter thresholds (T1, T2, ..., TN−1). The VF pair of the core under test is determined as

(Vnext, fnext) =

(V1, f1), if CStall ≤ T1

(Vi, fi), if Ti−1 < CStall ≤ Ti

(VN , fN), if CStall > TN−1

(4.10)

Suppose the core under test has P output FIFOs, the workload inheritance algorithm is shown in

Algorithm 5.

Considering the processors in the loop of the above example, when Sub16 speeds up due

to FIFO 1, while ShiftRows, Mix16, and AddKey run at lower frequencies than required, Sub16

would be eventually stalled on AddKey due to EOI on FIFO 5. Therefore, AddKey in the loop

starts to inherit workload from Sub16, and speed up. Similarly, the VF pairs of ShiftRows and

Mix16 would be also tuned up until the performance requirement is satisfied.

Workload Inheritance for DCS

For DCS, the processors select their VF pairs based on output FIFO occupancy. When

the performance requirement decreases, Sub-16, ShiftRows, and Mix-16 in the loop would not be

able to slow down since FIFO 2, 3 and 4 cannot be filled. As a result, selecting VF pairs only based

on FIFO occupancy for DCS may miss power saving opportunities and cause energy inefficiency.

A similar WI scheme is applied to solve the above problem. Assume that one of coreA

output FIFOs is connected with one of coreB’s inputs. If coreB is stalled on coreA due to EOI,

and coreA is not tied with the highest VF pair, then coreB is considered to inherit workload from

coreA. The VF pair of the core under test is determined as

(Vnext, fnext) =

(VN , fN), if CStall ≤ T1

(Vα, fα), if Ti−1 < CStall ≤ Ti

(V1, f1), if CStall > TN−1

(4.11)

74

Algorithm 5 Workload Inheritance for UCS

1: Cinc = 0

2: for i = 1 : P do

3: if Corei is stalled AND Vcorei ! = V1 then

4: for j = N : 2 do

5: if Vcorei == Vj then

6: Cinc = max(Cinc, j − 1);

7: break;

8: end if

9: end for

10: end if

11: end for

12: if Cinc ! = 0 then

13: CStall + = Cinc;

14: else

15: CStall − = 1;

16: end if

17: (Vnext, fnext) = (V1, f1);

18: for i = N : 2 do

19: if CStall > Ti−1 then

20: (Vnext, fnext) = (Vi, fi)

21: break;

22: end if

23: end for

75

where α = N − i+ 1. Suppose the core under test has P input FIFOs, the WI algorithm for DCS

(WI-DCS) is shown in Algorithm 6.

Considering the loop in Fig. 4.10, when AddKey slows down due to full of its output

FIFO, while Sub-16, ShiftRows, and Mix-16 run at higher frequencies than required, Sub-16 would

be eventually stalled on AddKey due to EOI on FIFO 5. Therefore, Sub-16 in the loop starts to

inherit workload from AddKey, and slows down. Similarly, the VF pairs of ShiftRows and Mix-16

would be also tuned down for extra power saving.

By combining the proposed algorithms based on FIFO occupancy and stall information,

we get two different local algorithms for both UCS and DCS, respectively: one is EP+WI, the

other is EC+WI. For each local algorithm, the VF selection schemes based on FIFO occupancy

and stall information are executed in orthogonal. Then, the higher VF pair from the results is

assigned to the core under test to guarantee performance requirements for UCS, while the lower

VF pair is assigned for DCS to maximize power saving. The two local algorithms will be compared

in detail in terms of power saving, VF switching frequency and response delay to workload variation

in Section 4.6.

4.5 Proposed DVFS Global Algorithm

The local DVFS algorithms help individual processor select the most energy efficient VF

pair according its workload, while the global DVFS algorithm is adopted to pick global VF pairs

for the whole chip based on all active processors workload. The motivation example is shown in

Fig. 4.11. Considering the targeted system has two global VF pairs, (Vlow, Vhigh) is selected at T1

as the optimal global voltage setting based on the processors workload distribution (d1, d2, ..., dn),

which is marked by the dots. The total power consumption is derived as follows

P =

n∑
i=1

Pj =

n∑
i=1

H(di) (4.12)

where H is the function of the straight line that connects Vlow and Vhigh on the power curve. As

shown in Fig. 4.11(a), P1 = H(d1) is the power consumption of the processor with the largest

workload at T1. However, the processors’ workload distribution for a many-core system is unstable.

Either a varied performance requirement or an additional task mapping on the system is capable

of shifting the workload distribution. As shown in Fig. 4.11(b), most processors have a lighter

76

Algorithm 6 Workload Inheritance for DCS

1: Cinc = 0

2: for i = 1 : P do

3: if stalled on FIFOi AND Vcorei ! = VN then

4: for j = 1 : N − 1 do

5: if Vcorei == Vj then

6: Cinc = max(Cinc, N − j);

7: break;

8: end if

9: end for

10: end if

11: end for

12: if Cinc ! = 0 then

13: CStall + = Cinc;

14: else

15: CStall − = 1;

16: end if

17: (Vnext, fnext) = (VN , fN);

18: for i = N : 2 do

19: if CStall > Ti−1 then

20: (Vnext, fnext) = (VN−i+1, fN−i+1)

21: break;

22: end if

23: end for

77

(a)

(b)

Figure 4.11: Power consumption versus the global voltage/frequency pair settings. The dots illus-
trate that the processors workload distribution is changing over time.

78

workload at T2 compared to T1. By decreasing Vhigh to V ′high, the power function is changed from

H to H ′, which significantly reduces the total power consumption. Therefore, to fully extract

the power saving potential of many-core systems, it requires not only local DVFS algorithms for

choosing the best VF pair for each individual core, but also global algorithms to tune the global

VF pairs for the whole chip based on the overall workload distribution.

To provide accurate workload information to the global controller, each core is required

to record both the number of stall cycles Nsi and active cycles Nai when it is assigned to the VF

pair (Vi, fi). Then the desired operation frequency can be derived as

faim =

Na1
(Ns1+Na1)/f1

, only tied (V1, f1)

∑N
i=1(Nsi+Nai)∑N

i=1((Nsi+Nai)/fi)
, otherwise

(4.13)

And the active percentage is

Act =

∑N
i=1(Nai/fi)∑N

i=1((Nsi +Nai)/fi)
(4.14)

Based on the desired frequency and active percentage of all the cores, the global controller

can loop over all possible VF pair combinations and find the most energy efficient VF setting for

the chip. The brute force method usually works well since both the number of global VF pairs

and the number of available VF levels are relative small. Additionally, the frequency of global

VF optimization should be relatively low due to the large overhead brought by tuning voltage

regulators. The pseudocode of the global VF optimization is shown in Algorithm 7. A special case

is considered at the beginning of the algorithm. For UCS, when the input FIFOs of the system

tend to be full (greater than a preset threshold), it means that the current global VF pair setting

is not able to satisfy the performance requirement. As a result, a default VF setting is applied

instantly. On the other hand, the default VF setting is also applied when the output FIFOs of the

system tend to be empty (smaller than a pre-selected threshold) for DCS.

4.6 Experimental Results

First, we present the benchmarks that are used in the simulation. Secondly, the two

proposed local algorithms, EP+WI and EC+WI, are studied in detail with a 9-core AES engine.

79

Algorithm 7 Global VF Optimization

1: Pcurr = Power when all cores are assigned with the largest available VF pair;

2: if system input FIFOs Occup. > Th for UCS OR system output FIFOs Occup. < Th for DCS

then

3: return V Fopt = V Fdefault;

4: end if

5: for each of all possible VF pair combinations V Fcurr: ((V1, f1), ..., (VN , fN)) do

6: Ptemp = 0;

7: for each active core j do

8: find fi ≥ faimj > fi−1;

9: Peri = (faimj − fi−1)/(fi − fi−1);

10: Ptemp + = EstimatePower(Peri, Vi, Actj);

11: end for

12: if Pcurr > Ptemp then

13: Pcurr = Ptemp;

14: V Fopt = V Fcurr;

15: end if

16: end for

17: return V Fopt;

Then, the two local algorithms are compared in terms of power saving, VF switching frequency and

the response delay to workload variations. Finally, the extra power saving brought by the global

algorithm is investigated for systems with different performance constraints, number of global VF

pairs and voltage regulator tuning resolution.

4.6.1 Benchmarks

Most of dataflows could be represented by a combination of the six basic dataflow patterns

shown in Fig. 4.12. To cover all of the basic dataflow patterns and many of their combinations, the

benchmark includes an implementation library with seven AES engines [40], a JEPG encoder [134],

80

(a) (b)

(c) (d)

(e) (f)

Figure 4.12: Basic dataflow patterns: (a) single-input single-output; (b) chain; (c) multiple-input
single-output; (d) single-input multiple-output; (e) multiple-input multiple-output; (f) loop.

81

Table 4.1: Number of cores and throughput of different benchmarks

Cores 1/Throughput

Benchmarks Usage (cycles/byte)

AES Small 8 167.375

AES One-task one-processor 9 223.875

AES Parallel-MixColumns 15 136.250

AES Parallel-SubBytes-MixColumns 18 84.375

AES Loop-unrolled Three Times 23 68.625

AES Loop-unrolled Nine Times 50 16.625

AES No-merge-parallelism 59 9.500

JPEG Encodera 9 21.875

802.11a Transmittera 22 148

a The throughput of JPEG encoder and 802.11a transmitter are

data dependent.

b The benchmarks are labeled from 1 to 9 in the following sec-

tions for simplicity.

82

Table 4.2: Optimal frequencies (MHz) and working frequencies selected by the proposed DVFS
algorithms of processors in the 9-core AES engine.

Processor UCS DCS

Name Optimal EP+WI EC+WI EP+WI EC+WI

AddKey Head 15 15 15 15 15

SubByte-4 1210 1210 1210 1210 1210

MixColumn-4 1210 1210 1210 1210 1210

ShiftRows 1210 1210 1210 1210 1210

AddKey 1210 1210 1210 1210 1210

KeySub 277 360 360 291 294

KeySche 277 296 329 291 294

Sub/Shift 50 50 50 50 50

AddKey Tail 15 15 15 15 15

and a 802.11a baseband transmitter [30]. Table 4.1 lists the number of cores and throughput for

different benchmarks. As shown in Fig. 4.10, even a simple 9-core AES engine covers all of the

basic dataflow patterns.

4.6.2 Case Study: 9-core AES Engine

As discussed in Section 4.4, two local DVFS algorithms are proposed, which are EP+WI

and EC+WI, for both UCS and DCS, respectively. To demonstrate that the proposed local al-

gorithms are capable of selecting VF pairs properly, the One-task one-processor (OTOP) 9-core

AES engine is studied in detail. Without loss of generality, we assume that there are three global

VF pairs (V, MHz) for the whole chip, which are set as (1.3, 1210), (1.09, 895) and (0.87, 498).

The VF pairs are selected according to a static optimization by assuming that the workload of all

available cores on the targeted platform is evenly distributed from 0% to 100%. Also, the perfor-

mance requirement of the OTOP AES engine is set to 43 Mbps, which is the maximum throughput

allowed.

Table 4.2 shows the comparison between the optimal frequencies and the working frequen-

cies selected by the proposed algorithms. The optimal frequency of each core is obtained with static

83

P
o
w
e
r
S
a
v
in
g

Add_Head KeySub KeySche Sub/Shift Add_Tail Total
0%

20%

40%

60%

EP+WI-UCS

EC+WI-UCS

EP+WI-DCS

EC+WI-DCS

Optimal

Figure 4.13: Power saving of individual cores in the 9-core AES engine.

workload analysis, while the working frequency selected by DVFS algorithms is defined by

fDV FS =
∑

Peri· fi (4.15)

where Peri is the percentage of time the core spends on (Vi, fi).

As shown in Table 4.2, all the four cores in the loop are tied with the highest VF pair

all the time, while other cores have great potential for power saving. Fig. 4.13 shows the power

saving for each individual core from three different solutions, including EP+WI-UCS, EC+WI-

UCS, EP+WI-DCS, EC+WI-DCS and the optimal static workload analysis. Both EP+WI and

EC+WI can save as much as 60% power for cores that are not on the critical path. Overall, EP+WI

shows 16% and 17% power saving under the throughput constraint for UCS and DCS, which is

only 2% and 1% less than the optimal solution. EC+WI shows 15% and 17% power saving for

UCS and DCS, respectively.

4.6.3 Local Algorithm Comparison

To compare the performance of the proposed local algorithms, three metrics are used as

follows

1. power saving;

84

P
o
w
e
r
S
a
v
in
g

1 2 3 4 5 6 7 8 9 AVG.
0%

10%

20%

30%

EP+WI-UCS

EC+WI-UCS

EP+WI-DCS

EC+WI-DCS

Figure 4.14: Power saving of the proposed local algorithms for benchmarks in Table 4.1.

2. frequency of VF pair switching;

3. response delay to workload change.

Power saving is the essential metric to evaluate the effectiveness of an DVFS algorithm. Addition-

ally, a large number of VF pair switchings are not desirable since they are both energy and time

expensive as discussed in Section 4.3. Furthermore, a quick response to workload variation not only

reduces the opportunity of missing deadlines when the performance requirement increases, but also

increases the time window for power saving when the performance requirement decreases.

In this subsection, we assume that the three global VF pairs are set statically without

considering the global algorithm as discussed in Section 4.6.2. The power saving and VF switching

frequency are measured when benchmarks runs with maximum throughput. The response delay is

measured by changing the performance requirement from 10% to 90% of the maximum throughput.

Also, only the UCS are considered in this section for simplicity. As shown in Fig. 4.14, EP+WI

shows a slightly better performance in terms of power saving for most of the test cases. In average,

EP+WI saves 19.3% power, which is 1.1% more than the 18.2% brought by EC+WI. Fig. 4.15(a)

shows the normalized incremental VF switching frequency of EC+WI compared with EP+WI.

Although the VF switching frequency highly depends on the dataflow, EC+WI requires 40% to

85

V
R
S
w
it
c
h
in
g
In
c
.

1 2 3 4 5 6 7 8 9AVG.

-80%

-60%

-40%

-20%

0%

(a) Incremental VF Switching

R
e
s
p
o
n
s
e
D
e
la
y
In
c
.

1 2 3 4 5 6 7 8 9AVG.

-10%

0%

10%

20%

(b) Incremental Response Delay

Figure 4.15: Comparison of EP+WI and EC+WI. (a) Normalized incremental VF switching fre-
quency and (b) Normalized incremental response delay to performance requirement changes of
EC+WI compared to EP+WI.

86

Table 4.3: Summary of Local Algorithms Performance Evaluation

Algorithm
Power VR Switching Response

Saving Frequency Delay

EP+WI + - +

EC+WI + + -

80% less VF switching than EP+WI for most of the benchmarks, which leads to a 44% VF switching

frequency reduction in average. On the other hand, EC+WI requires 7% more response time than

EP+WI to performance requirement changes as shown in Fig. 4.15(b).

The fundamental reason behind the results is that EP+WI is more sensitive to workload

variation, which results in more frequent VF switching, but also provides more fine-tuning oppor-

tunities for each individual core to save extra power. Additionally, the sensitiveness also leads

to a faster response to any workload change on system level. Table 4.3 shows the summary of

the proposed local algorithms performance. EP+WI and EC+WI both have their advantages and

disadvantages. For different many-core platforms and system requirements, a careful evaluation is

desired before any algorithm is applied.

4.6.4 Global Algorithm Evaluation

Suppose three global VF pairs are available for the targeted many-core system. As dis-

cussed in Section 4.6.3, the VF pairs (V, MHz) are set as (1.3, 1210), (1.09, 895) and (0.87,

498) when global optimization is unavailable. To evaluate the performance of the proposed global

algorithm, the power saving for different benchmarks are compared between local EP+WI with

and without global optimization. Additionally, three different levels of performance constraint

are considered, including (1) tight (= THmax), (2) intermediate (= 50% THmax) and (3) loose

(= 10% THmax), where THmax is the maximum throughput of different benchmarks. The tuning

resolution of off-chip voltage regulators is assumed as fine as 0.01 V.

As shown in Fig. 4.16, the extra power saving brought by the global optimization is highly

correlated with the performance requirement. With a tight performance constraint, the global

optimization can bring average 2% extra power saving. As the performance constraint goes toward

intermediate and loose, the average extra power saving increases to 7.4% and 23.8%, respectively.

87

P
o
w
e
r
S
a
v
in
g

1 2 3 4 5 6 7 8 9 AVG.
0%

10%

20%

30%

Local Local + Global

(a) Tight Performance Constraint

P
o
w
e
r
S
a
v
in
g

1 2 3 4 5 6 7 8 9 AVG.
0%

20%

40%

60%
Local Local + Global

(b) Intermediate Performance Constraint

P
o
w
e
r
S
a
v
in
g

1 2 3 4 5 6 7 8 9 AVG.
0%

20%

40%

60%

80%

Local Local + Global

(c) Loose Performance Constraint

Figure 4.16: Power saving comparison between local with and without global optimization for
different performance constraints (a) Tight (b) Intermediate (c) Loose.

88

The reason is that the lower the performance constraint, the larger the offset between the optimal

and default VF settings. As a result, there is more extra power saving can be achieved by global

optimization. For example, the optimal VF pairs for OTOP with a tight throughput requirement

is (1.3, 1210), (1.13, 958) and (0.77, 296), which is much closer to the default VF setting compared

with the optimal VF pairs (0.7, 146), (0.69, 124) and (0.67, 80) for a loose throughput requirement.

Different Number of Global VF Pairs

In this subsection, we analyze the impact of the number of VF pairs on the global opti-

mization. There are six settings are studied:

• Two global VF pairs with local (Two-L), and local plus global optimization (Two-LG).

• Two global VF pairs with local (Three-L), and local plus global optimization (Three-LG).

• Two global VF pairs with local (Fout-L), and local plus global optimization (Four-LG).

Table 4.4 lists the average power saving in percentage of the proposed algorithms with

and without global optimization for systems with different number of global VF pairs. With two

global VF pairs, the extra power saving brought by the global optimization is 3.0%, 7.9% and

34.8% for a tight, intermediate, and loose performance constraint, respectively. However, extra

power saving is reduced to 1.9%, 7.0% and 17.7% when the number of global VF pairs is increased

to four. Therefore, the global optimization is more effective when there are less global VF pairs.

Additionally, Three-LG is capable of saving more power than Four-L by 0.8%, 5.9% and 16.4%

for different performance constraints. Therefore, optimizing the global VF pairs dynamically is

more effective than increasing the number of global voltage supplies. Table 4.4 also shows that the

power saving from adding extra power supply is diminished as the number of VF pair increases. For

example, the average power saving of benchmarks with tight performance requirements is improved

by 2.7% when the number of voltage supplies is increased from two to three, while only 1.3% from

three to four.

Different Tuning Resolution of VR

Table 4.5 shows that by increasing the tuning resolution of voltage regulators from 0.01 V

to 0.05 V, the extra power saving brought by global optimization are reduced to 1.8%, 6.0% and

89

T
ab

le
4.

4:
A

ve
ra

ge
p

ow
er

sa
v
in

g
s

in
p

er
ce

n
ta

ge
of

lo
ca

l
w

it
h

an
d

w
it

h
ou

t
gl

ob
al

op
ti

m
iz

at
io

n
fo

r
sy

st
em

s
w

it
h

d
iff

er
en

t
n
u

m
b

er
of

V
F

p
ai

rs
.

T
ig

h
t

P
er

f.
T

ar
ge

t
In

te
r.

P
er

f.
T

ar
ge

t
L

o
os

e
P

er
f.

T
ar

ge
t

N
u

m
b

er
o
f

L
o
ca

l
L

o
ca

l
E

x
tr

a
L

o
ca

l
L

o
ca

l
E

x
tr

a
L

o
ca

l
L

o
ca

l
E

x
tr

a

G
lo

b
al

V
F

P
ai

rs
+

G
lo

b
al

S
av

in
g

+
G

lo
b

al
S

av
in

g
+

G
lo

b
al

S
av

in
g

T
w

o
14

.6
%

17
.6

%
3.

0%
42

.2
%

50
.1

%
7.

9%
42

.0
%

76
.8

%
34

.8
%

T
h

re
e

19
.1

%
21

.6
%

2.
5%

48
.1

%
55

.6
%

7.
5%

55
.8

%
79

.5
%

23
.7

%

F
o
u

r
20

.8
%

22
.7

%
1.

9%
49

.7
%

56
.7

%
7.

0%
63

.1
%

80
.8

%
17

.7
%

90

Table 4.5: Average Extra Power Saving brought by global optimization with tuning resolution as
0.05 V and 0.01 V for systems with three VF pairs, reqpectively.

Resolution
Tight Perf. Inter. Perf. Loose Perf.

Target Target Target

0.01 V 2.5% 7.5% 23.7%

0.05 V 1.8% 6.0% 22.6%

22.6% for tight, intermediate, and loose performance constraints, respectively.

4.7 Conclusion

In this chapter, we have presented a joint local and global DVFS scheme for many-core

systems with limited number of voltage supplies. The local algorithm is used to select the most

energy efficient voltage and frequency pair for each individual core based on its workload, while the

global algorithm is used to choose the global voltage frequency settings for the whole chip based on

all active processors workload. Two local algorithms are proposed based on FIFO occupancy and

stall information for both upstream and downstream constrained systems. And their performance

are evaluated in terms of power saving, voltage switching frequency and response delay to workload

variations with real application benchmarks. Compared with only applying local algorithm, the

global optimization is capable of reducing power further by 2% to 35% for different performance

constraints. Either increasing the number of the global voltage supplies or the tuning step of off-chip

voltage regulators reduces the effectiveness of the global optimization.

91

Chapter 5

Optimizing Power of Many-Core

Systems by Exploiting Dynamic

Voltage, Frequency and Core Scaling

5.1 Introduction

For the past half century, Moore’s Law has been the fundamental driver of high-performance

computing. The continued CMOS technology scaling doubles the transistor density of VLSI sys-

tems and had provided a predictable 40% performance improvement of single-core processors for

every 18 to 24 months [135]. However, as Dennard Scaling ends, which means that the threshold

voltage of transistors stops scaling along with their lithographic dimensions, the era of scaling fre-

quency and performance without increasing power density is over. Since 2005, the semiconductor

industry shifted to multi-core and many-core processors in order to sustain the proportional scaling

of performance along with transistor count increases. Many-core processors with network-on-chip

interconnects have been demonstrated as promising architectures for high-performance energy-

efficient computing [91], [24]. As the technology scales, a single chip with 1000+ processors was

recently reported [29], [123].

One of the critical challenges for many-core system design is to reduce the power dissipa-

tion and improve the energy efficiency of the chip. it is predicted that without introducing novel

92

Table 5.1: Comparison of Various Low Power Design Techniques

Power Reduction Dynamic Power Leakage Power

Techniques Saving Saving

Clock Gating Yes No

Power Gating No Yes

Multi-Vth [136] No Yes

Adaptive Body Biasing [64] No Yes

DVFS [125], [71], [129], [73], [74] Yes Minor a

Chip-Wide DVFCS [82], [83] Yes Yes

Per-Core DVFCS (This Work) Yes Yes

a DVFS aims to reduce dynamic power by scaling down voltage and

frequency; however, scaling down voltage can also reduce leakage

power.

low power architectures or techniques, more than 50% of the chip has to be turned off due to power

concerns when CMOS technology shrinks to 8 nm [21]. Researchers are eager to seek innovative

solutions to relieve the “dark silicon” problem and effectively convert transistors to performance.

Additionally, processors with high energy efficiency not only save millions of dollars in energy bill

for supercomputers and data centers, but also extend the battery life for mobile devices.

Table 5.1 lists several low power techniques have been proposed and adopted to reduce

dynamic power, or leakage power, or both. The most commonly used technique to reduce dynamic

power is clock gating, which reduces the overall effective capacitance by disabling the inactive

portions of the clock tree. Power gating is a widely used technique to reduce leakage power. It uses

sleep transistors to shut-off the idle function blocks or even the entire processor from power supply.

Multi-Vth uses transistor libraries with multiple threshold voltages (Vth) on the same die.

Transistors with higher Vth have higher performance and leakage power as well. On the other hand,

transistors with lower Vth have a larger delay but less leakage power dissipation. The logic gates

on non-critical paths can be assigned as high Vth during design time to reduce leakage power, as

long as there is no performance penalty [136]. Instead of selecting Vths statically, adaptive body

biasing (ABB) is capable of tuning the Vths of gates during runtime, by controlling the transistor

93

body-source voltage. A reverse body increases Vth, thus reducing leakage power at the cost of

slowing the devices. Alternatively, a forward body bias increases speed while increasing leakage

power. ABB can also used to alleviate the impact of process, voltage, and temperature (PVT)

variations [64].

Dynamic voltage and frequency scaling (DVFS) exploits the fact that dynamic power is

proportional to V 2 × freq, to perform dynamic voltage and frequency scaling in order to provide

“just-enough” processor speed to finish the workload under time/performance constraints, while

reducing dynamic power dissipation at meantime. Additionally, scaling down voltage can also

reduce leakage power. Many-core processors with per-core DVFS are capable of reducing energy

dissipation significantly by adapting each core’s supply voltage and working frequency according

to its workload [125]. Various DVFS schemes for many-core processors have been discussed in the

literature. Wu et al. formally described a nonlinear model for the FIFO occupancy, and presented

a proportional-integral-derivative (PID) controller, which requires detailed analysis of the FIFO

behavior before actual hardware implementation [71]. Orgas et al. presented an adaptive feedback

controller based on state-space models to determine the optimal voltage frequency islands (VFI) for

different cores [129]. Choudhary and Marculescu approached the optimal VFI by counting the stall

time from both the producer and the consumer of a communication link periodically [73]. Liu et

al. proposed a scalable on-line hardware based DVFS scheme based on both FIFO occupancy and

stall information between communication links. The proposed method not only takes advantage of

the fast voltage/frequency response to workload variation by monitoring FIFO occupancy, but also

utilize stall information to cover the scenarios that are not solvable by FIFO occupancy [74].

To further improve the energy efficiency and performance for many-core processors, com-

bination of DVFS and scaling the number of active cores (DVFCS) has been proposed. Compared

to DVFS, DVFCS is capable of achieving higher energy efficiency by balancing dynamic and leak-

age power savings. Jian et al. addressed the problem of finding a chip-wide operating voltage and

frequency setting as well as the number of active cores that minimizes the power dissipation of

a general-purpose chip multiprocessor under performance constraints [82]. Lee et al. studied to

maximize the performance of power constrained GPUs by coordinating the number of active cores

and chip-wide voltages/frequencies of both cores and caches [83]. However, all the research stated

above assume that the DVFS is on the chip level.

94

This chapter addresses the problem of minimizing the power dissipation of many-core sys-

tems under performance constraints by exploiting per-core DVFS with core scaling, and shows that

per-core DVFCS can achieve significant higher energy-efficiency compared with traditional DVFS

methods [84]. The major contribution of the work includes: 1) detail analysis and description of

the proposed algorithm; 2) more analysis on both dynamic power and leakage power saving from

DVFCS, respectively, for different performance constraints; 3) the sensitivity of energy efficiency

improvement and optimal core count to different model parameters, including the number of global

voltage supplies and leakage power ratio (different CMOS process). The reminder of the chapter

is organized as follows: Section 5.2 states the problem in a formal mathematical way. Section 5.3

describes the proposed algorithm. Section 5.4 presents the models and benchmarks used in our ex-

periments. Section 5.5 discusses the experimental results with detailed analysis. Finally, Section 5.6

concludes the chapter.

5.2 Problem Formulation

An application is required to run at a throughput of TREQ on a many-core system which

has COREAV L cores available, and N global voltage supplies (V1, V2, ..., VN) in ascending order,

where Vi is chosen from a set of available discrete voltage levels. There are a set of implementations

(A1, A2, ..., AM) for the application. Each implementation requires COREAi cores. Each mapping

result may include multiple instances for each implementation, and can be represented as

Map = N1A1 +N2A2...+NMAM (5.1)

where Ni is the number of instance of implementation Ai in the mapping result. The throughput

of each implementation is determined by the operating frequency FAi of its performance critical

cores, and different instance of one implementation could run at different FAi . The throughput of

the mapping result TMAP is given by

TMap =

N1∑
n=1

TA1n +

N2∑
n=1

TA2n...+

NM∑
n=1

TAMn (5.2)

TAin is the throughput of Ai’s nth instance, and can be obtained as

TAin = TCAi × FAin (5.3)

95

where TCAi is the number of bits that can be processed by Ai per cycle. Similarly, the total power

of the mapping result PMap can be calculated as follows:

PMap =

N1∑
n=1

PA1n +

N2∑
n=1

PA2n...+

NM∑
n=1

PAMn (5.4)

where PAin is the power of the nth instance of Ai. For each Ai’s instance, the power PAi is derived

as

PAi =

COREAi∑
j=1

PCOREj(FCOREj , VCOREj) (5.5)

where PCOREj is the power consumption of each individual core in Ai, as a function of the frequency

FCOREj and voltage VCOREj . The performance critical cores are required to run at FCOREj = FAi

to guarantee the throughput shown in Eq. 5.3. Noncritical cores can scale down their running

frequency depends on their own workload. VCOREj is the minimum voltage level Vi from the

global discrete voltages (V1, V2, ..., VN), which satisfies Freq(Vi) >= FCOREj . The PCOREj is

approximated as follows:

PCOREj(FCOREj , VCOREj) = PDYN + PLEAK

= CEFF · FCOREj · V 2
COREj + ILEAK(VCOREj) · VCOREj (5.6)

where CEFF is the effective switching capacitance for each core, and ILEAK(VCOREj) is the leakage

current that depends on VCOREj .

In sum, the problem can be formulated as:

minimize PMap

subject to TREQ ≤ TMap

COREAV L ≥
∑

COREAi ·Ni

by exploring (1) the number of instance of each implementation (N1, N2, ..., NM), (2) the through-

put of each implementation instance TAin, and (3) the global voltage levels (V1, V2, ..., VN).

Fig. 5.1 illustrates an example of the problem. There are three implementations (A1,

A2, A3) in the application library. A many-core platform with N global voltage supplies is given.

There could be multiple mapping results that satisfy the performance requirement while fitting on

the given many-core system. The goal is to select the most energy efficient mapping result, i.e.

(2A2 + A3) in this example, while setting the global voltage levels as (V1, V2, ..., VN) to minimize

the power dissipation.

96

1

2

3

1 3 2 3 1 2 3

1 2 N

N

Figure 5.1: There are three different implementations (A1, A2, A3) for the application to be mapped.
With a given many-core platform and a performance requirement, multiple mapping results are
generated initially. Finally, the most energy efficient mapping result (2A2 +A3) is chosen, and the
N global voltage supplies are set as (V1, V2, ..., VN) to minimize the power dissipation. Vi is chosen
from a set of available discrete voltage levels.

97

2<5>

26A=

2;75:

3@7?

4,
4-

40

45@@5A

1=+188

3.,,

/.,,

4.,,

4,
4-

40

45@@5A

2;75:26A=

2.,,

1=+188

3.,-

/.,-

4.,-

4,
4-

40

45@@5A

2;75:26A=

2.,-

1=+188

3.9=

/.9=

4.9=

4,
4-

40

45@@5A

2;75:26A=

2.9=

.,, .,- .9=

(a) Block diagram of the chromosome in GA

A11 A12 A13 A21 A22

1 0 0 1 0

A11 A12 A13 A21 A22

Chromosome

On/Off

(b) Solution example

Figure 5.2: Chromosome block diagram and solution example of the proposed GA. Only shaded
implementation instances are included in the solution.

5.3 Proposed Algorithm

Due to the large search and optimization space, a heuristic based on genetic algorithms

(GA) is proposed to solve the problem. GA is based on a mechanism of natural selection and

evolutionary genetics. Each solution of the problem is represented as a chromosome, which contains

a sequence of genes. A fitness value is associated with each solution. The fitness value shows how

close the solution is to the optimum. The process starts with an initial population of solutions

created in some way, e.g., randomly. In each iteration, new offspring solutions are generated

through selection, crossover and mutation. Then, some new solutions are added to, and some old

solutions are removed from the population based on their fitness. The evolution process stops when

either the optimization goal or the maximum number of iterations is reached [137].

The block diagram of a chromosome in the proposed GA is shown in Fig. 5.2(a). Each

gene represents an implementation instance Ain with a particular running frequency FAin. There is

one “On/Off” bit for each gene to indicate whether it is included in the final solution. The number

98

of genes for each implementation Ai in one chromosome is determined by the maximum number

of Ai can fit on the given many-core platform, i.e., COREV AL/COREAi . For example, there are

two implementations (A1, A2) for the targeted application, which occupies two and three cores,

respectively. And there are six cores available on the targeted many-core system. Therefore, there

are three instances of A1 and two instances of A2 in each chromosome, as shown in Fig. 5.2(b).

Additionally, only the implementation instances being set to “On” are included in the final solution.

In the above example, A11 and A21 are selected in the final solution. Therefore, the mapping result

uses five cores in total.

Algorithm 8 . Pseudocode of the Proposed Algorithm

1: Ω = Create Initial Population();

2: for Each chrom in Ω do

3: Compute Fitness(chrom);

4: end for

5: iterNum = 0;

6: while iterNum < MaxIterNum do

7: {Parent1, Parent2} = Parents Selection(Ω);

8: Offspring = Crossover(Parent1, Parent2);

9: Mutation(Offspring);

10: Pow = Compute Fitness(Offspring);

11: if Pow is less than the maximum power in Ω then

12: Replace(Offspring, Ω);

13: end if

14: ++iterNum;

15: end while

16: return minPower, σ and seqOn of the chrom which dissipates the minimum power in Ω;

17: (Continued on next page.)

The pseudocode of the proposed algorithm is presented in Algorithm 8. The initial pop-

ulation Ω is created randomly to increase both the diversity of the population and the chance

to explore global optima. During the initial population creation, the operation frequency of per-

99

18: procedure Compute Fitness(chrom)

19: minPower = INT MAX;

20: Global Voltage Selection σ = (0, 0, ..., 0);

21: Gene “On” bit sequence seqOn = (0, 0, ..., 0);

22: for Different Global Voltage Settings: λ do

23: Reset “On” bits in chrom;

24: Calculate power for each gene in chrom;

25: Use greedy knapsack to turn “On” genes, get sol and calculate its power pow;

26: if pow < minPower then

27: minPower = pow;

28: σ = λ;

29: seqOn = sol;

30: end if

31: end for

32: return minPower, σ and seqOn along with chrom;

33: end procedure

100

11 12 13 21 22

11 12 13 21 22

11 12 13 21 22

(a) Crossover

11 12 13 21 22 11 12 13 21 22

(b) Mutation

Figure 5.3: Procedure and example of (a) crossover and (b) mutation.

formance critical cores FAin in each chromosome is assigned randomly. Since the object of the

algorithm is to minimize power dissipation, the fitness value of a solution is inversely proportional

to the power dissipation, and defined as

fitnesschrom = 1/Powerchrom (5.7)

After the population is initialized, the fitness value is computed for each chromosome in the popu-

lation. For a given global voltage setting, the power and throughput of each gene can be calculated

based on its FAi . Then, the chromosome is sent to a greedy knapsack solver to determine which

implementation instance should be included (turned “On”), and which not (turned “Off”) in the

final solution. After iterating all possible global voltage settings, the solution with the lowest power

dissipation is returned.

In each iteration of GA, two chromosomes are selected as parents for crossover. During

parents selection, a roulette wheel strategy is applied. The chance for each chromosome to be

selected in each iteration is proportional to how its fitness value compared with other chromosomes,

and defined as

Prchrom =
fitnesschrom∑N
j=1 fitnessj

(5.8)

Chromosomes with higher fitness value have more probability of selection. The selected parent

chromosomes are sent to crossover and mutation to generate offsprings. As shown in Fig. 5.3(a), a

101

random point is chosen to break each parent into two parts during crossover. Then the offspring is

generated by coping the part before the crossover point from Parent-I and part after the crossover

point from Parent-II. After crossover, the generated offspring is sent into a mutation operator. The

mutation operator is crucial to push the algorithm toward unexplored regions of the search space,

therefore avoiding local optima. Fig. 5.3(b) shows the procedure of the mutation operation. A

random gene (implementation instance) is selected and assigned with a random operation frequency.

Finally, the offspring is sent to the fitness calculation process to generate a valid solution. If the

generated solution consumes less power than one of the chromosomes in the population set, the

chromosome with weakest fitness (the solution with largest power dissipation) in the set is replaced

by the offspring for the next iteration. When the maximum number of GA iteration is reached,

the algorithm returns the chromosome with the least power dissipation in the population set as the

final solution.

5.4 Methodology

5.4.1 Power Model

Each core on AsAP can operate up to 1.2 GHz at 1.3 V [91]. The maximum operation

frequency and dynamic power dissipation of cores on AsAP have a near-linear and quadratic de-

pendence on the supply voltage, as shown in Fig. 5.4(a). The data are measured from real-silicon

chip, and used for the simulations in the next section.

Since AsAP was fabricated with super low-power CMOS process, the leakage power from

the chip measurement is negligible. To simulate processors with different leakage ratio LR =

PLEAK/PDYN at 1.3 V, the leakage power scaling factors for different voltage supplies are generated

from a dummy circuit with ST 65 nm CMOS technology. The dummy circuit is composed of a

large number of NAND, NOR and INV gates. Each gate has different number of inputs (1 to 4)

and the input states are randomly selected [131]. The normalized leakage power scaling factors are

measured from the HSPICE simulation and shown in Fig. 5.4(b).

102

Supply Voltage (V)

M
a
x

F
re

q
u

e
n

c
y

(M
H

z
)

P
o

w
e

r
(m

W
)

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
0

200

400

600

800

1000

1200

0

10

20

30

40

50

60Max Frequency (MHz)

Power (mW)

(a) Maximum Frequency and Dynamic Power

Supply Voltage (V)

N
o

rm
a
li
z
e
d

L
e
a
k
a
g

e
P

o
w

e
r

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
0.0

0.2

0.4

0.6

0.8

1.0

(b) Normalized Leakage Power

Figure 5.4: (a) Maximum operation frequency and dynamic power of one core; (b) Normalized
leakage power scaling factor.

103

Table 5.2: Number of cores and throughput of different AES engines

AES Cores 1/Throughput

Implementations Usage (cycles/byte)

Small 8 167.375

One-task one-processor 9 223.875

Parallel-MixColumns 15 136.250

Parallel-SubBytes-MixColumns 18 84.375

Loop-unrolled Three Times 23 68.625

Loop-unrolled Nine Times 50 16.625

No-merge-parallelism 59 9.500

Full-parallelism 137 4.375

Add

Key

Input

Key

Sche

Key

Sub

OutputMix-

8

Key

Sub

Add

Key
Sub-16
& Shift

Mix-

8

Add

Key
Key

Sub

Sub-16
& Shift

Sub-16
& Shift

Key

Sche

Figure 5.5: 59-core AsAP mapping of the No-merge-parallelism implementation [38].

104

5.4.2 Benchmark – Eight AES Engines

An implementation library with eight Advanced Encryption Standard (AES) engines is

selected as the benchmark. Table 5.2 lists the number of cores and throughput for different AES

implementations. The smallest implementation only occupies eight cores, while the largest one

requires 137 cores. The throughput of the eight AES engines at 1.3 V and 1.2 GHz are ranged from

58 Mbps to 2.2 Gbps [40].

5.5 Experimental Results

The experiment results are discussed in this section. First, we compare the proposed

per-core DVFCS mechanism with traditional per-core DVFS in terms of power saving effectiveness.

Later, the impact of changing the number of global voltage supplies (VDD) and the leakage ratio

(LR) of the processor on the energy efficiency improvement brought by core scaling and the optimal

core count are also investigated.

5.5.1 Per-Core DVFCS VS. Per-Core DVFS

Without losing generality, we assume that there are two global VDDs on the targeted

many-core system, and the leakage ratio LR = 30%. Three different voltage, frequency, and core

scaling configurations are studied in this subsection:

• No DVFS;

• Per-core DVFS with two global VDDs (TV);

• Per-core DVFCS with two global VDDs (TVC).

Configurations with different number of VDDs and LR are investigated later. The NoDVFS is

selected as baseline to evaluate the power saving efficiency of other configurations. One No-merge-

parallelism engine is selected if core scaling is not applicable, since it is the most energy-efficient

implementation compared with others [40]. The maximum throughput (ThMAX) of one No-merge-

parallelism engine is approximate to 1 Gbps. Fig. 5.5 shows the mapping graph of the 59-core

No-merge-parallelism AES engine.

105

T
h

ro
u

g
h

p
u

t
C

o
n

s
tr

a
in

ts
 (

M
b

p
s
)

NormalizedTotalPower

10

20

30

40

50

60

70

80

90

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

N
O

 D
V

F
S

D
V

F
S

 T
w

o
 V

d
d
s

D
V

F
C

S
 T

w
o
 V

d
d
s

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

8

2
3
6

1
7
7

8

8

1
6

2
4

2
4

5
0

5
0

5
0

5
0

5
9

5
9

5
9

1
1
8

1
1
8

1
7
7

1
7
7

F
ig

u
re

5.
6:

N
or

m
a
li

ze
d

p
ow

er
d

is
si

p
at

io
n

of
d

iff
er

en
t

vo
lt

ag
e/

fr
eq

u
en

cy
/c

or
e

sc
al

in
g

co
n

fi
gu

ra
ti

on
s

ve
rs

u
s

th
ro

u
gh

p
u

t
co

n
st

ra
in

ts
.

T
h

e
le

a
ka

g
e

p
ow

er
ra

ti
o
L
R

=
30

%
.

N
o
D

V
F

S
,

an
d

D
V

F
S

T
w

o
V

d
d
s

u
se

si
n

gl
e

N
o
-m

er
ge

-p
a
ra

ll
el

is
m

en
gi

n
e.

T
h

e
op

ti
m

al
co

re
co

u
n
t

ch
os

en
b
y

D
V

F
C

S
T

w
o

V
d
d
s

ar
e

sh
ow

n
o
n

th
e

to
p

of
p

ow
er

b
ar

s.

106

Fig. 5.6 shows the power dissipation for different configurations, all normalized to NoD-

VFS. With two VDDs, DVFCS outperforms DVFS for all different throughput requirements. TVC

can save as much as 72% extra power compared with TV. The extra power saving brought by

core scaling clearly shows a non-linear relationship with the throughput constraints. To better

understand the fundamental reasons of the non-linear relationship, we divide the simulation results

into three categories, which are systems with (1) a loose (≤ 20%ThMAX), (2) an intermediate

(20% ∼ 80%ThMAX), and (3) a tight (≥ 80%ThMAX) performance constraint.

As shown in Fig. 5.7, ∼75% power dissipation is due to leakage (Pleak) when the system

has a loose performance constraint. As the performance constraint increases into the intermediate

and tight range, dynamic power (Pdyn) starts to dominate in the total power dissipation. Fig. 5.8

shows the dynamic and leakage power saving from DVFS and DVFCS for different throughput

constraints, respectively. As discussed in Section 5.1, traditional DVFS is aimed for reducing Pdyn

by scaling down voltage and frequency. Although scaling down voltage can also reduce Pleak, it

is not as effective as dynamic power reduction. As shown in Fig. 5.8, DVFS always saves more

Pdyn than Pleak no matter the throughput requirement is loose or tight. As a result, even Pleak is

significant higher than Pdyn in the total power consumption, DVFS still tries to save from Pdyn,

which impairs its power saving effectiveness when the performance constraint is loose. On the other

hand, core scaling always try to save more from the dominate part of the power, which makes it

favorable for all the performance constraint range. When the throughput requirement is loose, core

scaling obtains its power saving mostly from Pleak. As the throughput requirement increases, the

majority of power saving starts to shift to Pdyn. As shown in Fig. 5.8, core scaling even shows

negative dynamic power saving at a few loose throughput constraints, which proves that DVFCS

tries to minimize the total power dissipation rather than only aiming for a specific part of the

power.

Fig. 5.6 also shows that the optimal core count chosen by DVFCS tends to increase

along with the throughput constraint. With a loose throughput constraint, core scaling selects

implementations with small number of cores in order to reduce Pleak. As a result, TVS reduces

power dissipation by 28% compared with TV, as shown in Table 5.3. As the performance constraint

gets into the intermediate range, Pdyn starts to dominate. Therefore, the extra power saving

introduced by core scaling is decreased to 7%. When the performance target is close to ThMAX ,

107

T
h

ro
u

g
h

p
u

t
C

o
n

s
tr

a
in

ts
 (

M
b

p
s
)

NormalizedTotalPower

10

20

30

40

50

60

70

80

90

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

D
y
n
a
m

ic
 P

o
w

e
r

L
e
a
k
a
g
e
 P

o
w

e
r

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

F
ig

u
re

5.
7:

D
y
n

am
ic

a
n

d
le

ak
a
g
e

p
ow

er
p

a
rt

it
io

n
in

p
er

ce
n
ta

ge
of

N
o
D

V
F

S
w

it
h

on
e

N
o
-m

er
ge

-p
a
ra

ll
el

is
m

en
gi

n
e

v
er

su
s

th
ro

u
gh

p
u

t
co

n
st

ra
in

ts
.

T
h

e
le

ak
a
ge

p
ow

er
ra

ti
o
L
R

=
30

%
.

108

T
h

ro
u

g
h

p
u

t
C

o
n

s
tr

a
in

ts
 (

M
b

p
s
)

PowerSaving

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0

0

D
V

F
S

 D
y
n
a
m

ic
 P

o
w

e
r

S
a
v
in

g

D
V

F
C

S
 D

y
n
a
m

ic
 P

o
w

e
r

S
a
v
in

g

D
V

F
S

 L
e
a
k
a
g
e
 P

o
w

e
r

S
a
v
in

g

D
V

F
C

S
 L

e
a
k
a
g
e
 P

o
w

e
r

S
a
v
in

g

-1
0
%

0
%

2
0
%

4
0
%

6
0
%

8
0
%

F
ig

u
re

5.
8:

D
y
n

am
ic

a
n

d
le

a
ka

g
e

p
ow

er
sa

v
in

g
in

p
er

ce
n
ta

ge
of

D
V

F
S

an
d

D
V

F
C

S
w

it
h

tw
o
V
D
D

s
v
er

su
s

th
ro

u
gh

p
u

t
co

n
st

ra
in

ts
.

T
h

e
le

ak
a
ge

p
ow

er
ra

ti
o
L
R

=
3
0
%

.

109

core scaling starts to apply multiple instances for each implementation. As a result, each instance

requires a lower voltage/frequency level compared to TV, which causes 25% less power dissipation.

5.5.2 Different Number of Global Voltage Supplies

In this subsection, we analyze the impact of the number of VDDs on the experiment

results. Without modifying the leakage ratio (LR = 30%), four more voltage/frequency/core scaling

configurations are studied:

• Per-core DVFS with one global VDDs (OV);

• Per-core DVFS with three global VDDs (THV);

• Per-core DVFCS with one global VDDs (OVC);

• Per-core DVFCS with three global VDDs (THVC);

Fig. 5.9 shows the optimal core count selected by per-core DVFCS for systems with differ-

ent number of VDDs versus performance requirements. Since the optimal core counts are discrete

numbers, curve fitting lines are also plotted to help illustrate the results. As the throughput con-

straint becomes tighter, DVFCS tends to utilize more active cores by mapping multiple instances

for each implementation in order to save Pdyn. Additionally, DVFCS uses fewer active cores for

the same throughput constraint when there are more VDDs available for the targeted many-core

system. It implies that without impairing energy efficiency, a mapping result could be shrunk to

fit in less number of cores by adding extra VDDs. THVC uses 22% and 9% fewer active cores in

average than OVC and TVC, respectively.

Fig. 5.10 shows the extra power saving in percentage brought by per-core DVFCS for

systems with one, two and three VDDs, respectively. The non-linear relationship between the

power saving improvement and throughput constraints exists consistently no matter how many

VDDs are available. DVFCS tends to improve more on energy efficiency when the throughput is

either loose or tight. As the number of VDDs increases, the power saving improvement brought by

core scaling tends to increase when the throughput requirement is loose, while decrease when the

throughput requirement is close to ThMAX .

110

T
ab

le
5.

3:
A

v
er

a
g
e

p
ow

er
sa

v
in

g
s

in
p

er
ce

n
ta

ge
fo

r
D

V
F

S
an

d
D

V
F

C
S

w
it

h
d

iff
er

en
t

n
u
m

b
er

of
V
D
D

s
co

m
p

ar
ed

w
it

h
N

o
D

V
F

S
.

T
h

e
le

ak
ag

e
p

ow
er

ra
ti

o
L
R

=
3
0%

.

L
o
os

e
P

er
f.

T
ar

ge
t

In
te

r.
P

er
f.

T
ar

ge
t

T
ig

h
t

P
er

f.
T

ar
ge

t

C
o
n

fi
g
u

ra
ti

on
s

D
y
n

.
L

ea
k
.

T
ot

al
D

y
n

.
L

ea
k
.

T
ot

al
D

y
n

.
L

ea
k
.

T
ot

al

S
av

in
g

S
av

in
g

S
av

in
g

S
av

in
g

S
av

in
g

S
av

in
g

S
av

in
g

S
av

in
g

S
av

in
g

D
V

F
S

w
it

h
O

n
e

V
d

d
9.

2%
0.

0%
9.

2%
17

.1
%

0.
0%

17
.1

%
17

.8
%

0.
0%

17
.8

%

D
V

F
S

w
it

h
T

w
o

V
d

d
s

11
.5

%
2.

1%
13

.6
%

28
.9

%
7.

6%
36

.5
%

31
.7

%
10

.2
%

41
.9

%

D
V

F
S

w
it

h
T

h
re

e
V

d
d

s
12

.0
%

2.
3%

14
.4

%
33

.4
%

8.
9%

42
.3

%
38

.2
%

12
.5

%
50

.7
%

D
V

F
C

S
w

it
h

O
n

e
V

d
d

4.
8%

25
.4

%
30

.2
%

35
.7

%
-3

.9
%

31
.8

%
53

.4
%

6.
5%

59
.9

%

D
V

F
C

S
w

it
h

T
w

o
V

d
d

s
5.

9%
35

.6
%

41
.5

%
39

.1
%

4.
5%

43
.6

%
56

.7
%

10
.3

%
67

.0
%

D
V

F
C

S
w

it
h

T
h

re
e

V
d

d
s

5.
7%

37
.5

%
43

.1
%

41
.0

%
6.

1%
47

.1
%

57
.6

%
11

.4
%

69
.0

%

E
x
tr

a
P

ow
er

O
n

e
V

d
d

-4
.4

%
25

.5
%

21
.1

%
18

.6
%

-3
.9

%
14

.7
%

35
.6

%
6.

5%
42

.1
%

S
av

in
g

F
ro

m
T

w
o

V
d

d
s

-5
.6

%
33

.5
%

27
.9

%
10

.2
%

-3
.1

%
7.

1%
25

.0
%

0.
1%

25
.1

%

C
or

e
S

ca
li

n
g

w
it

h
T

h
re

e
V

d
d

s
-6

.3
%

35
.2

%
28

.9
%

7.
6%

-2
.8

%
4.

8%
19

.4
%

-1
.1

%
18

.3
%

111

Throughput Constraints (Mbps)

O
p

ti
m

a
l
C

o
re

C
o

u
n

t

0 200 400 600 800 1000
0

50

100

150

200

250
one vdd

two vdds

three vdds

Figure 5.9: Optimal core count selected by DVFCS with different number of VDDs versus through-
put constraints.

112

T
h

ro
u

g
h

p
u

t
C

o
n

s
tr

a
in

ts
 (

M
b

p
s
)

ExtraPowerSaving

10

20

30

40

50

60

70

80

90

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

O
n
e
 V

d
d

T
w

o
 V

d
d
s

T
h
re

e
 V

d
d
s

0
%

2
0
%

4
0
%

6
0
%

8
0
%

F
ig

u
re

5
.1

0
:

E
x
tr

a
p

ow
er

sa
v
in

g
in

p
er

ce
n
ta

ge
in

tr
o
d

u
ce

d
b
y

D
V

F
C

S
co

m
p

ar
ed

w
it

h
D

V
F

S
w

it
h

on
e,

tw
o

an
d

th
re

e
V
D
D

s
ve

rs
u

s
th

ro
u

g
h

p
u

t
co

n
st

ra
in

ts
.

113

Table 5.3 lists the average power saving of six voltage/frequency/core scaling configura-

tions for three different categories of performance constraints. With a loose performance require-

ment, per-core DVFCS brings 21%, 28% and 29% extra power saving compared with traditional

DVFS for systems with one, two and three VDDs, respectively. The extra power saving is larger

when there are more VDDs. In such a case, Pdyn occupies a relative small portion in total power

dissipation. As a result, the benefit brought by additional VDDs is limited for traditional DVFS.

On the other hand, a large number of VDDs offers per-core DVFCS more flexibility to optimize

the total power dissipation. For example, the Pdyn deficit increases from 4.4% to 6.3% when the

number of VDDs changes from one to three. However, THVC saves extra 10% power from Pleak

compared with OVC, which overcomes the deficit from Pdyn and leads to 8% improvement in total

power dissipation.

With a tight performance constraint, per-core DVFCS shows 42%, 25% and 18% energy

efficiency improvement compared with DVFS for systems with one, two and three VDDs, respective-

ly. The power saving improvement declines as the number of VDDs increases, which is a complete

opposite compared with the situation when the performance constraint is loose. As we discussed

earlier, per-core DVFCS tends to use fewer active cores when there are more VDDs. It implies that

the active cores in THVC are required to run at higher frequency than OVC and TVC to satisfy the

same performance requirement, which diminishes the extra Pdyn saving brought by adding extra

VDDs. Therefore, DVFS is more beneficial in terms of improving energy efficiency by increasing the

number of VDDs. As shown in Table 5.3, THV improves the Pdyn by 25% and 6% compared with

OV and TV, while THVC only saves 4% and 1% more on Pdyn compared with OVC and TVC,

respectively.

5.5.3 Different Leakage Ratio

In order to investigate the impact of leakage ratio on optimal solutions, four different

leakage ratios are studied in this subsection, including 30%, 20%, 10% and 5%. The leakage ratio

range covers from high-performance process that is very leaky, to the process aiming for low power.

In this subsection, we assume that there are two global voltage supplies for the targeted many-core

system.

Fig. 5.11 shows the optimal core count selected by per-core DVFCS for different leakage

114

Throughput Constraints (Mbps)

O
p

ti
m

a
l
C

o
re

C
o

u
n

t

0 200 400 600 800 1000
0

100

200

300

400

500
LR = 30%

LR = 20%

LR = 10%

LR = 5%

Figure 5.11: Optimal core count selected by DVFCS versus throughput constraints for different
leakage ratios.

ratio. As expected, the leakage power becomes more dominant along with the increment of leakage

ratio, thus favoring usage of fewer active cores. As a result, LR30 utilizes 10%, 31% and 50% fewer

active cores than LR20, LR10 and LR5, respectively.

The power saving improvement in percentage brought by per-core DVFCS for systems

with different leakage ratio is shown in Fig. 5.12. DVFCS tends to save more extra power than

DVFS when the throughput is approaching loose or tight for all four different leakage ratio. The

non-linear relationship between the power saving improvement and throughput constraints exists

across from high-performance to low-power CMOS technology. When the performance requirement

is loose, DVFCS introduces more extra power saving when the leakage ratio is high. On the other

hand, when the performance requirement is close to ThMAX , the extra power saving brought by

DVFCS favors less leaky process.

115

T
h

ro
u

g
h

p
u

t
C

o
n

s
tr

a
in

ts
 (

M
b

p
s
)

ExtraPowerSaving

10

20

30

40

50

60

70

80

90

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

L
R

 =
 3

0
%

L
R

 =
 2

0
%

L
R

 =
 1

0
%

L
R

 =
 5

%

0
%

2
0
%

4
0
%

6
0
%

8
0
%

F
ig

u
re

5.
12

:
E

x
tr

a
p

ow
er

sa
v
in

g
in

p
er

ce
n
ta

ge
in

tr
o
d

u
ce

d
b
y

tw
o-
V
D
D

D
V

F
C

S
co

m
p

ar
ed

w
it

h
tw

o-
V
D
D

D
V

F
S

ve
rs

u
s

th
ro

u
gh

p
u

t
co

n
st

ra
in

ts
fo

r
d

iff
er

en
t

le
ak

a
ge

ra
ti

os
.

116

T
ab

le
5
.4

:
A

ve
ra

g
e

p
ow

er
sa

v
in

gs
in

p
er

ce
n
ta

ge
fo

r
D

V
F

S
an

d
D

V
F

C
S

w
it

h
d

iff
er

en
t

le
ak

ag
e

ra
ti

os
co

m
p

ar
ed

w
it

h
N

o
D

V
F

S
.

T
w

o
V
D
D

s
ar

e
av

ai
la

b
le

fo
r

th
e

ta
rg

et
ed

m
an

y
-c

or
e

sy
st

em
. L
o
os

e
P

er
f.

T
ar

ge
t

In
te

r.
P

er
f.

T
ar

ge
t

T
ig

h
t

P
er

f.
T

ar
ge

t

C
on

fi
gu

ra
ti

o
n

s
D

y
n

.
L

ea
k
.

T
ot

al
D

y
n

.
L

ea
k
.

T
ot

al
D

y
n

.
L

ea
k
.

T
ot

al

S
av

in
g

S
av

in
g

S
av

in
g

S
av

in
g

S
av

in
g

S
av

in
g

S
av

in
g

S
av

in
g

S
av

in
g

D
V

F
S

w
it

h
3
0%

L
R

11
.5

%
2.

1%
13

.6
%

28
.9

%
7.

6%
36

.5
%

31
.7

%
10

.2
%

41
.9

%

D
V

F
S

w
it

h
20

%
L

R
15

.1
%

1.
8%

16
.9

%
32

.4
%

5.
7%

38
.1

%
34

.9
%

7.
5

%
42

.4
%

D
V

F
S

w
it

h
10

%
L

R
22

.2
%

1.
3%

23
.5

%
36

.8
%

3.
2%

40
.0

%
38

.8
%

4.
2

%
43

.0
%

D
V

F
S

w
it

h
5%

L
R

29
.6

%
0.

8%
30

.4
%

39
.6

%
1.

7%
41

.3
%

41
.1

%
2.

2
%

43
.3

%

D
V

F
C

S
w

it
h

30
%

L
R

(L
R

30
)

5.
9

%
35

.6
%

41
.5

%
39

.1
%

4.
5%

43
.6

%
56

.7
%

10
.3

%
67

.0
%

D
V

F
C

S
w

it
h

20
%

L
R

(L
R

2
0
)

10
.3

%
30

.6
%

41
.0

%
46

.2
%

1.
6%

47
.8

%
63

.2
%

6.
9%

70
.1

%

D
V

F
C

S
w

it
h

10
%

L
R

(L
R

1
0
)

18
.6

%
22

.8
%

41
.4

%
56

.9
%

-2
.5

%
54

.3
%

72
.3

%
2.

2%
74

.6
%

D
V

F
C

S
w

it
h

5%
L

R
(L

R
5)

30
.0

%
13

.1
%

43
.1

%
63

.5
%

-3
.2

%
60

.3
%

78
.3

%
-0

.1
%

78
.2

%

3
0
%

L
R

-5
.6

%
33

.5
%

27
.9

%
10

.2
%

-3
.1

%
7.

1%
25

.0
%

0.
1%

25
.1

%

E
x
tr

a
P

ow
er

2
0
%

L
R

-4
.8

%
28

.8
%

24
.0

%
13

.8
%

-4
.1

%
9.

7%
28

.3
%

-0
.6

%
27

.7
%

S
av

in
g

F
ro

m
1
0
%

L
R

-3
.6

%
21

.5
%

17
.9

%
20

.1
%

-5
.7

%
14

.4
%

33
.5

%
-2

.0
%

31
.5

%

C
or

e
S

ca
li

n
g

w
it

h
5
%

L
R

0.
4%

12
.3

%
12

.7
%

23
.9

%
-4

.9
%

19
.0

%
37

.2
%

-2
.3

%
34

.9
%

117

Table 5.4 lists the average power saving in percentage of DVFCS and DVFS with differ-

ent leakage ratios for three different categories of performance constraints. With a loose perfor-

mance requirement, per-core DVFCS brings 28% extra power saving compared with traditional

DVFS for a high-performance leaky process (LR = 30%), and 13% for a low-power less-leaky pro-

cess (LR = 5%). The extra power saving is larger when the leakage ratio is higher. As discussed in

Subsection 5.5.1, ∼75% power dissipation is due to leakage when the performance requirement is

loose. A higher leakage ratio results in the optimal solution shifts to use fewer active cores, which

reduces the leakage power dissipation significantly. Although this causes increased dynamic power

dissipation due to a higher operating frequency, it obtains an overall net extra improvement in

energy efficiency. For example, DVFCS-LR30 consumes 6% more dynamic power compared with

DVFS, and saves 34% in leakage. On the other hand, DVFCS-LR5 dissipates about the same about

of dynamic power compared with its DVFS counterpart, but it only saves 12% in leakage. As a

result, the energy efficiency improvement brought by DVFCS-LR5 is 15% less than DVFCS-LR30.

With a tight performance constraint, power saving improvement brought by per-core D-

VFCS increases from 25% to 35% when the leakage ratio declines from 30% to 5%. The extra

energy efficiency improvement decreases as LR increases. When the throughput requirement ap-

proaches ThMAX , the extra power improvement introduced by DVFCS is mainly from dynamic

power. As shown in Fig. 5.7, Pdyn occupies ∼75% of the total power dissipation when LR = 30%.

In such a case, a lower LR makes Pdyn become more dominant, and leaves the core scaling algorithm

more room to save in Pdyn by manipulating the number of active cores used in optimal solutions.

5.6 Conclusion

We have formulated and addressed the problem of minimizing the power dissipation of

performance-constrained many-core processors by exploiting per-core DVFS and core scaling si-

multaneously. A GA-based algorithm is proposed to solve the problem. The experimental results

show that optimizing the number of active core and voltage/frequency levels appropriately can im-

prove the energy efficiency by 5% to 42% compared with per-core DVFS for a range of throughput

requirements. The energy efficiency improvement shows a non-linear relationship with the perfor-

mance constraint, which tends to increase when the performance constraint inclines to be either

118

loose or tight.

Additionally, when the throughput requirement is loose, the energy efficiency improvement

brought by core scaling favors systems with more global voltage supplies (21% for OVC, and 29%

for THVC) and high-performance leaky process (13% for LR5, and 28% for LR30). On the other

hand, when the throughput requirement is tight, the energy efficiency favors systems with fewer

global voltage supplies (42% for OVC, and 18% for THVC) and low-power low-leaky process (35%

for LR5, and 25% for LR30).

Furthermore, increasing the number of global voltage supplies or the leakage ratio can

reduce the optimal core count. THVC uses 22% fewer active cores than OVC, and LR30 uses 50%

fewer active cores than LR5.

119

Chapter 6

Conclusion and Future Work

6.1 Conclusion

This dissertation explores, designs and implements new algorithms and technologies to

improve the energy efficiency of fine-grained many-core processors.

First, the dissertation demonstrates that the fine-grained many-core architecture can

achieve higher area and energy efficiency inherently compared with other architecture designs for

applications have high task-level and data-level parallelism by proposing 16 AES engines on AsAP2.

The design space and the trade-off between performance and the number of cores are examined

comprehensively. The smallest design utilizes only 6 cores for offline key expansion and 8 cores for

online key expansion, while the largest requires 107 cores and 137 cores, respectively. In compar-

ison with published AES cipher implementations on general purpose processors, the designs have

3.5–15.6 times higher throughput per unit of chip area and 8.2–18.1 times higher energy efficiency.

Moreover, the design shows 2.0 times higher throughput than the TI DSP C6201, and 3.3 times

higher throughput per unit of chip area and 2.9 times higher energy efficiency than the GeForce

8800 GTX.

To further improve the energy efficiency of many-core processors, the dissertation pro-

poses an online scalable hardware-based joint local and global DVFS solution driven by workload

variations for many-core processors. The local algorithms is used to select the voltage and fre-

quency pair for each individual core based on its FIFO occupancy and stall information, while

the global algorithm tunes the global voltage supplies based on the workload of all active cores.

120

To demonstrate the effectiveness of the proposed solution, a suite of benchmarks are tested on a

many-core globally asynchronous locally synchronous (GALS) platform. The experiment results

show that the proposed approach can achieve near-optimal power saving under performance con-

straints. Different algorithms are compared in terms of power saving, voltage switching frequency

and the response delay to workload variation. The impact of the number of voltage supplies and

the tuning resolution of voltage regulators on the global optimization are also investigated.

Finally, the dissertation proposes to add an extra dimension on top of the DVFS algorith-

m, which is core scaling. The extra orthogonal dimension brings more flexibility to the algorithm,

and is able to help the algorithm find more energy efficiency solutions than traditional DVFS.

The dissertation addresses the problem of minimizing the power dissipation of many-core systems

under performance constraints by choosing an appropriate number of active cores and per-core

voltage/frequency levels. A genetic algorithm based solution is proposed to solve the problem.

Experiments with real applications show that (1) dynamically scaling the number of active cores

can improve the energy efficiency by 5% to 42% compared with per-core DVFS for different per-

formance requirements; (2) core scaling favors systems with more global voltage supplies and high-

performance leaky process when the performance requirement is loose, while it favors systems with

fewer global voltage supplies and low-power less-leaky process when the performance requirement

is tight; (3) increasing the number of global voltage supplies or leakage ratio can reduce the optimal

core count by 22% and 50%, respectively.

6.2 Future Work

There are quite a few interesting research topics on improving energy efficiency on many-

core processors which are worthwhile for further investigation.

• Implementation of the Proposed DVFS. In Chapter 4, a joint local and global DVFS algorith-

m is proposed and demonstrated to be effective on power saving. It would be interesting to

implement and test the proposed algorithm on real silicon. There are many challenges and

critical design questions to be answered for the physical implementation. For example, (1)

what is the optimal implementation and size for power gates; (2) what is the optimal granu-

larity for power gates, per-cluster, per-core or even per-functional block; (3) what is the trade

121

off between the number of global voltage supplies and the efficiency of power distribution net-

works; (4) what are the possible communication methods between individual cores and global

controller, and what is the best frequency for such whole chip involved communication. To

answer the above questions, more physical design experiments and quantitative analysis are

required.

• Algorithm Design for DVFCS. The algorithm used in Chapter 5 is based on genetic algorithm.

The process for fitness computation naively loops over all possible global voltage settings for

each individual solutions. As the number of global voltage supplies or available voltage

levels increase, the computation time increases exponentially. As a result, the proposed

algorithm in this dissertation is more applicable to static analysis, while hardly to meet real-

time requirements when the number of global voltage supplies and/or available voltage levels

are high. A further investigation on the convex property of energy-frequency relationship,

and approximate optimal solutions may lead to an algorithm with less time complexity.

• Extension of DVFCS. There are two major directions to extend the current DVFCS work

further. The first one is to consider situations with multiple applications. For example, if the

total number of cores required by the optimal mapping for each individual applications are

exceed the number of available cores on the platform, what is the best strategy to balance

the core usage for different applications? If the global voltage settings selected by individual

applications are different, which setting should be used? Another direction is to implement

variation-aware DVFCS. The PVT variation of the available cores on the platform affects

the optimal mapping results. Intuitively, the optimal solution should pick a mapping with

more cores if the available cores are less leaky. However, the quantitative results depend

on the workload characteristic and performance constraints of the targeted application, and

the variation distribution of the available cores. Additionally, an automatic variation-aware

mapping tool is required for the above analysis and also an interesting research topic.

122

Glossary

AES Advanced Encryption Standard. A symmetric encryption standard selected by the U.S. Na-

tional Institute of Standards and Technology based on Rijndael algorithm.

AsAP Asynchronous Array of simple Processors. A parallel DSP processor consisting of a 2-

dimensional mesh array of very simple CPUs clocked independently with each other.

AsAP2 The second generation of AsAP chips which also includes a few specific accelerators (FFT,

Viterbi, Motion Estimation) and shared memory modules. It has a reconfigurable source

synchronous network supporting long-distance interconnects for processors. Per-core DVFS

is also supported for dynamic power savings.

CMOS Complementary Metal-Oxide Semiconductor. Technology manufactured and used in most

modern digital chips.

CMP Chip Multi-processor. A computer architecture which integrates multiple processors into a

single chip to improve processor performance.

CPI Cycles per Instruction. Normally the CPI for pipelined processor is larger than 1 due to the

pipeline hazard or missed Cache fetch.

CPU Central Processing Unit. A digital integrated circuit which is designed to perform general

purpose computations.

DSP Digital Signal Processing or the processors for DSP.

DVFS Dynamic Voltage and Frequency Scaling. A technique allowing processors and functional

blocks to dynamically change their operating voltage and clock frequency corresponding to

123

their workloads. Therefore, it reduces the overall power consumption without introducing

any performance penalty.

DVFCS Dynamic Voltage, Frequency and Core Scaling. A technique allowing many-core pro-

cessors or MPSoC to dynamically change their active processing elements besides operating

voltage and clock frequency in order to save power consumption.

FFT Fast Fourier Transform. An efficient algorithm to compute the discrete Fourier transform

and its inverse.

FIFO First-In First-Out. A buffer queue with in-order operations: the word which is written in

to the buffer first will be read out of the queue first.

FO4 Fanout 4. A method to define the circuit delay using the delay of an inverter with 4 inverters

load.

FPGA Field-Programable Gate Array. A digital integrated circuit which contains an array of

gates which can be programmed to perform a certain function as desired.

GA Genetic Algorithm. A method for solving both constrained and unconstrained optimization

problems based on a natural selection process that mimics biological evolution.

GALS Globally Asynchronous Locally Synchronous. A design methodology in which major design

blocks are synchronous, but interface to other blocks asynchronously.

GPU Graphical Processing Unit. A specialized digital hardware unit that produces a graphical

output for a computing system. It is also used for large-scale parallel computing.

H.264 A standard for video compression. It is also known as MPEG-4 part 10.

IPC Instructions per Cycle. IPC is the reverse of CPI.

Mbps Megabit per Second. A unit of data transfer rate.

MIMD Multiple Instruction Multiple Data. A parallel computer architecture where different in-

structions with different data can be executed simultaneously.

124

MPSoC Multi-Processor Systems-on-Chip. A system-on-chip which uses multiple processors, usu-

ally targeted for embedder applications.

NoC Network on Chip. An on-chip communication architecture which communicates between

modules in the chip using switches/routes, as in the network.

PTM Predictive Technology Model. PTM provides accurate, customizable and predictive model

files for future transistor and interconnect technologies.

PVT Process, Voltage, Temperature. PVT variations are fluctuations in integrated circuits due

to process fabrication variations, variations in the supply voltage, and variations caused by

temperature.

SIMD Single Instruction Multiple Data. A data parallelism technique where one single instruction

can execute multiple data in parallel.

SoC System-on-Chip. An integrated circuit that integrates all necessary electronic components of

a system into a single chip.

Viterbi decoder An algorithm to decode a bitstream that has been encoded using forward error

correction based on a convolutional code, developed by Andrew J. Viterbi in 1967.

VLIW Very Long Instruction Word. A computer architecture which fetches multiple indepen-

dent instructions at the same clock cycle to execute them in parallel, to improve the system

performance.

WCET Worst-Case Execution Time. WCET is the maximum length of time for a task to be

executed on a specific hardware platform.

125

Related publications

1. Bin Liu and Bevan Baas, “Parallel AES Encryption Engines for Many-Core Processor Ar-

rays,” IEEE Transactions on Computers, vol. 62, no. 3, pp. 536–547, March 2013.

2. Brent Bohnenstiehl, Aaron Stillmaker, Jon Pimentel, Timothy Andreas, Bin Liu, Anh Tran,

Emmanuel Adeagbo and Bevan Baas, “KiloCore: A 32 nm 1000-Processor Computational

Array,” Submitted to IEEE Journal of Solid-State Circuits.

3. Bin Liu, Soheil Ghiasi, and Bevan Baas, “Optimizing Power of Many-Core systems by

Exploiting Dynamic Voltage Frequency and Core Scaling,” journal paper in preparation.

4. Bin Liu, Brent Bohnenstiehl, and Bevan Baas, “Scalable Joint Local and Global Dynamic

Voltage and Frequency Scaling for Many-Core systems,” journal paper in preparation.

5. Brent Bohnenstiehl, Aaron Stillmaker, Jon Pimentel, Timothy Andreas, Bin Liu, Anh Tran,

Emmanuel Adeagbo and Bevan Baas, “KiloCore: A 32 nm 1000-Processor Array,” IEEE

HotChips Symposium on High-Performance Chips, (HotChips), August 2016.

6. Brent Bohnenstiehl, Aaron Stillmaker, Jon Pimentel, Timothy Andreas, Bin Liu, Anh Tran,

Emmanuel Adeagbo and Bevan Baas, “A 5.8 pJ/Op 115 Billion Ops/sec, to 1.78 Trillion

Ops/sec 32nm 1000-Processor Array,” IEEE Symposium on VLSI Circuits, June 2016.

7. Bin Liu, Mohammad H. Foroozannejad, Soheil Ghiasi and Bevan Baas, “Optimizing Power

of Many-Core systems by Exploiting Dynamic Voltage Frequency and Core Scaling,” IEEE

International Midwest Symposium on Circuits and Systems (MWSCAS), Aug. 2015.

Best Student Paper, Third Place.

126

8. Bin Liu, Brent Bohnenstiehl and Bevan Baas, “Scalable Hardware-Based Power Management

for Many-Core Systems,” IEEE Asilomar Conference on Signals, Systems and Computers

(ACSSC), Nov. 2014.

9. Bin Liu and Bevan Baas, “Energy-Efficient AES Ciphers on a Fine-Grained Many-Core

System,” Technology and Talent for the 21st Century (TECHCON 2012), Sept. 2012.

10. Bin Liu and Bevan Baas, “A High-Performance Area-Efficient AES Cipher on a Many-Core

Platform,” IEEE Asilomar Conference on Signals, Systems and Computers (ACSSC), Nov.

2011.

Nominated for Best Student Paper.

127

Bibliography

[1] G. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38, p-
p. 114–117, Apr. 1965.

[2] R. Dennard, F. Gaensslen, V. Rideout, E. Bassous, and A. LeBlanc, “Design of ion-implanted
MOSFET’s with very small physical dimensions,” IEEE Journal of Solid-State Circuits, vol. 9,
pp. 256–268, Oct. 1974.

[3] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands, K. Keutzer, D. Patterson,
W. Plishker, J. Shalf, S. Williams, and K. Yelick, “The landscape of parallel computing
research: A view from berkeley,” tech. rep., EECS Department, University of California,
Berkeley, Dec. 2006.

[4] S. Borkar, “Design challenges of technology scaling,” IEEE Micro, vol. 19, no. 4, pp. 23–29,
1999.

[5] M. Bohr, “A 30 year retrospective on dennard’s MOSFET scaling paper,” IEEE Solid-State
Circuits Society Newsletter, vol. 12, no. 1, pp. 11–13, 2007.

[6] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De, “Parameter vari-
ations and impact on circuits and microarchitecture,” in 40th Annual Design Automation
Conference, pp. 338–342, 2003.

[7] R. Dennard, J. Cai, and A. Kumar, “A perspective on today’s scaling challenges and possible
future directions,” Solid-State Electronics, vol. 51, pp. 518 – 525, Mar. 2007.

[8] A. Danowitz, K. Kelley, J. Mao, J. Stevenson, and M. Horowitz, “CPU DB: Recording
microprocessor history,” ACM Queue - Processors, vol. 10, pp. 10:10–10:27, Apr. 2012.

[9] P. Gelsinger, “Microprocessors for the new millennium: Challenges, opportunities, and new
frontiers,” in Proc. 2001 IEEE International Solid-State Circuits Conference, pp. 22–25, Feb.
2001.

[10] S. Rusu, S. Tam, H. Muljono, D. Ayers, and J. Chang, “A dual-core multi-threaded xeon
processor with 16mb l3 cache,” in Proc. 2006 IEEE International Solid-State Circuits Con-
ference, pp. 315–324, Feb. 2006.

[11] M. Golden, S. Arekapudi, G. Dabney, M. Haertel, S. Hale, L. Herlinger, Y. Kim, K. McGrath,
V. Palisetti, and M. Singh, “A 2.6ghz dual-core 64b x86 microprocessor with DDR2 memory
support,” in Proc. 2006 IEEE International Solid-State Circuits Conference, pp. 325–332,
Feb. 2006.

128

[12] J. Hart, S. Choe, L. Cheng, C. Chou, A. Dixit, K. Ho, J. Hsu, K. Lee, and J. Wu, “Imple-
mentation of a 4th-generation 1.8ghz dual-core SPARC v9 microprocessor,” in Proc. 2005
IEEE International Solid-State Circuits Conference, pp. 186–592, Feb. 2005.

[13] J. Friedrich, B. McCredie, N. James, B. Huott, B. Curran, E. Fluhr, G. Mittal, E. Chan,
Y. Chan, D. Plass, S. Chu, H. Le, L. Clark, J. Ripley, S. Taylor, J. Dilullo, and M. Lanzerotti,
“Design of the power6 microprocessor,” in Proc. 2007 IEEE International Solid-State Circuits
Conference, pp. 96–97, Feb. 2007.

[14] J. Dorsey, S. Searles, M. Ciraula, S. Johnson, N. Bujanos, D. Wu, M. Braganza, S. Meyers,
E. Fang, and R. Kumar, “An integrated quad-core opteron processor,” in Proc. 2007 IEEE
International Solid-State Circuits Conference, pp. 102–103, Feb. 2007.

[15] B. Stackhouse, B. Cherkauer, M. Gowan, P. Gronowski, and C. Lyles, “A 65nm 2-billion-
transistor quad-core itanium processor,” in Proc. 2008 IEEE International Solid-State Cir-
cuits Conference, pp. 92–598, Feb. 2008.

[16] R. Kuppuswamy, S. R. Sawant, S. Balasubramanian, P. Kaushik, N. Natarajan, and J. D.
Gilbert, “Over one million TPCC with a 45nm 6-core xeon cpu,” in Proc. 2009 IEEE Inter-
national Solid-State Circuits Conference, pp. 70–71, Feb. 2009.

[17] U. G. Nawathe, M. Hassan, L. Warriner, K. Yen, B. Upputuri, D. Greenhill, A. Kumar,
and H. Park, “An 8-core 64-thread 64b power-efficient SPARC soc,” in Proc. 2007 IEEE
International Solid-State Circuits Conference, pp. 108–590, Feb. 2007.

[18] H. Sutter, “The free lunch is over: A fundamental turn toward concurrency in software,”
Aug. 2009. http://www.gotw.ca/publications/concurrency-ddj.htm.

[19] M. Hill and M. Marty, “Amdahl’s law in the multicore era,” Computer, vol. 41, pp. 33–38,
July 2008.

[20] H. Esmaeilzadeh, E. Blem, R. Amant, K. Sankaralingam, and D. Burger, “Power challenges
may end the multicore era,” Commun. ACM, vol. 56, pp. 93–102, Feb. 2013.

[21] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger, “Dark silicon and
the end of multicore scaling,” in Proc. 38th Annual International Symposium on Computer
Architecture, pp. 365–376, June 2011.

[22] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay, M. Reif, L. Bao,
J. Brown, M. Mattina, C. C. Miao, C. Ramey, D. Wentzlaff, W. Anderson, E. Berger, N. Fair-
banks, D. Khan, F. Montenegro, J. Stickney, and J. Zook, “TILE64 - processor: A 64-core soc
with mesh interconnect,” in Proc. 2008 IEEE International Solid-State Circuits Conference,
pp. 88–598, Feb. 2008.

[23] E. Semiconductor, “TILE-Gx72 processor product brief,” Feb. 2015. http://www.tilera.

com/files/drim__TILE-Gx8072_PB041-04_WEB_7666.pdf.

[24] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, A. Singh, T. Jacob,
S. Jain, V. Erraguntla, C. Roberts, Y. Hoskote, N. Borkar, and S. Borkar, “An 80-tile sub-
100-w teraflops processor in 65-nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 43,
pp. 29–41, Jan. 2008.

129

[25] J. Howard, S. Dighe, S. Vangal, G. Ruhl, N. Borkar, S. Jain, V. Erraguntla, M. Konow,
M. Riepen, M. Gries, G. Droege, T. Lund-Larsen, S. Steibl, S. Borkar, V. De, and R. V. D.
Wijngaart, “A 48-core ia-32 processor in 45 nm CMOS using on-die message-passing and
DVFS for performance and power scaling,” IEEE Journal of Solid-State Circuits, vol. 46,
pp. 173–183, Jan. 2011.

[26] B. de Dinechin, R. Ayrignac, P. Beaucamps, P. Couvert, B. Ganne, P. de Massas, F. Jacquet,
S. Jones, N. Chaisemartin, F. Riss, and T. Strudel, “A clustered manycore processor archi-
tecture for embedded and accelerated applications,” in Proc. 2013 IEEE High Performance
Extreme Computing Conference, pp. 1–6, 2013.

[27] Z. Yu, M. Meeuwsen, R. Apperson, O. Sattari, M. Lai, J. Webb, E. Work, D. Truong,
T. Mohsenin, and B. Baas, “AsAP: An asynchronous array of simple processors,” IEEE
Journal of Solid-State Circuits, vol. 43, pp. 695–705, Mar. 2008.

[28] D. Truong, W. Cheng, T. Mohsenin, Z. Y. T. Jacobson, G. Landge, M. Meeuwsen, C. Watnik,
P. Mejia, A. Tran, J. Webb, E. Work, Z. Xiao, and B. Baas, “A 167-processor computational
array for highly-efficient DSP and embedded application processing,” in Proc. 2008 IEEE
HotChips Symposium on High-Performance Chips, Aug. 2008.

[29] B. Bohnenstiehl, A. Stillmaker, J. Pimentel, T. Andreas, B. Liu, A. Tran, E. Adeagbo, and
B. M. Baas, “A 5.8 pj/op 115 billion ops/sec, to 1.78 trillion ops/sec 32nm 1000-processor
array,” in Proc. IEEE Symp. VLSI Circuits, June 2016.

[30] M. Meeuwsen, O. Sattari, and B. Baas, “A full-rate software implementation of an IEEE
802.11a compliant digital baseband transmitter,” in Proc. 2004 IEEE Workshop on Signal
Processing Systems, Oct. 2004.

[31] A. Tran, D. Truong, and B. Baas, “A complete real-time 802.11a baseband receiver imple-
mented on an array of programmable processors,” in Proc. 2008 IEEE Asilomar Conference
on Signals, Systems and Computers, pp. 165–170, Oct. 2008.

[32] A. Tran, D. Truong, and B. Baas, “A GALS many-core heterogeneous DSP platform with
source-synchronous on-chip interconnection network,” in Proc. 3rd ACM/IEEE International
Symposium on Networks-on-Chip, May. 2009.

[33] Z. Xiao and B. Baas, “A high-performance parallel CAVLC encoder on a fine-grained many-
core system,” in Proc. 2008 International Conference on Computer Design, pp. 248–254, Oct.
2008.

[34] S. Le, “A fine grained many-core h.264 video encoder,” Master’s thesis, University of Californi-
a, Davis, CA, USA, Mar. 2010. http://www.ece.ucdavis.edu/vcl/pubs/theses/2010-03.

[35] Z. Xiao and B. Baas, “A 1080p H.264/AVC baseline residual encoder for a fine-grained many-
core system,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 21,
pp. 890–902, july 2011.

[36] Z. Xiao, S. Le, and B. Baas, “A fine-grained parallel implementation of a H.264/AVC encoder
on a 167-processor computational platform,” in Proc. 2011 IEEE Asilomar Conference on
Signals, Systems and Computers, Nov. 2011.

130

[37] D. Truong and B. Baas, “Massively parallel processor array for mid-/back-end ultrasound
signal processing,” in Proc. 2010 IEEE Biomedical Circuits and Systems Conference, Nov.
2010.

[38] B. Liu and B. Baas, “A high-performance area-efficient AES cipher on a many-core platform,”
in Proc. 45th Asilomar Conference on Signals, Systems and Computers, pp. 2058–2062, Nov.
2011.

[39] B. Liu and B. Baas, “Energy-efficient AES ciphers on a fine-grained many-core system,” in
Proc. 2012 Technology and Talent for the 21st Century, Sept. 2011.

[40] B. Liu and B. Baas, “Parallel AES encryption engines for many-core processor arrays,” IEEE
Transactions on Computers, vol. 62, pp. 536–547, Mar. 2013.

[41] A. Stillmaker, L. Stillmaker, and B. Baas, “Fine-grained energy-efficient sorting on a many-
core processor array,” in Proc. 18th IEEE International Conference on Parallel and Distribut-
ed Systems, pp. 652–659, dec. 2012.

[42] B. Bohnenstiehl and B. Baas, “A software LDPC decoder implemented on a many-core array
of programmable processors,” in Proc. 49th Asilomar Conference on Signals, Systems and
Computers, pp. 192–196, Nov. 2015.

[43] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Intergrated Circuits – A Design
Perspective. New Jersey, NJ: Prentice-Hall, second ed., 2003.

[44] H. Veendrick, “Short-circuit dissipation of static CMOS circuitry and its impact on the design
of buffer circuits,” IEEE Journal of Solid-State Circuits, vol. 19, pp. 468–473, Aug. 1984.

[45] S. Rusu, “Power and leakage reduction in the nanoscale era,” Aug. 2008. http://www.ewh.

ieee.org/r6/scv/ssc/Aug08.pdf.

[46] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, “Leakage current mechanisms and
leakage reduction techniques in deep-submicrometer CMOS circuits,” Proceedings of the
IEEE, vol. 91, pp. 305–327, Feb. 2003.

[47] N. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. Hu, M. Irwin, M. Kandemir,
and V. Narayanan, “Leakage current: Moore’s law meets static power,” Computer, vol. 36,
pp. 68–75, Dec. 2003.

[48] Q. Wu, M. Pedram, and X. Wu, “Clock-gating and its application to low power design of
sequential circuits,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and
Applications, vol. 47, pp. 415–420, Mar. 2000.

[49] E. Friedman, “Clock distribution networks in synchronous digital integrated circuits,” Pro-
ceedings of the IEEE, vol. 89, pp. 665–692, May 2001.

[50] J. Shin, Y.and Seomun, K. Choi, and T. Sakurai, “Power gating: Circuits, design method-
ologies, and best practice for standard-cell VLSI designs,” ACM Transactions on Design
Automation of Electronic Systems, vol. 15, pp. 28:1–28:37, Oct. 2010.

[51] H. Jiang, M. Marek-Sadowska, and S. Nassif, “Benefits and costs of power-gating technique,”
in Proc. 2005 IEEE International Conference on Computer Design, pp. 559–566, Oct. 2005.

131

[52] S. Kim, S. Kosonocky, and D. Knebel, “Understanding and minimizing ground bounce dur-
ing mode transition of power gating structures,” in Proc. 2003 ACM/IEEE International
Symposium on Low Power Electronics and Design, pp. 22–25, Aug. 2003.

[53] K. Usami and N. Ohkubo, “A design approach for fine-grained run-time power gating using
locally extracted sleep signals,” in Proc. 2006 IEEE International Conference on Computer
Design, pp. 155–161, Oct. 2006.

[54] J. Lee and N. Kim, “Analyzing potential throughput improvement of power- and thermal-
constrained multicore processors by exploiting DVFS and PCPG,” IEEE Transactions on
Very Large Scale Integration Systems, vol. 20, pp. 225–235, Feb. 2012.

[55] L. Wei, Z. Chen, M. Johnson, K. Roy, and V. De, “Design and optimization of low voltage
high performance dual threshold cmos circuits,” in Proc. 35th Annual Design Automation
Conference, pp. 489–494, June 1998.

[56] K. Usami, N. Kawabe, M. Koizumi, K. Seta, and T. Furusawa, “Automated selective multi-
threshold design for ultra-low standby applications,” in Proc. 2002 ACM/IEEE International
Symposium on Low Power Electronics and Design, pp. 202–206, Aug. 2002.

[57] K. Nose and T. Sakurai, “Optimization of vdd and vth for low-power and high-speed appli-
cations,” in Proc. 2000. ACM/IEEE Asia and South Pacific Design Automation Conference,
pp. 469–474, June 2000.

[58] A. Srivastava and D. Sylvester, “Minimizing total power by simultaneous vdd/vth assign-
ment,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 23, pp. 665–677, May 2004.

[59] D. Nguyen, A. Davare, M. Orshansky, D. Chinnery, B. Thompson, and K. Keutzer, “Min-
imization of dynamic and static power through joint assignment of threshold voltages and
sizing optimization,” in Proc. 2003 ACM/IEEE International Symposium on Low Power
Electronics and Design, pp. 158–163, Aug. 2003.

[60] A. Keshavarzi, S. Narendra, S. Borkar, C. Hawkins, K. Roy, and V. De, “Technology scaling
behavior of optimum reverse body bias for standby leakage power reduction in CMOS IC’s,”
in Proc. 1999 ACM/IEEE International Symposium on Low Power Electronics and Design,
pp. 252–254, Aug. 1999.

[61] L. Clark, M. Morrow, and W. Brown, “Reverse-body bias and supply collapse for low effective
standby power,” IEEE Transactions on Very Large Scale Integration Systems, vol. 12, no. 9,
pp. 947–956, 2004.

[62] A. Keshavarzi, S. Ma, S. Narendra, B. Bloechel, K. Mistry, T. Ghani, S. Borkar, and V. De,
“Effectiveness of reverse body bias for leakage control in scaled dual vt CMOS ICs,” in Proc.
2001 ACM/IEEE International Symposium on Low Power Electronics and Design, pp. 207–
212, Aug. 2001.

[63] S. Narendra, D. Antoniadis, and V. De, “Impact of using adaptive body bias to compensate
die-to-die vt variation on within-die vt variation,” in Proc. 1999 ACM/IEEE International
Symposium on Low Power Electronics and Design, pp. 229–232, Aug. 1999.

132

[64] J. Tschanz, J. Kao, S. Narendra, R. Nair, D. Antoniadis, A. Chandrakasan, and V. De,
“Adaptive body bias for reducing impacts of die-to-die and within-die parameter variations
on microprocessor frequency and leakage,” IEEE Journal of Solid-State Circuits, vol. 37,
pp. 1396–1402, Nov. 2002.

[65] T. Chen and S. Naffziger, “Comparison of adaptive body bias (ABB) and adaptive supply
voltage (ASV) for improving delay and leakage under the presence of process variation,” IEEE
Transactions on Very Large Scale Integration Systems, vol. 11, pp. 888–899, Oct. 2003.

[66] A. Chandrakasan, S. Sheng, and R. Brodersen, “Low-power CMOS digital design,” IEEE
Journal of Solid-State Circuits, vol. 27, pp. 473–484, Apr. 1992.

[67] A. Chandrakasan, V. Gutnik, and T. Xanthopoulos, “Data driven signal processing: an
approach for energy efficient computing,” in Proc. 1996 IEEE International Symposium on
Low-Power Electronics and Design, pp. 347–352, Aug. 1996.

[68] A. Sinha and A. Chandrakasan, “Dynamic voltage scheduling using adaptive filtering of
workload traces,” in Proc. 14th IEEE International Conference on VLSI Design, pp. 221–
226, Jan. 2001.

[69] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez, “Power-aware scheduling for periodic
real-time tasks,” IEEE Transactions on Computers, vol. 53, pp. 584–600, May 2004.

[70] D. Zhu, R. Melhem, and B. Childers, “Scheduling with dynamic voltage/speed adjustment
using slack reclamation in multiprocessor real-time systems,” IEEE Transactions on Parallel
and Distributed Systems, vol. 14, pp. 686–700, July 2003.

[71] Q. Wu, P. Juang, M. Martonosi, and D. Clark, “Formal online methods for voltage/frequency
control in multiple clock domain microprocessors,” in Proc. 11th ACM International Confer-
ence on Architectural Support for Programming Languages and Operating Systems, pp. 248–
259, Dec. 2004.

[72] A. Alimonda, S. Carta, A. Acquaviva, A. Pisano, and L. Benini, “A feedback-based ap-
proach to DVFS in data-flow applications,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 28, pp. 1691–1704, Nov. 2009.

[73] P. Choudhary and D. Marculescu, “Hardware based frequency/voltage control of voltage
frequency island systems,” in Proc. 4th IEEE International Conference Hardware/Software
Codesign and System Synthesis, pp. 34–39, Oct. 2006.

[74] B. Liu, B. Bohnenstiehl, and B. Baas, “Scalable hardware-based power management for many-
core systems,” in Proc. 48th IEEE Asilomar Conference on Signals, Systems and Computers,
pp. 1834–1838, Nov. 2014.

[75] D. Marculescu, “On the use of microarchitecture-driven dynamic voltage scaling,” 2000.

[76] S. Ghiasi, J. Casmira, and D. Grunwald, “Using IPC variation in workloads with externally
specified rates to reduce power consumption,” in In Workshop on Complexity Effective Design,
2000.

[77] G. Dhiman and T. Rosing, “Dynamic voltage frequency scaling for multi-tasking systems
using online learning,” in Proc. 2007 ACM/IEEE International Symposium on Low Power
Electronics and Design, pp. 207–212, Aug. 2007.

133

[78] B. Zhai, R. Dreslinski, D. Blaauw, T. Mudge, and D. Sylvester, “Energy efficient near-
threshold chip multi-processing,” in Proc. 2007 ACM/IEEE International Symposium on
Low Power Electronics and Design, pp. 32–37, Aug. 2007.

[79] R. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge, “Near-threshold
computing: Reclaiming moore’s law through energy efficient integrated circuits,” Proceedings
of the IEEE, vol. 98, pp. 253–266, Feb. 2010.

[80] B. Zhai, D. Blaauw, D. Sylvester, and S. Hanson, “A sub-200mv 6t SRAM in 0.13µm CMOS,”
in Proc. 2007 IEEE International Solid-State Circuits Conference, pp. 332–606, Feb. 2007.

[81] B. Zhai, S. Pant, L. Nazhandali, S. Hanson, J. Olson, A. Reeves, M. Minuth, R. Helfand,
T. Austin, D. Sylvester, and D. Blaauw, “Energy-efficient subthreshold processor design,”
IEEE Transactions on Very Large Scale Integration Systems, vol. 17, pp. 1127–1137, Aug.
2009.

[82] J. Li and J. Martinez, “Dynamic power-performance adaptation of parallel computation on
chip multiprocessors,” in Proc. 12th IEEE International Symposium on High Performance
Computer Architecture, pp. 77–87, Feb. 2006.

[83] J. Lee, V. Sathisha, M. Schulte, K. Compton, and N. Kim, “Improving throughput of power-
constrained GPUs using dynamic voltage/frequency and core scaling,” in Proc. 20th IEEE
International Conference on Parallel Architectures and Compilation Techniques, pp. 111–120,
Oct. 2011.

[84] B. Liu, M. Foroozannejad, S. Ghiasi, and B. Baas, “Optimizing power of many-core systems
by exploiting dynamic voltage, frequency and core scaling,” in Proc. 58th IEEE International
Midwest Symposium on Circuits and Systems, Aug. 2015.

[85] F. Pollack, “New microarchitecture challenges in the coming generations of CMOS process
technologies,” in Proc. 32nd Annual ACM/IEEE International Symposium on Microarchitec-
ture, Nov. 1999.

[86] S. Borkar, “Thousand core chips: a technology perspective,” in Proc. 44th Annual Design
Automation Conference, pp. 746–749, June 2007.

[87] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis, “Evaluating MapRe-
duce for multi-core and multiprocessor systems,” in Proc. 13th IEEE International Sympo-
sium on High Performance Computer Architecture, pp. 13–24, Feb. 2007.

[88] D. Truong, W. Cheng, T. Mohsenin, Z. Yu, T. Jacobson, G. Landge, M. Meeuwsen, C. Wat-
nik, P. Mejia, A. Tran, J. Webb, E. Work, Z. Xiao, and B. Baas, “A 167-processor 65 nm
computational platform with per-processor dynamic supply voltage and dynamic clock fre-
quency scaling,” in Proc. 2008 IEEE Symposium on VLSI Circuits, pp. 22–23, June 2008.

[89] A. Tran, D. Truong, and B. Baas, “A reconfigurable source-synchronous on-chip network for
GALS many-core platforms,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 29, pp. 897–910, June 2010.

[90] R. Apperson, Z. Yu, M. Meeuwsen, T. Mohsenin, and B. Baas, “A scalable dual-clock FIFO
for data transfers between arbitrary and haltable clock domains,” IEEE Transactions on Very
Large Scale Integration Systems, vol. 15, pp. 1125–1134, Oct. 2007.

134

[91] D. Truong, W. Cheng, T. Mohsenin, Z. Yu, A. Jacobson, G. Landge, M. Meeuwsen, A. Tran,
Z. Xiao, E. Work, J. Webb, P. Mejia, and B. Baas, “A 167-processor computational platform
in 65 nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 44, pp. 1130–1144, Apr. 2009.

[92] R. Jevtic, H. P. Le, M. Blagojevic, S. Bailey, K. Asanovic, E. Alon, and B. Nikolic, “Per-core
DVFS with switched-capacitor converters for energy efficiency in manycore processors,” IEEE
Transactions on Very Large Scale Integration Systems, vol. 23, pp. 723–730, Apr. 2015.

[93] M. Hashemi, M. Foroozannejad, S. Ghiasi, and C. Etzel, “FORMLESS: Scalable utilization
of embedded manycores in streaming applications,” pp. 71–78, May 2012.

[94] B. Baas, Z. Yu, M. Meeuwsen, O. Sattari, R. Apperson, E. Work, J. Webb, M. Lai, T. Mohs-
enin, D. Truong, and J. Cheung, “AsAP: A fine-grained many-core platform for DSP appli-
cations,” IEEE Micro, vol. 27, pp. 34–45, Mar. 2007.

[95] E. W. Work, “Algorithms and software tools for mapping arbitrarily connected tasks onto
an asynchronous array of simple processors,” Master’s thesis, University of California, Davis,
CA, USA, Sept. 2007.

[96] NIST, “Advanced encryption standard (AES),” Nov. 2001. http://csrc.nist.gov/

publications/fips/fips197/fips-197.pdf.

[97] NIST, “Data encryption standard (DES),” Oct. 1999. http://csrc.nist.gov/

publications/fips/fips46-3/fips46-3.pdf.

[98] I. Verbauwhede, P. Schaumont, and H. Kuo, “Design and performance testing of a 2.29 gb/s
rijndael processor,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 569–572, Mar. 2003.

[99] D. Mukhopadhyay and D. Roychowdhury, “An efficient end to end design of rijndael cryp-
tosystem in 0.18 µm CMOS,” in Proc. 18th IEEE International Conference on VLSI Design,
pp. 405–410, Jan. 2005.

[100] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach. San Fran-
cisco, CA: Morgan Kaufmann, fourth ed., 2007.

[101] S. Morioka and A. Satoh, “A 10-gbps full-AES crypto design with a twisted BDD s-box
architecture,” IEEE Transactions on Very Large Scale Integration Systems, vol. 12, pp. 686–
691, July 2004.

[102] J. Daemen and V. Rijmen, The Design of Rijndael. New York, NY: Springer-Verlag, 2002.

[103] A. Hodjat and I. Verbauwhede, “Area-throughput trade-offs for fully pipelined 30 to 70 gbits/s
AES processors,” IEEE Transactions on Computers, vol. 55, pp. 366–372, Apr. 2006.

[104] S. Mathew, F. Sheikh, M. Kounavis, S. Gueron, A. Agarwal, S. Hsu, H. Kaul, M. Anders,
and R. Krishnamurthy, “53 gbps native GF((24)2) composite-field AES-encrypt/decrypt ac-
celerator for content-protection in 45 nm high-performance microprocessors,” IEEE Journal
of Solid-State Circuits, vol. 46, pp. 767–776, Apr. 2011.

[105] A. Hodjat and I. Verbauwhede, “A 21.54 gbits/s fully pipelined AES processor on FPGA,” in
Proc. 12th IEEE Symposium on Field-Programmable Custom Computing Machines, pp. 308–
309, Apr. 2004.

135

[106] C.-J. Chang, C.-W. Huang, K.-H. Chang, Y.-C. Chen, and C.-C. Hsieh, “High throughput
32-bit AES implementation in FPGA,” in IEEE Asia Pacific Conference on Circuits and
Systems, pp. 1806–1809, Nov. 2008.

[107] J. Granado-Criado, M. Vega-Rodriguez, J. Sanchez-Perez, and J. Gomez-Pulido, “A new
methodology to implement the AES algorithm using partial and dynamic reconfiguration,”
Integration, the VLSI Journal, vol. 43, no. 1, pp. 72–80, 2010.

[108] S. Qu, G. Shou, Y. Hu, Z. Guo, and Z. Qian, “High throughput, pipelined implementation of
AES on FPGA,” in Proc. 2009 IEEE International Symposium on Information Engineering
and Electronic Commerce, pp. 542–545, May 2009.

[109] “International technology roadmap for semiconductors, design,” 2009. http://www.itrs.

net/Links/2009ITRS/2009Chapters_2009Tables/2009_Design.pdf.

[110] M. Matsui and J. Nakajima, “On the power of bitslice implementation on intel core2 pro-
cessor,” in Cryptographic Hardware and Embedded Systems, vol. 4727 of Lecture Notes in
Computer Science, pp. 121–134, 2007.

[111] E. Biham, “A fast new DES implementation in software,” in Fast Software Encryption,
vol. 1267 of Lecture Notes in Computer Science, pp. 260–272, 1997.

[112] D. Bernstein and P. Schwabe, “New AES software speed records,” in Progress in Cryptology,
vol. 5365 of Lecture Notes in Computer Science, pp. 322–336, 2008.

[113] “Supplemental streaming SIMD extensions 3.” http://en.wikipedia.org/wiki/SSSE3.

[114] E. Kasper and P. Schwabe, “Faster and timing-attack resistant AES-GCM,” in Cryptographic
Hardware and Embedded Systems, vol. 5747 of Lecture Notes in Computer Science, pp. 1–17,
2009.

[115] S. Gueron, “Intel advanced encryption standard (AES) instructions set,” Jan. 2010.

[116] T. Wollinger, M. Wang, J. Cuajardo, and C. Paar, “How well are high-end DSPs suited for
the AES algorithm?,” in The Third AES Candidate Conference, pp. 94–105, Apr. 2000.

[117] S. Manavski, “CUDA compatible GPU as an efficient hardware accelerator for AES cryptog-
raphy,” in Proc. 2007 IEEE International Conference on Signal Processing and Communica-
tions, pp. 65–68, Nov. 2007.

[118] Z. Yu and B. Baas, “A low-area multi-link interconnect architecture for GALS chip multipro-
cessors,” IEEE Transactions on Very Large Scale Integration Systems, vol. 18, pp. 750–762,
May 2010.

[119] W. Zhao and Y. Cao, “New generation of predictive technology model for sub-45 nm early
design exploration,” IEEE Transactions on Electron Devices, vol. 53, pp. 2816–2823, Nov.
2006.

[120] A. Stillmaker, “Exploration of technology scaling of CMOS circuits from 180 nm to 22 nm
using PTM models in HSPICE,” Technical Report UC Davis, June 2011.

136

[121] S. Mathew, S. Satpathy, V. Suresh, M. Anders, H. Kaul, A. Agarwal, S. Hsu, G. Chen, and
R. Krishnamurthy, “340 mv - 1.1 v, 289 gbps/w, 2090-gate nano AES hardware accelerator
with area-optimized encrypt/decrypt GF((24)2) polynomials in 22 nm tri-gate CMOS,” IEEE
Journal of Solid-State Circuits, vol. 50, pp. 1048–1058, Apr. 2015.

[122] Y. Zhang, K. Yang, M. Saligane, D. Blaauw, and D. Sylvester, “A compact 446 gbps/w AES
accelerator for mobile soc and iot in 40nm,” in 2016 IEEE Symposium on VLSI Circuits,
pp. 1–2, June 2016.

[123] B. Bohnenstiehl, A. Stillmaker, J. Pimentel, T. Andreas, B. Liu, A. Tran, E. Adeagbo, and
B. M. Baas, “Kilocore: A 32 nm 1000-processor array,” in Proc. IEEE HotChips Symposium
on High-Performance Chips (HotChips), Aug. 2016.

[124] W. Cheng and B. Baas, “Dynamic voltage and frequency scaling circuits with two supply
voltages,” in Proc. 2008 IEEE International Symposium on Circuits and Systems, pp. 1236–
1239, May 2008.

[125] W. Kim, M. Gupta, G.-Y. Wei, and D. Brooks, “System level analysis of fast, per-core
DVFS using on-chip switching regulators,” in Proc. 14th International Symposium on High
Performance Computer Architecture, pp. 123–134, Feb. 2008.

[126] D. Mosse, H. Aydin, B. Childers, and R. Melhem, “Compiler-assisted dynamic power-aware
scheduling for real-time applications,” in Workshop on Compilers and Operating Systems for
Low Power, 2000.

[127] D. Zhu, D. Mosse, and R. Melhem, “Power-aware scheduling for and/or graphs in real-time
systems,” IEEE Transactions on Parallel and Distributed Systems, vol. 15, pp. 849–864, Sept.
2004.

[128] K. Choi, R. Soma, and M. Pedram, “Fine-grained dynamic voltage and frequency scaling
for precise energy and performance tradeoff based on the ratio of off-chip access to on-chip
computation times,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 24, pp. 18–28, Jan. 2005.

[129] U. Ogras, R. Marculescu, and D. Marculescu, “Variation-adaptive feedback control for
networks-on-chip with multiple clock domains,” in Proc. 45th Annual Design Automation
Conference, pp. 614–619, June 2008.

[130] S. Garg, D. Marculescu, and R. Marculescu, “Custom feedback control: Enabling truly s-
calable on-chip power management for MPSoCs,” in Proc. 2010 ACM/IEEE International
Symposium on Low-Power Electronics and Design, pp. 425–430, Aug. 2010.

[131] J. Lee and N. Kim, “Optimizing throughput of power- and thermal-constrained multicore
processors using DVFS and per-core power-gating,” in Proc. 46th Annual Design Automation
Conference, pp. 47–50, July 2009.

[132] V. Gutnik and A. Chandrakasan, “Embedded power supply for low-power dsp,” IEEE Trans-
actions on Very Large Scale Integration Systems, vol. 5, no. 4, pp. 425–435, 1997.

[133] W. Cheng, “Approaches and designs of dynamic voltage and frequency scaling,” Master’s
thesis, University of California, Davis, CA, USA, Jan. 2008.

137

[134] Z. Yu, High Performance and Energy Efficient Multi-core Systems for DSP Applications. PhD
thesis, University of California, Davis, CA, USA, Oct. 2007.

[135] S. Borkar and A. Chien, “The future of microprocessors,” Communications of the ACM,
pp. 67–77, 2011.

[136] L. Wei, Z. Chen, K. Roy, M. Johnson, Y. Ye, and V. De, “Design and optimization of dual-
threshold circuits for low-voltage low-power applications,” IEEE Transactions on Very Large
Scale Integration Systems, vol. 7, pp. 16–24, Mar. 1999.

[137] D. Goldberg, “Genetic algorithms in search, optimization, and machine learning,” 1989.

[138] M. Butler, “AMD Bulldozer Core - a new approach to multithreaded compute performance
for maximum efficiency and throughput,” in Proc. IEEE HotChips Symposium on High-
Performance Chips (HotChips), Aug. 2010.

138

