
A CONFIGURABLE H.265-COMPATIBLE MOTION

ESTIMATION ACCELERATOR ARCHITECTURE

SUITABLE FOR REALTIME 4K VIDEO ENCODING

By

MICHAEL BRALY
B.S. (Harvey Mudd College) May, 2009

THESIS

Submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE

in

Electrical and Computer Engineering

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Chair, Dr. Bevan M. Baas

Member, Dr. Rajeevan Amirtharajah

Member, Dr. Soheil Ghiasi

Committee in charge
2015

– i –

© Copyright by Michael Braly 2015
All Rights Reserved

Abstract

The design for a second generation motion estimation accelerator is presented

and demonstrated as suitable for H.265/HEVC (MEACC2). Motion estimation is the

most computationally intensive task in video encoding, and its share of the process-

ing load for video coding has continued to increase with the release of new video

formats and coding standards, such as Digital 4K and H.265/HEVC. MEACC2 has

two 4 KB frame memories necessary to hold the ACT and REF frames, designed us-

ing a Standard Cell Memory technique, with line-based pixel write, and block-based

pixel accesses. It computes 16 pixel sum absolute differences (SADs) per cycle, in a

4x4 block, pipelined to take advantage of the high throughput block pixel memories.

MEACC2 also continues to support configurable search patterns and threshold-based

early termination. MEACC2 is independently clocked, can sustain a 812 MHz op-

erating frequency and occupies approximately 1.041 mm2 post place and route in a

65 nm CMOS technology node. Taken together, MEACC2 can sustain a throughput

of 105 MPixels/s while encoding the video stream johnny 60 with a hexagonal ’ABA’

pattern with no early termination, as its worst performance, which is sufficient to

encode 720p video at 110 frames per second (FPS). Multiple search algorithms are

run against a battery of 6 video sequences using MEACC2. These runs demonstrate

the adaptability and suitability of MEACC2 for video coding in H.265/HEVC at high

throughput, and also demonstrate the efficacy and tradeoff present in a novel search

pattern algorithm, 12-pt Circular Search.

– ii –

Acknowledgments

I would like to thank my adviser, Professor Bevan Baas. In 2009, he was willing

to take a chance on me, when it seemed like no one else would. His advice, teaching, and

example, have helped me build something I am proud of, and the lessons I have learned at

UC Davis have continued to help me in my life in industry. I would also thank my parents,

who have supported me always, and have allowed me to forge my own path in life, one that

I don’t think any of us would have imagined when I was still growing up, out in East Davis.

Thank you to Trevin, Aaron, John, Brent, and Eman. You guys are awesome, and were

always willing to chat about research, even though I was the only one doing any sort of

video processing at all! An additional thank you to Aaron, for taking the time to do the

final synthesis and place and route flows, and then going above and beyond to play with

the density settings to find the optimal P&R result. Finally, thank you Lizzie. For being

so very patient.

– iii –

Contents

Abstract ii

Acknowledgments iii

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Project Goals . 2
1.2 Contributions . 2
1.3 Overview . 3

2 Digital Video Compression 4
2.1 Video Coding Terms in Historical Context from H.261 to H.265 5

2.1.1 H.261 . 5
2.1.2 H.262 . 8
2.1.3 H.264 . 9
2.1.4 H.265 . 10

2.2 H.264 and H.265 in Depth . 13
2.2.1 Macroblocks and Coding Units . 14
2.2.2 Coding Trees . 14
2.2.3 Slices and Tiles . 16

2.3 Block Motion Algorithms . 16
2.3.1 Full Search . 16
2.3.2 Pattern Search . 17

2.4 Video Formats . 19
2.5 Decoders . 23

3 The AsAP Platform 25
3.1 Generalized Interface . 25
3.2 Scalable Mesh . 27

3.2.1 Circuit Switched Network . 27
3.3 On-Chip External Memory . 28
3.4 Power Scaling . 28

– iv –

4 Related Work 29
4.1 Early Termination . 29
4.2 Search Patterns . 30
4.3 Frame Memory . 32

4.3.1 Standard Cell Memories . 33
4.3.2 Reference Frame Compression . 34

4.4 Accelerating Motion Estimation . 35
4.4.1 Software Baseline Encoder . 35
4.4.2 Dedicated SAD Instructions for CPUs, Embedded Compute Acceler-

ators . 36
4.4.3 GPU-Based Implementations . 36
4.4.4 ASIC Designs . 38

4.5 Comparative Performance . 42

5 ME2 Architecture 44
5.1 Instruction Set . 44

5.1.1 Register Input Instructions . 46
5.1.2 Pixel Input Instructions . 53
5.1.3 Pattern Memory Input Instructions 54
5.1.4 Output Instructions . 58
5.1.5 Operation Instructions . 63
5.1.6 Limitations . 66
5.1.7 Example Programs and Latency . 66

5.2 Compute Datapath . 69
5.2.1 Adder Architecture . 69

5.3 Pixel Memory . 70
5.3.1 Line Access and Block Access Memory Architectures 70
5.3.2 SCMs and Block Access Memory Architectures 72
5.3.3 REF Memory Access Patterns . 78
5.3.4 A Smart Full Search Pattern leveraging Pixel Frame Locality 79

5.4 Pattern Memory . 81
5.4.1 ROM Pattern . 82
5.4.2 A 12 Point Circular Search Pattern 87

5.5 Control Units . 91
5.6 Output Block . 92

6 ME2 Physical Data 94

7 Matlab Model 96
7.1 Model . 96
7.2 Implementation as a Class . 97
7.3 Automatic Test Generation and Transcription 97
7.4 Cost Functions . 99

8 Simulation Results 101
8.1 Cost Function Correlation . 101

8.1.1 FIFO Limits . 101
8.1.2 Compute Limits . 103

– v –

8.2 Pattern Search Performance . 103
8.3 Performance Prediction . 107

8.3.1 From Cost Function to Performance Prediction 107
8.3.2 Performance Prediction Across Video Streams 108
8.3.3 Performance Scalability . 108

9 Conclusions 110
9.1 Contributions . 110
9.2 Non-Video Compression Applications . 110

9.2.1 Pattern Matching . 110
9.2.2 Motion Stabilization . 111
9.2.3 Burst Memory . 111

9.3 Future Research . 111

10 Glossary 113

A Matlab Model Code 118
A.1 motion estimation engine.m . 118

B Matlab Instruction Generation Code 141
B.1 generate test from model run.m . 141
B.2 test input gen.m . 145
B.3 test output gen.m . 153

C Testbench Code 156
C.1 me2 top.vt . 156

D Top-Level Hierarchical FSM 161
D.1 Transparent Hierarchical FSMs . 161

Bibliography 165

– vi –

List of Figures

2.1 Inter-frame redundancies . 5
2.2 Intra-frame redundancies . 5
2.3 Example SAD computation . 6
2.4 Shapes supported in H.265 and H.264. each square represents a 4x4 block of

pixels. Blue shapes are only supported in H.265 15
2.5 Shapes supported in H.265 including AVMP. each square represents a 4x4

block of pixels. Red shapes are AMVP shapes and are not supported by
MEACC2 . 15

2.6 Different kinds of Full Search patterns . 18
2.7 Example 3-stage pattern search . 20
2.8 Relationship between search pattern points and pixel blocks 21
2.9 Cross patterns of varying width . 22
2.10 Diamond patterns of varying width . 22

3.1 An MxN AsAP array . 26
3.2 A 167 core AsAP Array with big memories and accelerators 26

4.1 HexA . 30
4.2 HexB . 31
4.3 HexABA . 31
4.4 HexBAB . 32

5.1 Top level block diagram . 46
5.2 Top level register input path . 47
5.3 Pipeline diagram for register input instructions 47
5.4 Top level pixel input path . 54
5.5 Pipeline diagram for pixel input instructions 55
5.6 Top level pattern memory input path . 56
5.7 Pipeline diagram for pattern memory input instructions 56
5.8 Top level output path . 59
5.9 Pipeline diagram for output instructions . 60
5.10 Top level block diagram annotated by function 65
5.11 Pipeline diagram of the pixel datapath . 70
5.12 Required bit widths for full precision throughout the SAD compute process 71
5.13 Line based memory access . 72
5.14 Block based memory access . 73

– vii –

5.15 A word of standard sell memory . 74
5.16 A multi-word standard cell memory . 74
5.17 ACT memory access pattern . 75
5.18 Component blocks of the ACT frame memory 76
5.19 REF memory access pattern . 76
5.20 Component blocks of the REF frame memory 77
5.21 Memory replacement scheme for cardinal frame shifts 79
5.22 Memory replacement scheme for diagonal frame shifts 80
5.23 The pixel checking pattern of a sector based full search 81
5.24 Component Blocks of the pattern memory 83
5.25 4-Stage pattern stored in ROM . 86
5.26 3-Stage, 12-point circular pattern . 88
5.27 Circular pattern type I reuse . 89
5.28 Circular pattern type II reuse . 89
5.29 Circular pattern type III reuse . 90
5.30 Controller circuitry . 90
5.31 Hierarchy of the top control unit . 91
5.32 State diagram of the top level controller . 92

6.1 A plot of the physical layout of the MEACC2. 95

D.1 State diagram for the execution controller 162
D.2 Dependency diagram for the top level controller 162
D.3 Flattened state diagram for request pixel FSMs 163
D.4 Hierarchical state diagram for request pixels FSM 164
D.5 Hierarchical state diagram for load requested pixels FSM 164

– viii –

List of Tables

2.1 A selection of video formats . 19
2.2 Coding levels in H.265/HEVC . 23

4.1 Bandwidth savings and costs from reference frame compression techniques . 35
4.2 Motion estimation designs targeting GPU platforms 37
4.3 Comparisons between various systolic array (full search) implementations . 39
4.4 ASICs and ASIPs targeting motion estimation 41
4.5 Throughput and efficiency comparison across the solution space 43

5.1 The 32 instructions of the MEACC2 instruction set 45
5.2 Set burst REF X structure . 48
5.3 Set burst REF Y structure . 48
5.4 Set burst height structure . 48
5.5 Set burst width structure . 49
5.6 Set write pattern address structure . 49
5.7 Set PMV DX structure . 50
5.8 Set PMV DX structure . 50
5.9 Block ID mappings . 51
5.10 Set BLKID structure . 51
5.11 Set thresh top structure . 51
5.12 Set thresh bot structure . 52
5.13 Set ACT PT X structure . 52
5.14 Set ACT PT Y structure . 52
5.15 Set REF PT X structure . 53
5.16 Set REF PT Y structure . 53
5.17 Send pixels structure . 54
5.18 Write pattern DX structure . 57
5.19 Write pattern DY structure . 57
5.20 Write pattern JMP structure . 57
5.21 Write pattern VLD top structure . 58
5.22 Write pattern VLD bot structure . 58
5.23 Set output register structure . 59
5.24 Read REF MEM structure . 61
5.25 Read ACT MEM structure . 61
5.26 Read register operand lookup table . 62
5.27 Read register structure . 62

– ix –

5.28 Register read structure . 62
5.29 Result read structure . 63
5.30 Pixel request structure . 64
5.31 Issue ping structure . 64
5.32 Write burst ACT structure . 65
5.33 Write burst REF structure . 65
5.34 Start search structure . 66
5.35 An example instruction stream . 68
5.36 Pattern ROM Contents in decimal . 84
5.37 Pattern ROM contents in binary . 85
5.38 Point reuse between stages in various search patterns 88

6.1 MEACC2 at a Glance . 94

7.1 Setup transcript format . 98
7.2 Pixel request transcript format . 98
7.3 Search result transcript format . 99
7.4 Points checked transcript format . 99

8.1 16b FIFO throughput . 102
8.2 Video format throughput requirements . 102
8.3 Compute efficiency of a 16xSAD 6 cycle pipeline, 2 cycle decision unit . . . 104
8.4 Pattern performance on BasketballDrill 832x480, 30 frames 105
8.5 Pattern performance on BQMall 832x480, 30 frames 105
8.6 Pattern performance on Flowervase 832x480, 30 frames 105
8.7 Pattern performance on FourPeople 1280x720, 60 frames 106
8.8 Pattern performance on Johnny 1280x720, 60 frames 106
8.9 Pattern performance on Kristen and Sara 1280x720, 60 frames 106
8.10 Hybrid search performance from simulation 108
8.11 Hybrid search performance with tiling scalability 109

– x –

Chapter 1

Introduction

The smartphone revolution is in full swing. Apple introduced the iPhone eight

years ago, June 29th, 2007. Since then, Google has introduced the Android platform, and

in 2013 an estimated 1 billion smartphones had been shipped worldwide. Each of these

smartphones offers video capture and playback functionality. This rapidly growing market

is driving even greater interest in fast video encode and decode functionality, while placing

greater constraints on power budgets as even more functionality and sensors are brought

onto the device. Additionally, the video being served onto smart devices is also available

on PCs and new smart Televisions. At YouTube, a video streaming website, the number of

videos served per day grew by 1 billion videos streamed between 2011 and 2012, to a total

of 4 billion videos served per day.

A digital video stream consists of a series of still images, called frames which have

a width and height, given in pixels. These frames are played back at a fixed rate, given

in terms of frames per second (FPS). As the number of videos being served has grown, so

has the size and quality of the video stream expected by customers. Television companies

advertise the launch of their 4K products, which display frames as large as 7680 x 4320

pixels and YouTube supports 1080p videos delivered at 60 FPS.

Raw video streams tend to contain a large amount of redundant information, as

each frame repeats every single pixel in the field of view even if nothing has changed. These

raw video streams also require a tremendous amount of space, as each pixel requires at least

1

several bytes of storage. Digital video compression reduces the size of the stored video file

by eliminating redundant information while retaining enough of the original video stream

so that it can be recreated on demand. The process is necessarily lossy, and designers trade

off reconstructed video quality for storage space.

1.1 Project Goals

This work covers the design of a motion estimation hardware accelerator, named

MEACC2, primarily for inter -frame motion estimation acceleration, with AsAP as a demon-

stration platform. As such the final device is expected to integrate cleanly with any compute

platform which follows the general interconnect principles defined for AsAP2 and AsAP3.

A key features of AsAP which makes it well suited as a test platform for video process-

ing is the presence of fully-programmable independent processors and large on-chip shared

memories. At the beginning the initial project requirements were defined as follows:

• Capable of real-time video processing in at least 1080p

• Compliant with the H.265 standard

• Capable of video processing in 4K formats

• Support for both built in and programmable search patterns

• Support for Full Search Pattern

• Explore the memory size vs. performance tradeoff in configurable accelerators

• Explore the use of Standard Cell Memories in AsAP based accelerator design

• Lay the groundwork for the development of an AsAP based H.265 Codec

1.2 Contributions

The time frame of this work extended further than initially expected, and so the

main contributions include the following:

2

• The design and implementation of MEACC2, an H.265 capable hardware accelerator

compatible with the 3rd generation AsAP interconnect, a circuit switched 16 bit

dual-FIFO inter-block interface.

– Complete RTL, written in Verilog HDL

– Synthesized in 65 nm CMOS with a maximum frequency of 812 MHz post place

and route

• The creation of matlab functional model of MEACC2, with the capability to generate

test-benches for Post-Si validation.

• The introduction of a 12-point block-motion algorithm which fills the gap between

high-cost/high-fidelity BMAs and low-cost/low-fidelity BMAs.

1.3 Overview

Chapter 2 introduces the fundamentals of digital video compression, including the

motion estimation process. Chapter 3 covers the AsAP platform, features of interest, and

how MEACC2 integrates with the whole system. Chapter 4 covers related work on motion

estimation generally including other platforms such as FPGAs, ASICs, and CPU instruc-

tion set extensions. Chapter 5 introduces the MEACC2 architecture, including its instruc-

tion set, memory organization, and expected AsAP to MEACC2 interactions. Chapter 6

presents the MEACC2 datasheet, and post place and route die photo. Chapter 7 introduces

the matlab model, its data structures, classes, and overall software architecture. Chapter 8

introduces the tradeoffs and performance estimations enabled by the matlab model. Chap-

ter 9 summarizes this work’s contribution, makes a few predictions, and outlines some ideas

for future research and follow up.

3

Chapter 2

Digital Video Compression

The goal of digital video compression is to reduce the size of a video stream, by

identifying redundant information, removing it, and replacing it with a scheme to recreate

that information in the decompression step. There are two kinds of of redundancies: inter -

frame redundancy exists between frames in a video stream, intra-frame redundancy exists

within a single frame of a video stream. Another way to think of these two kinds of

redundancy is to think of inter -frame redundancy as describing a repetition of data over

time while intra-frame redundancy is describing a repetition of data over space. An object

which is present throughout an entire scene would be an example of the kind of redundancy

that inter -frame compression seeks to remove. A large area sky taking up most of the top-

half of a scene would be the sort of information redundancy that intra-frame compression

would remove.

Redundancy is a qualitative description of an effect that humans see. The com-

puter must be able to quantify the similarity between two sets of images. This quantification

process generates a figure of merit which the compute process can use to determine whether

or not the two images are redundant enough to remove without significant loss of image

quality. Two examples of Figures of merit are mean absolute error (MAE) and sum of ab-

solute difference (SAD) [1]. These Figures of merit are applied to pixel differences between

the images. In the video coding standards that this work addresses (H.264 and H.265), the

accepted Figure of merit is SAD. The advantages and disadvantages of particular Figures

4

Figure 2.1: Inter-frame redundancies

exist between multiple frames of a video

stream

Figure 2.2: Intra-frame redundancies

exist within a single frame of a video

stream

of merit are beyond the scope of this work. Figure 2.3 gives a worked example of how to

compute the SAD of two blocks of pixels.

For any two blocks of pixels in the pixel arrays A and R, of width N and height

M the SAD is given:

SAD(A,R) =
N∑
i=0

M∑
j=0

|A(x+ i, y + j)−R(x+ i, y + j)|

2.1 Video Coding Terms in Historical Context from H.261

to H.265

The standards can be viewed as a progression of terms and techniques. Video

coding techniques have been largely accretive over the years, where each new standard adds

additional coding tools to the standard and old coding tools continue to remain relevant.

This has lead the computational complexity of video coding to scale not only along the axis

of total number of pixel samples processed, but also along the axis of which coding features

are supported by a particular encoder.

2.1.1 H.261

Introduced the concept of the macroblock. Each macroblock is a 16x16 array of

luma samples and two corresponding 8x8 arrays of chroma samples, using 4:2:0 sampling and

a YCbCr color space [2]. The coding algorithm uses a hybrid of motion compensated inter-

picture prediction and spatial transform coding with scalar quantization, zig-zag scanning

5

99

10384

120 130

132121

136

85

8385

88 109

11291

124

112

10597

119 126

123113

132

93

9195

91 102

9891

112

13

213

1 4

98

4

8

810

3 7

140

12

116

-13

-2-13

1 4

98

4

-8

-8-10

-3 7

140

12

Figure 2.3: Example SAD computation

6

and entropy encoding. The standard only defined the video decode process, the encoding

was left open. This meant that encoders could pre-process data before encoding, and

decoders could post-process after decoding - deblocking filters were a form a post-processing

to reduce the appearance of block-shaped artifacts. It also only had support for integer-

valued motion vectors. Transform coding used an 8x8 Discrete Cosine Transform to reduce

the spatial redundancy [2].

2.1.1.1 Color Space

YCbCr describes the color space. YUV describes a file that uses YCbCr for color

encoding. YCbCr breaks the color space into luma (Y, brightness) and chrominance (UV,

color) components. Black and white only images have only luma components. Luminance is

denoted Y and luma by Y. Luminance is perceptual brightness, what the eye/brain actually

sees. Luma is electronic brightness eg. a voltage or a digital value.

2.1.1.2 J:a:b Sampling

A quick way of describing the subsampling scheme for a region J pixels wide and 2

pixels high. The number of chrominance samples (Cr, Cb) in the first (even) row is denoted

a, while the number of chrominance samples in the second (odd) row is denoted b [2].

Subsampling takes advantage of the fact that human vision cares more about brightness

than color, and so coding techniques save bits by sampling the chrominance less carefully

than the luminance.

2.1.1.3 Entropy Encoding

Entropy encoding describes a wide range of lossless data compression schemes,

which are data independent. Huffman and arithmetic coding are examples of entropy en-

codings. If the entropy characteristics of a data stream can be approximated beforehand, it

can then be devolved into a static code, allowing data storage without any loss of fidelity [2].

7

2.1.2 H.262

Introduced support for both interlaced and progressive video systems while divid-

ing frames into 3 classes, I-frames (intra-coded), P-frames (predictive-coded), and B-frames

(bidirectionally-predictive-coded). Allows for a number of subsampling schemes with 4:2:0

continuing to be the norm.

2.1.2.1 Interlaced and Progressive Video

Interlaced video frames divide the image into two parts, a top-field and a bottom-

field consisting of the odd numbered horizontal lines and even numbered horizontal lines

respectively. Fields are transmitted and decoded in pairs. Progressive video means that

fields and frames are the same, the image is not divided [2].

2.1.2.2 Intra-Coded Frames (I-Frames)

An Intra-coded frame (I-Frame), is a compressed version of a raw frame that uses

information from that frame only [2]. An I-frame then, can be decoded independently of

its neighboring frames. Typically the I-frame is broken into 8x8 pixel blocks, the DCT is

applied, the results quantized (this is where data fidelity is lost) and then compressed using

run-length codes and other similar techniques.

2.1.2.3 Predictive-Coded Frames (P-Frames)

P-frames can get a more compact compression than I-frames because they make

use of data from previous I and P frames [2]. To generate a P-frame, the previous reference

frame (either an I or P frame) is kept and the current frame is broken into 16x16 pixel

macroblocks. Then, for each 16x16 macroblock in the current frame, the reference frame is

searched for the smallest distortion match. The offset of the smallest distortion match is

saved as a motion vector, and a residual between the two blocks computed. If not suitable

match is found, the macroblock is treated like an I-frame macroblock.

8

2.1.2.4 Bidirectionally-Predictive-Coded Frames (B-Frames)

B-frames are never reference frames and use information from both directions (from

either I or P frames) [2]. They generally get an even more compact resulting compression

than a P frame.

2.1.2.5 Group of Pictures (GoP)

A series of I, B, and P frames. Useful for packing sets of frames together to be

sent/handled as a group [2]. In H.262 usually every 15th frame is an I frame, but this is a

flexible part of the standard. An example group of pictures might contain the following set

of I, P, and B frames: IBBPBBPBBPBB.

2.1.3 H.264

Further extended H.262 with new ways to do transforms, quantizations, and en-

codings, greater macroblock size coverage, and introduces new loss-resilience features.

2.1.3.1 Variable Block-Size Motion Estimation (VBSME)

Macroblocks can take on a number of different sizes in VBSME schemes, instead

of being fixed to 16x16. The valid sizes and shapes are:

• 16x16

• 16x8

• 8x16

• 8x8

• 8x4

• 4x8

• 4x4

9

These new shapes are used to get finer grain segmentation around moving regions in the

video stream [2]. A macroblock can now be made up of multiple blocks (eg, 4 8x8 regions

instead of 1 16x16 region) and each of those blocks can have their own motion vector. So

each macroblock can have up to 32 motion vectors (a B macroblock with 16 4x4 partitions).

2.1.3.2 Sub-Pixel Precision

Quarter-pixel precision is supported for greater accuracy. Chroma samples support

1
8 pixel precision since chroma is expected to be sampled at half the rate of luma in 4:2:0

mode.

2.1.3.3 Context-Adaptive Binary Arithmetic Coding and Variable-Length Cod-

ing (CABAC and CAVLC)

CAVLC and CABAC are used to code already quantized transform coefficient

values [2]. There is a complexity tradeoff between CAVLC and CABAC, where CABAC can

compress more efficiently than CAVLC, but is more computationally intensive [3]. CABAC

was introduced in 2001 [4] and CAVLC in 2002 [5] and both were integrated into the H.264

standard recommendation [3].

2.1.3.4 Exponential Golomb Coding (Exp-Golomb)

Exponential Golomb coding is another form of coding used for the more general

forms of the standard (CABAC and CAVLC target primarily the image data, one would

use Exp-Golomb for header tags and other metadata) [2].

2.1.4 H.265

Up to double the compression effectiveness of HEVC (bitrate based) and the target

is to allow up to 1000:1 compression for easily compressible video streams. Designed with

the assumption of progressive video, so no explicit support for interlaced video [6].

10

2.1.4.1 Coding Tree Units (CTUs) and Coding Tree Blocks (CTBs)

Coding tree units are analogous to the macroblocks of previous standards [7]. In

4:2:0 the CTU contains 3 CTBs, 1 luma CTB and 2 chroma CTBs. The size of the luma CTB

is given L× L where L = (16, 32, 64). The CTBs can be partitioned into smaller subunits

called Coding Blocks (CBs), while the CTU is partitioned into Coding Units (CU) [7]. A

CU typically contain the luma CB and the chroma CBs, for a total of 3 CBs. Each CU also

has associated prediction units (PUs) and a tree of transform units (TUs). Prediction units

have associated prediction blocks (PBs) ranging in size from 64x64 to 4x4. The transform

units have associated transform blocks (TBs). There are transform functions defined for

square TBs of 4, 8, 16, and 32 pixels.

Fundamentally, motion estimation hardware deals with the lowest level coding

block. There are more possible block sizes, many used in asymmetrical motion prediction

(AMP) [7].

2.1.4.2 Allowed Prediction Block Sizes

• 64x64

• 32x64

• 64x32

• 32x32

• 16x32

• 32x16

• 16x16

• 8x16

• 16x8

• 8x8

• 4x8

11

• 8x4

2.1.4.3 AMP Prediction Block Sizes

Support for asymmetrical motion prediction enables blocks oriented in both N ×

(N4) and N × (3N4) directions [7]. Reported experimental results demonstrate a 1% im-

provement in bit-rate at the cost of 15% additional encoding time [8]. The standard also

establishes 4x8 and 8x4 as the minimum sizes for a prediction block (PB), and so AMP

cannot be used for values of N smaller than 16.

• 16x64

• 48x64

• 64x16

• 64x48

• 8x32

• 24x32

• 32x8

• 32x24

• 4x16

• 12x16

• 16x4

• 16x12

2.1.4.4 Motion Vector Signaling

Advanced motion vector prediction (AMVP) is used to pick probably candidates

based on data from adjacent prediction blocks and the reference picture. There is also a

merge mode that allows MVs to be inherited from temporal or spatially neighboring PBs.

12

The prediction step helps guide the search, if using a pattern search, or pick a better search

area candidate if using a full search [7].

2.1.4.5 Motion Compensation

Quarter-sample precision is used for the MVs and 7 to 8 tap filters are used for

interpolation of fractional-sample positions. H.264 used six-tap filtering with half-sample

precision and linear interpolation to gain quarter-sample precision [2].

2.1.4.6 Prediction Modes

Intrapicture prediction supports 33 directional modes, plus planar and DC modes

(total of 35 modes).

2.1.4.7 Context Adaptive Binary Arithmetic Coding (CABAC)

Similar to CABAC from H.264 but with several throughput-optimizations for par-

allel processing architectures and compression performance [7].

2.2 H.264 and H.265 in Depth

IEEE promulgates a standard for video coding referred to as H.264 [3], and since

2011 has begun to promulgate a new standard, H.265 [9]. These standards allow the people

who design hardware to encode video and the people who design hardware to decode video

to be two separate subsets. There are additional standards which are also used for this

purpose, Google, for instance, promulgates the V8 and V9 standards, which are roughly

equivalent to H.264 and H.265 . The primary goal of the H.265 coding standard was to

increase the compression efficiency of video streams by 50% without negatively impacting

the overall video quality [10]. Initial analysis of the H.265 standard indicates that the

standard meets that goal, with demonstrations on multiple video streams [11]. Each of

these standards contain a set of tools to use to compress a video stream. For H.265, the

various effects of each of these tools has been broken out into different levels, trying to define

a smooth tradeoff curve between computational complexity and final result quality [12].

13

2.2.1 Macroblocks and Coding Units

Motion estimation which makes use of variable block sizes is referred to Variable

Block Size Motion Estimation (VBSME) [13]. H.264 made use of groups of pixels, called

macroblocks to perform the encoding operation. Instead of matching pixels, the standard

calls for blocks of pixels to be matched against other blocks of pixels. This technique was

carried forward into the H.265 standard, in the form of coding units contained within a

data-structure called a coding trees. For the purposes of this work, the important thing

to know about both macroblocks and coding units, is that they can vary in size during

operation. Different parts of a video stream can be coded with all the same size of block,

or different sizes of blocks. Figure 2.4 gives a graphical representation of pixel block shapes

supported in H.265 and H.264 compliant coding. There are a sit of shapes in H.265 referred

to as the asymmetrical motion prediction vectors. These include all shapes that are not

square or 1:2 ratio rectangular. Further investigation into AMP showed that there was only

a 0.8% coding efficiency gain for a 14% increase in coding effort. Therefore, MEACC2 does

not make use of AMP shapes. Figure 2.5 shows the AMP shapes which are not supported

by MEACC2.

There were investigations into how to make the most effective macroblock divisions

for a particular frame [14] and how to make those decisions quickly [15], targeting the H.264

application space. That research has been carried forward into coding trees.

2.2.2 Coding Trees

As part of the shift to H.265 , groups of pixels are grouped at multiple levels of

hierarchy in a coding tree. A basic coding tree is very similar to the H.264 understanding of

the frame, which contains many macroblocks of various sizes. In a coding tree, each frame

has a coding tree, that coding tree has branches of various sizes, those branches have blocks

of pixels of a size based on the depth of the branch node. Therefore, quick decisions on how

to divide the coding tree result in faster compression speed, though an ideal coding tree

would be necessary for maximum compression efficiency. An initial investigation into how

to merge coding trees, also demonstrates that coding tree structures were 3% more effective

14

Figure 2.4: Shapes supported in H.265 and H.264. each square
represents a 4x4 block of pixels. Blue shapes are only sup-
ported in H.265

Figure 2.5: Shapes supported in H.265 including AVMP. each
square represents a 4x4 block of pixels. Red shapes are AMVP
shapes and are not supported by MEACC2

15

than the equivalent direct mode in H.264 [16]. There has also been work done on how to

predict the final shape of the coding tree, and using such prediction techniques combined

with other hardware saving techniques have demonstrated a 2x performance increase and a

35% energy cost decrease [17].

2.2.3 Slices and Tiles

Tiles are a technique available in H.265 to leverage parallel hardware [18]. These

are similar to the slice technique used in H.264 [7]. Previous work with slices demonstrated

that the overall coding process could be split into up to 16 slices with linear efficiency gains

per slice added [19]. The expectation is that each tile is processed in parallel, and then

information from each of the tile processing jobs can be used to refine the compression

in future frames. In the meantime, from a hardware perspective, each tile can be treated

as a separate, and independent unit, for much of the initial processing, including motion

estimation. Our work then, can target a proof of concept of a single tile which can then

be extrapolated outwards to video streams of significantly larger size. Tiles are not free,

and does come with a cost in final video stream quality. The tile partition information is

encoded in the final video stream, decoders then parse the tile information and use it to

reassemble the stream at decode time.

2.3 Block Motion Algorithms

Block motion algorithms (BMAs) encompass a class of search algorithms for finding

the smallest SAD match for a set block of pixels. They are invariant with regards to the

total size of the block of pixels, so the same algorithm can be applied to an 8x8 block of

pixels and a 64x64 block of pixels. The design space of BMAs trades the total number of

pixel blocks checked, for the expected fitness of the final block match.

2.3.1 Full Search

Full search is the simplest block motion algorithm, checking all possible blocks in

a given search space. It guarantees the smallest distortion match within a search space is

16

found, but it also costs the maximum amount of compute to find that match. It can be

further enhanced with early termination logic so that the search is ended early if the smallest

distortion match found so far is of a minimum threshold of quality, or with decimation, where

the total number of points checked is reduced in an invariant manner (checking every other

candidate in a full search would be a decimation by 2). Since it guarantees the highest

quality match in a frame, the Full Search is a useful tool for determining the maximum

quality of matches in a video stream, in order to quantify the quality degradation of search

patterns which use less compute. Three worked examples of a full search implementation

are given in Figure 2.6.

2.3.2 Pattern Search

Pattern searches are also block motion algorithms, but they extend the full search

by reducing the total number of block candidates checked, while still managing the reduction

in match quality to an acceptable level. The acceptable level of degradation is dependent on

the application space. These patterns can be thought of as an extension of the decimation

technique used with full search algorithms. Instead of systematically checking every single

possible candidate in a search range, a pattern search only checks a subset of those pos-

sible points. Some algorithm, which varies depending upon the pattern search, is used to

determine which points to check, and in what order. Center-biased search patterns take as

their starting point the position of the original block being compared. This follows from an

observation, that if things in the video stream are static, the objects in that image do not

move over time, and spatially local blocks would be good probable matches for the search

between frames.

Once the initial point is checked, if the threshold value is not met additional points

are checked. This is where the various center-biased search patterns begin to distinguish

themselves from each other. The center not being a suitable match would imply that there

has been some movement within the frame. A place to continue searching then, would

be around the initial point. Checking all the points surrounding the center of the search

would defeat part of the purpose of a search pattern (dramatically reducing the number of

points checked), so the patterns are designed to capture as many possible motion directions,

17

Full search patterns check every

possible point in the search area in

a fixed order. In this example, the

all the green points are checked,

and the orange point is found to

have the best SAD.

In a decimated Full Search, not

every single point is checked, but

rather only a regular subset of the

points. The search does however,

still check every non-decimated

point in the search area, so even

though the orange point has the

best SAD, the search continues.

In a Full Search with early

termination, the search is ended

when the first point which has a

better SAD than a given threshold

is found. This can be combined

with decimation, but in this

example it is not.

Full Search

Full Search with

Decimation

Full Search with Early

Termination

Figure 2.6: Different kinds of Full Search patterns

18

while still keeping the total of points checked to a minimum. A cross shaped search pattern

would only capture motion in four directions, while a diamond shaped pattern can capture

movement in up to eight directions. Each pattern is suitable for different kinds of motion.

If a video stream’s general motion behavior is known ahead of time, or that the class of

video streams dealt with are known, it is possible to craft a more efficient search pattern

that is application specific.

An example of a three stage, center-biased, diamond search pattern is given in

Figure 2.7.

2.4 Video Formats

Each iteration of a codec, such as H.264 and H.265 give a series of levels which a

video may be encoded in. These levels roughly represent the total bitrate that an encoder or

decoder must be able to handle. However, these levels are not how consumers and designers

actually interact with video. They interact with video formats, given in resolution and

framerate. A number of commonly used video formats are given in Table 2.1, and the

levels for H.265 are given, along with example formats and framerates in Table 2.2.

Table 2.1: A selection of video formats

General Use Name X Y Pixel Count per Frame

Video Conferencing
QCIF 176 144 25344

CIF 352 288 101376

Digital Monitors / Televisions

480p 640 480 307200

720p 1280 720 921600

1080p 1920 1080 2073600

2160p 3840 2160 8294400

4320p 7680 4320 33177600

Theater
Digital 4K 4096 2160 8847360

IMAX 5616 4096 23003136

19

Figure 2.7: Example 3-stage pattern search

20

Figure 2.8: Relationship between search pattern points and pixel blocks

21

Figure 2.9: Cross patterns of varying width

Figure 2.10: Diamond patterns of varying width

22

Table 2.2: Coding levels in H.265/HEVC

Level Max Picture Size Max Sample Rate MaxSz FPS Format FPS

1 36864 552960 15.00 QCIF 15.00

2 122880 3686400 30.00 CIF 30.00

2.1 245760 7372800 30.00 CIF 60.00

3 552960 16588800 30.00 480p 54.00

3.1 983040 33177600 33.75 720p 36.00

4
2228224

66846720 30.00 1080p 32.24

4.1 133693440 60.00 1080p 64.47

5

8912896

267386880 30.00 2160p 32.24

5.1 534773760 60.00 2160p 64.47

5.2 1069547520 120.00 2160p 128.95

6

35651584

1069547520 30.00 4320p 32.24

6.1 2139095040 60.00 4320p 64.47

6.2 4278190080 120.00 4320p 128.95

2.5 Decoders

Initial development on H.265 decoders is underway. Developers are beginning to

grasp the overall differences between H.264 and H.265, and the important differences for

those working with decoders were laid out as follows [20]:

• Macroblocks are replaced by Coding Units which support a maximum size of 64x64

pixels.

• Prediction Unit shapes may be asymmetrical

• Transform Units may be up to 32x32 pixels

• Up to 33 intra prediction modes

• Advanced skip modes and motion vector prediction

• New Adaptive Loop Filter (ALF)

• A Sample Adaptive Offset (SAO) is present after the deblocking filter

• Tools oriented for parallel processing

23

Work on high definition video decoders has continued as well, with decoders man-

aging 4096x2160 at 60 FPS in 90 nm CMOS [21]. These decoders demonstrate that even

with increasing encoder efficiency, the market and devices that would require that coding

efficiency improvement exist and continue to develop.

24

Chapter 3

The AsAP Platform

MEACC2 was developed to target the AsAP platform as its primary test platform,

but AsAP as a platform encourages the development of loosely coupled, and therefore

portable accelerator designs. AsAP is a fine-grain many-core architecture originally designed

for DSP architectures, with a focus on scalability and power efficiency [22]. AsAP arrays

consist of independently clocked processors communicating over dual-clock FIFOs, with each

processor having its own instruction and data memories and executing a general instruction

set [23], as shown in Figure 3.1. AsAP fabrics can be further enhanced with the addition

of large memories or dedicated accelerators. These memory blocks and accelerators are

connected to the array though those same dual-clock FIFOs, typically adjacent to two

processors, as shown in Figure 3.2. The first generation of the AsAP platform contained

36 processors fabricated in 0.18 µm2COMS [24], with a maximum operating frequency of

over 600 MHz [25], and the second generation of the AsAP platform contained 167 full

processor cores in 65 nm [26] with a maximum operating frequency of 1.2 GHz[27], and

with enough compute to host a 1080p H.264 baseline residual encoder without any dedicated

hardware [28].

3.1 Generalized Interface

The primary form of communication in the array is a 16b wide dual-clock domain

FIFO [29]. The FIFOs between each node in the array allow for every processor and

25

Proc.

(0,0)

Proc.

(1,0)

Proc.

(0,1)

Proc.

(1,1)

Proc.

(N,0)

Proc.

(N,1)

Proc.

(0,M)

Proc.

(1,M)

Proc.

(N,M)

Figure 3.1: An MxN AsAP array

M

U

X

M

U

X

Figure 3.2: A 167 core AsAP Array with big memories and accelerators

26

accelerator to be independently clocked. This also means that the accelerator design can

target high frequency operation without worrying about the design of the rest of the array

for high frequency operation as well. Additionally, the general interface of 16b words means

that the accelerator can be easily modeled at a high level, as with the matlab model in

Chapter 7.

3.2 Scalable Mesh

The scalability of the 2D mesh interconnect of an AsAP array means that as

new technology nodes become available, the additional area can be put to productive use.

The second generation AsAP array had a total of 167 processors, big memories, and three

different kinds of hardware accelerators [30] including an FFT engine [31], and a previous

generation motion estimation engine and the associated software encoder to take advantage

of that accelerator [32]. With such scalability inherent to the platform, the priority is

placed on developing accelerators which can also be scaled, as the latest iterations of the

AsAP platform have a current maximum of 1000 processors in 32 nm [33]! Therefore,

the MEACC2 was designed to make use of the Tiles paradigm introduced in H.265, which

allows for the work of coding a video stream to be partitioned by subdividing the image

and processing those sub-images in parallel [6]. Additionally, tools to map applications and

the supporting software to take advantage of an accelerator to the device have already been

developed and tested in other applications [34].

3.2.1 Circuit Switched Network

The AsAP platform also allows for connections beyond nearest neighbor using a

low-cost circuit optimization for stable long-range links [35]. These long-range links, incor-

porated into a reconfigurable circuit-switched network [36], allow AsAP networks to host

applications on fewer cores than an initial design would suggest [37]. Further research into

the design of the packet routers used in the circuit switched network resulted in a buffer-

less router design with 60% greater throughput [38], and an advanced packet router with

7% savings in total energy expended per-packet [39]atran:vcl:phdthesis. These advances

27

allow for AsAP based platforms to make heavy use of inter-processor communication links,

suitable for streaming large amounts of data between nodes, such as found in video coding.

3.3 On-Chip External Memory

The large memories, which can be tiled into the AsAP array, ensure that there

is sufficient memory to cache an entire frame on-chip. These large memories are accessed

just like an accelerator or a processor, across the 16b dual-clock FIFOs [40]. The large

memories also make use of a priority service scheme, which could be useful if multiple

MEACC2 instances were being serviced by the same memory [41]. Therefore, MEACC2 can

focus on solving the smaller problem of which memory to keep local to the computation.

The line-based big memory also complements well the block-based memory architectures

put forward for accelerator design, and so combines the advantages of both systems, a block-

based memory for local pixel data, and a line-based raster-scan compatible large memory

for the initial storage of frame memory. Since both the memory and the accelerator can

scale alongside the AsAP array, the overall system is scalable to larger video streams.

3.4 Power Scaling

The globally asynchronous, locally synchronous (GALS) architecture allows for

voltage and frequency scaling to be used at a fine-grain level to capture power savings

not available to monolithic architectures [42], although it introduces some additional, but

surmountable challenges in the design of the processor tiles [43]. Designing a stand-alone

accelerator using the FIFO based architectures allows the MEACC2 to be part of systems

that take advantage of these advances, including recent optimization techniques making use

of genetic algorithms for dynamic load distribution [44].

28

Chapter 4

Related Work

H.264/AVC encoding has been codified since 2003 [3], and so there exist solutions

along the entire spectrum of circuit-based research from the last 12 years. These solutions

range from general CPU code, dedicated instruction sets, FPGAs, programmable many-core

arrays, and application specific ICs.

4.1 Early Termination

Early termination techniques, broadly described, set a threshold value for the

final SAD result and then terminate the search once that threshold is met. Compared

to a full-search implementation, a similar implementation with early termination reduced

total operation count by 93.29%, reduced memory accesses by 69.17%, and increased the

total machine cycles by 220%, but did not address the effect on final image quality [45].

Further work on early termination found that a 72% reduction in memory bandwidth could

be achieved with a bitrate increase of 1.25% on a 2D systolic array with a search range of

±16 [46]. An additional investigation into the benefits of early termination found that using

such a scheme, on average, reduced total memory bandwidth by 20%, increased bitrate by

0.79% and reduced PSNR by an additional 0.02 dB across a search range of ±128 [47].

29

Figure 4.1: HexA

4.2 Search Patterns

Diamond search patterns have been built into dedicated estimators, where re-

peated repetitions of the diamond pattern can manage 1080p video frames at 55 frames per

second [48]. The number of points in a particular search pattern directly effects its com-

putational complexity, but the cross-based patterns miss diagonal movement. Purnachand

looked into the hexagonal pattern, recognizing that there are two types, called now HexA

and HexB, with examples in Figure 4.1 and Figure 4.2. Further work on search patterns

have lead to the novel back and forth hexagonal search patterns of type A and B, such

as HexABA and HexBAB, which save 23% number of points checked versus the diamond

patterns used in other accelerators [49]. Examples of HexABA and HexBAB are shown in

Figure 4.3 and Figure 4.4.

30

Figure 4.2: HexB

Figure 4.3: HexABA

31

Figure 4.4: HexBAB

4.3 Frame Memory

The question of frame memory, and how much to have present in an accelerator,

is a common theme in accelerator design. It is possible to have sufficient memory to con-

tain the entire reference frame, but this doesn’t scale well, as each the memory required

increases linearly with the total number of pixels, but the total number of pixels increases

quadratically with regards to image dimensions. Initial attempts to contain the scaling

issue concluded that three levels of memory hierarchy was ideal for the reference frame

memory [50]. Others grappled with how much reuse was actually possible, and posited a

2D systolic array which had the ideal memory reuse, but leaves out the total area required

by their potential designs [51].

If the memory accesses are not single-access, then how that memory is accessed

becomes significant. Block pixel comparisons imply that the memory architecture should

support block pixel accesses, moving beyond the line-access patterns inherent to array-based

pixel storage. A block-addressed memory space can be constructed on both ASICs and FP-

GAs with minimal addressing overhead [52]. An FPGA design makes use of modulo math

32

to create pixel-block addressable memories on FPGAs which, in the worst case, have 1.2x

memory access time, 1.47x the area, and 1.8x the power as compared to line-access architec-

tures [53]. Further research by the same group found that by permuting the data as it moves

into and out of the block-based memory mitigates the downside of the previous design and

results in a memory architecture suitable for real-time 1080p video processing [54].

Further work in the FPGA space by Chandrakar resulted in a parameterizeable de-

sign for motion estimation which could achieve up to 275 FPS on 1080p video sequences [55].

This design, however, needed to be reimplemented for each video and block size. Therefore,

with the relatively long configuration time for FPGAs (order of magnitude seconds to min-

utes, depending upon the programming interface), his solution is practical for fixed block

size execution, but not for variable block size motion estimation. His work might be worth

revisiting if programming times for FPGAs drop sufficiently, or if each parametrized design

ends up being similar enough to each other to take advantage of new rapid reprogramming

features beginning to appear on FPGAs.

Sinangil performed a useful analysis of the amount of memory necessary for an en-

coder to be fully efficient during motion estimation across various image and block sizes [56].

He also found that previous encoders had dedicated between 50% and 80% of their total

area to their motion estimation accelerators, and that 99.9% of all ideal block matches lie

within a search area of ±64 pixels. He also put forward a scheme for managing the prefetch

operations of pixels. When Sinangil went to develop a memory aware motion estimation al-

gorithm, based on those results, he found that he could reduce off-chip memory bandwidth

by 47x and on-chip memory area by 16% at the cost of 1.6% average bit rate increase [57].

Li and Zhang present domain-specific techniques to reduce DRAM energy con-

sumption for image data access by up to 92%, and should be recalled if a DRAM based

memory architecture is constructed to support the on-chip memory already present in a

motion estimation accelerator [58].

4.3.1 Standard Cell Memories

Meinerzhagen published an exploration of standard cell memories in 65nm in 2010,

demonstrating that these memories could be built with a 49.98% area penalty in trade for

33

a 36.54% power reduction for the overall memory array [59]. Further investigation into how

such memories stack up in the subthreshold domain, compared to SRAM macros, found

that these SCMs were more reliable than standard SRAM macros, but less than full custom

macros designed specifically for subthreshold operation [60]. This research, however, also

surfaced the idea that these SCMs could be used in distributed memory blocks closely

integrated with logic, and further, that these memories would work consistently with their

accompanying logic, a promise that is not a surety with SRAMs. For a design which makes

use of voltage dithering or other similar power control techniques, both features integrated

into every tile in an AsAP array, these memories would be quite useful. Meinerzhagen then

demonstrated a 4K-bit SCM built with an automated compilation flow and demonstrated

its reliability at subthreshold voltages [61].

4.3.2 Reference Frame Compression

Another possibility for dealing with the large memory storage requirements is to

compress the reference frame and then decompress it before SAD computation. This runs

into two primary difficulties. As described by Budagavi, it requires one to pick encoding

and decoding techniques that are not too memory or hardware intensive, as that would

offset the gains from compressing the reference frame in the first place [62]. Additionally,

the compression algorithm chosen, if lossy, results in degradation of the final video coding

operation. Gupte attempted to balance the tradeoffs of lossless and lossy compression by

making use of lossy compression when performing motion estimation, and lossless compres-

sion while executing motion compensation [63]. This combined method resulted in a 39%

bandwidth savings, greater than the 25% found by Budagavi, since the bandwidth effect

is mostly felt in the motion estimation step. Ma and Segall made use of a similar dual-

compression type scheme, where they stored high resolution and low resolution versions

of the reference frame, and then also created a residual Table between the high and low

resolution images. They incorporated this scheme into the software version of the H.265

encoder and demonstrated an increased bitrate of 1% and a bandwidth savings of 20%.

Silvereira then extended the techniques of Huffman encoding to compile a set of of code

Tables to store the reference frame. These code Tables gave a bandwidth reduction of 24%

34

and no bitrate penalty [64]. The limitation of Silvereira’s technique is the generation and

storage of pre-compiled code Tables, but in situations where the video streams are broadly

similar to each other, such as the storage of nightly newscasts, sports matches shot from the

same angles, or other similarly static streams, the technique could be applied without facing

the code-translation penalty. Wang and Richter looked at the total savings available from

purely lossless implementations and showed that smart selection of the lossless encoding

could reduce the bitrate by 9.6%, and reduce the necessary size of the memory buffer by

up to 80% [65]. Table 4.1 consolidates the results of these works, though it unfortunately

must gloss over some of the relative details.

Table 4.1: Bandwidth savings and costs from reference frame compression techniques

Work BW Savings PSNR (dB) Bitrate Increase

[62] 25% -0.043 1.03%

[63] 17% - 24% -0.010 0.74%

[66] 20% -0.006 0.38%

[64] 24% 0 0.00%

[65] 9.6% 0 0.00%

4.4 Accelerating Motion Estimation

Hardware accelerators have been developed for both H.264 and H.265 standards.

Some accelerate the whole video coding kernel, and others only address a particular sub-

section of the kernel. The motion estimation part of the video coding operation has an

interesting design space. These hardware accelerators cover new instruction sets, GPU

based designs, ASIC based designs, and ASIP designs. They make use of a number of

novel techniques, balancing the tradeoff of final coding quality versus the time and energy

required to get there.

4.4.1 Software Baseline Encoder

The standards committee publishes a draft encoder for use on general purpose

computing platforms [9]. It is written in C++ and supports all modes of operation present

in the full standard. It is not optimized for performance, but rather completeness, and so

35

makes use of both a full-search pattern along with an exhaustive testing of each possible

block size for encoding. It should find the most compact encoding possible. Encoding of

4K video streams takes on the order of tens of minutes per frame. It requires no specialized

hardware and is portable to any system that can handle its memory requirements.

4.4.2 Dedicated SAD Instructions for CPUs, Embedded Compute Accel-

erators

Proposed SAD instructions have gone as far as to offer 16x1 and 16x16 block SAD

compares, reducing the total cycles count for such operations significantly (32 single-cycle

instructions as compared to 1, or 4 cycle instruction) while leaving the high level command

and control to the CPU [1]. Other dedicated instructions have focused on the SAD operation

at the circuit level, optimizing a function which takes eight pairs of pixels and produces

their SAD as efficiently as possible across a wide range of supply corners [67].

4.4.3 GPU-Based Implementations

The expanded availability and programmability of GPGPU compute platforms has

lead to the development of H.264 encoders which use the GPU as their primary compute

platform. These algorithms makes use of a parallelized full-search ME algorithm constrained

by search area and the many compute cores of the GPU to process the whole search space

as quickly as possible. As shown by Rodriguez-Sanchez, the motion estimation process can

be broken into three main phases: SAD computes, SAD summations, and cost comparison,

and such a partitioning in CUDA can give a 70.5x performance increase over pure CPU

implementations [48]. In the first phase, the GPU divides the target macroblock into 4x4

subblocks, and then computes the SAD between each of those subblocks and all possible

subblocks inside the search area. This is computationally intensive, but makes good use of

the many processing elements available inside of the GPU. After all the SADs have been

computed, the GPU then recombines those SADs into the various possible block sizes. These

block sizes are then ranked, and the smallest SAD candidate chosen. Both step two and three

of the process can also take advantage of the GPUs high data parallelism. Zhang, Nezan,

36

and Cousin leveraged OpenCL to more directly compare the differences between pure CPU,

heterogeneous, and pure GPU implementations of a motion estimation kernel. Leveraging

the use of shared memory, and vector data instructions, they use a technique similar to

Rodriguez-Sanchez, they were able to show that an OpenCL kernel could outperform a C

implementation in 720p on the same processor by 7.6x, by 38x when using only the GPU,

and by 89x when using a combined CPU and GPU processing system [68]. Wang then

took a more powerful GPU, a newer version of CUDA, and a more clever work-partitioning

strategy for the motion estimation and was able to produce a heterogeneous CPU-GPU

combined system which outperformed a pure CPU implementation by 112x [69]. Even

though the speedup was impressive, it should be noted that that system was still only able

to manage 23.77 FPS on a 2560x1600 video stream, which means that it cannot handle

4K video at full framerate.

These implementations demonstrate that GPU platforms can achieve good perfor-

mance in terms of framerate, but the power requirements to run a GPU means that their

performance suffers when the performance metric incorporates power per operation. Even

with that considered, heterogeneous CPU combined with GPU implementations of H.264

encoders produce significantly more throughput than either pure CPU or GPU designs, and

for most consumer desktop systems which already contain both CPU and discrete GPU

combinations, it would make sense to use these techniques to speed up encoding without

additional hardware.

Table 4.2: Motion estimation designs targeting GPU platforms

Work Language Platform Format Perf. FPS Block Sz Pix/S

[48] CUDA GTX480 720p 70.5x - 16x16 -

[68] Open CL

I7 2.8 GHz 720p 12.6x 7.6 16x16 7004160

GT540m 720p 63.3x 38.0 16x16 35020800

I7 + GT580m 720p 73.3x 44.0 16x16 40550400

[69] CUDA Xeon + C2050 1080p 112.0x 77.7 VBSME 161118720

37

4.4.4 ASIC Designs

There are two general categories of ASIC encoders: configurable and fixed. Fixed

encoders have set search patterns and are unable to vary block size. Configurable ASICs

have support for varying both of those settings. Enabling configuration complicates the

overall hardware, but allows for greater flexibility, future proofing, and implementation of

additional features to save power or increase performance by sacrificing differing amount of

bit-rate depending upon application.

4.4.4.1 Systolic Arrays

Systolic array implementations are motion estimation engines which make use of

many parallel processing elements to generate the SADs for macroblocks as the image frame

streams into the device. Lai and Chen introduced a 2D full-search block matching algorithm

architecture which achieved 100% hardware utilization in a tile-able architecture [70]. This

architecture used a total of 256 PEs to process a 16x16 macroblock within a search area of

[−8,+7] in both the X and Y directions, and was scalable to process the same macroblock

across a search range of [−16,+15] with 1024 PEs. Elgamel introduced an early termination

mechanism in a systolic array which disabled PEs that were not producing a competitive

matching candidate, as well as the accumulation adders on the edge of the array, which saved

45% power over a normal array, by reducing the total number of comparisons by 50% [71].

Both of the previous designs could only handle fixed block sizes after implementation.

Huang introduced a 2D systolic array implementation that was less efficient, with the PE

array being only at 97% utilization, but capable of variable block size computations, chosen

at run time, suitable for processing 720x480 video at 30 FPS [72]. This design also made

use of a rectangular search range, with a larger search area in the horizontal direction

[−24,+23] than the vertical direction [−16,+15]. Deng expanded the search area of Huang

to [−32,+31] in both directions and scaled it up to handle 720x576 video at 30 FPS, at

the cost of roughly double the total number of gates [73].

Chen et al. give a good general analysis of the cost of supporting VBSME in

systolic array style implementations, and proposes an architecture suitable for 720p 30

38

FPS processing [74]. Their design makes heavy use of pixel truncation, rounding to 5 MSB

for each pixel. They round that distortion from the loss of 3 LSB was about 0.1 dB, while

4 LSB reduction cost 0.2 dB. Additionally they make use of a prediction unit to choose

which area of the search range their implementation checks, massively reducing the total

area which must be searched, though rapid changes in direction reduces the quality of their

prediction algorithm.

Zhaoqing, Hongshi, Weifeng, and Xubang come to a similar conclusion as Chen

et al. that the total computational complexity must be dramatically reduced in order to

maintain throughput in larger video stream [75]. They implemented a systolic array that

can process 720p video at 60 FPS, but in a very limited search range of [−8,+7], allowing

them to shrink the total size of their PE array, and instead add more SRAM to their

design, rather than keeping all the pixel in flight inside the PE array. Unfortunately, they

did not address the image quality cost of their decision to limit the total search area for

each macroblock. Working significantly later than the other systolic array implementations,

Byun, Jung, and Kim proposed an encoder suitable for UHDTV (3840x2160 at 30 FPS)

using a traveling 64x64 search area and intermediate SAD value storage requiring 20KB

of SRAM to store both the reference pixels and the intermediate SADs and supporting

the full space of possible block sizes [76]. Table 4.3 summarizes the various systolic array

architectures.

Table 4.3: Comparisons between various systolic array (full search) implementations

Work Srch Area Block Sz PEs Max Res FPS MPix/s MEM Process

[70] 16H, 16V 16x16 1024 - - - - -

[71] 15H, 15V 16x16 - - - - - -

[72] 24H, 16V 16x16 41 720x480 30 10.36 3.0 KB 0.35 µm

[73] 65H, 65V 4x4-16x16 256 720x576 30 12.44 7.9 KB 0.18 µm

[74] 64H, 32V 4x4-16x16 2048 720p 30 27.64 26.0 KB 0.18 µm

[75] 16H, 16V 4x4-16x16 256 720p 60 55.29 41.6 KB 0.18 µm

[76] 64H, 64V 8x4-64x64 256 2160p 30 248.8 20.0 KB 65 nm

Akin, Ulusel, Ozcan, Sayilar, and Hamzaoglu experimented with predictive SAD

calculations applied to systolic arrays [77]. The reasoning, is that since distortion between

pixels tends to by spatially correlated, a prediction can be made about the SAD, and whether

39

a − b or b − a is the positive value. Using a simple one-step predictor, the previous path

taken, they achieve 90.1% accuracy on their prediction. Leveraging some mis-prediction

mitigation techniques allow them to show a system that loses no PSNR for 2.2% dynamic

power savings, or sacrifices up to 0.04% PSNR for a 9.3% savings in dynamic power. In

power-tight applications, their techniques could be the difference in meeting an aggressive

power budget.

If making use of an FPGA platform to implement a systolic array, Niitsuma and

Maruyama have put together an evaluation of different SAD circuits with overlapping search

windows in FPGAs from the Vertex family [78]. If making use of an FPGA platform to

implement a systolic array, Niitsuma and Maruyama have put together an evaluation of dif-

ferent SAD circuits with overlapping search windows in FPGAs from the Vertex family [78].

4.4.4.2 Non-2D ASICs and ASIPs

There are other motion estimation engines which use different architectures from

2D systolic arrays. These designs make use of search patterns, picking fewer points to

sample using a strategy to trade PSNR loss for faster processing and significantly fewer

points checked overall. Chun, Kun, Songping, and Zhihua modified a programmable DSP

processor architecture to fetch and perform a subtract, absolute, add operation on 8 pixels

at a time in the same cycle it fetches the next 8 pixels, resulting in a 20x speedup over a

SISD architecture [79]. Since they were extending a programmable processor, their imple-

mentation could be extended to cover a wide range of search patterns, though they used

it primarily with three step searches (TSS, typically Diamond-Diamond-Cross). Fatemi,

Ates, and Salleh experimented with using pixel truncation alongside bit-serial pipeline ar-

chitecture to improve throughput further, while paying a similar cost to PSNR [80]. Their

implementation looks similar to a 2d systolic array implementation, but its use of a bit-serial

architecture instead of a bit-parallel one, distinguishes it.

Vanne, Aho, Kuusilinna, and Hamalainen developed their own motion estimation

implementation with run time configuration of search patterns, and block access memory

architectures [81]. This design can process 1080p video at 30 FPS while consuming 123mW,

and they demonstrated its robustness across five different search patterns. They also dis-

40

cussed, in detail, the math necessary to have separable memory addresses such that the

pixel memory can be written in lines, but accessed in blocks.

Xiao, Le, and Baas demonstrated a fully-featured H.264 compatible encoder on

a 167-core asynchronous array of simple processors (AsAP) platform [82]. The design

used a dedicated motion estimation accelerator [83], along with 115 of the simple cores

to implement a design suitable for 640x480, 21 FPS video encoding for 931 mW average

power consumption. The design could also be scaled to the workload by managing the

power supplies, from 95 inter FPS at 0.8V to 478 inter FPS at 1.3V in QCIF frames.

Another way of thinking of this is that the design could operate anywhere from 20% to

100% of its maximum throughput capacity, all by controlling the core voltage levels.

Kim and Sunwoo introduced a application specific processor that they called

MESIP which was capable of 720p, 50 FPS processing for 22.22 mW and a total of 8 KB of

SRAM. The MESIP required the development of its own software tools, but can leverage

those tools to optimize data-reuse strategies. The execution unit of the MESIP resem-

bles the 2d systolic arrays, but the memory management and search pattern functionality

provided by its control unit removes it from the 2d systolic array class.

Table 4.4: ASICs and ASIPs targeting motion estimation

Work Type Alg. Block Size Format FPS Avg. Power Process

[79] DSP TSS 16x16 CIF 24 - -

[80] ASIC FS 4x4-16x16 CIF 41 - 0.18 µm

[81] ASIC Prog. 4x4-16x16 1080p 30 - 0.13 µm

[83] AsAP FS 4x4-16x16 CIF 210 - 65 nm

[82] AsAP Prog. 4x4-16x16 480p 21 931 mW 65 nm

[84] ASIP Prog. 4x4-16x16 1080p 30 22.23 mW 90 nm

This AsAP Prog. 4x8-64x64 720p 114.4 - 65 nm

For developing ASICs and ASIPs, Yang, Wolf, and Vijaykrishnan have put to-

gether a helpful primer on how to predict power and performance for motion estimation

engines based on memory transfers, SAD computes, and other motion-estimation specific

criteria [85]. The most important understanding to come away with from their analysis is

that the total number of points checked is not a sufficient proxy for how much energy the

architecture or software expends. This also implies that proposed search patterns cannot

41

justify themselves based simply on the total number of search points examined.

With regards to the datapath of a motion estimation computation, Vanne, Aho,

Hamalainen, and Kuusilinna have produced good analysis into the building of fast, effi-

cient SAD compression trees, and best SAD decision trees [86]. These are good areas of

enhancement for designs which find themselves compute-bound. Additionally, Kaul, An-

ders, Mathew, Hsu, Agarwal, Krishnamurthy, and Borkar have done an in-depth design and

analysis of SAD compute units and have produced a number of interesting and valuable

circuit level enhancements [67].

4.5 Comparative Performance

Table 4.5 gives a breakdown of the relative throughput and pixel efficiency per

device. Pixel efficiency is not measured by the total number of pixels processed, but by the

total number of pixels handled, so if a methodology can handle whole frame of pixels with

only a few search points, it gains the value of the whole pixel frame. Power numbers for the

GPU and CPU devices are based on the published manufacturer TDP for that device brand,

the heterogeneous CPU/GPU, since the design aims at full utilization of both components,

pays the full power price of both devices. Power numbers for this work are projected from

the numbers measured by previous AsAP style encoders. Unfortunately the systolic array

architectures do not report power numbers, but instead the total number of gates used

in their implementations, so its not possible to develop a good estimation of their power

compared to the other types of devices. They are included in the Table to give a sense of

what sorts of throughput are available with those architectures, and so that if future designs

do measure the power number, a full comparison can be properly back-related.

42

Table 4.5: Throughput and efficiency comparison across the solution space

Work Type
OpFreq Throughput Power Efficiency

(MHz) (MPix/s) (mW) KPix/Joule

[69] CPU/GPU 3100/575 161.12 318,000 507

[82] AsAP 400/Var 6.45 931 6,929

This AsAP 500/Var 22.84 1375 16,613

This AsAP 1000/Var 45.69 2750 16,613

[81] ASIC 200 62.21 123 505,756

[84] ASIP 229 46.08 22 2,072,874

[74] 2D-SA 108 27.65 - -

[75] 2D-SA 55.6 55.30 - -

[76] 2D-SA 250 248.83 - -

43

Chapter 5

ME2 Architecture

The accelerator can be conceptualized as a specialized micro-controller. It has its

own instruction set, communicates with other blocks through input and output FIFOs and

has its own clock and sleep signals. This encapsulation makes it easy to integrate as many

accelerators as wanted by the designers of any particular AsAP generation.

A top level block diagram of the entire accelerator is sketched out in Figure 5.1.

It’s assumed that the input and output FIFOs lead to different AsAP tiles, but this is not

architecturally necessary, and it is possible for the same block to act as both transmitter

and receiver to MEACC2. This is made possible by the transmit and receive commands

both being part of the same instruction set, specifically, not having overlapping op-codes.

The pixel datapath components are where the SAD computation occurs and are

scalable to differing numbers of pixel computes per cycle. The implemented version of

MEACC2 uses a pixel datapath that executes a 4x4 block compare. The datapath is

pipelined. Additional details about the pixel datapath are located in Section 5.2.

5.1 Instruction Set

Instructions to MEACC2 are 16b wide and contain a 5b op-code. The op-code

space is shared between input and outputs for easier parsing by the AsAP tiles that com-

municate with the device. Additionally, pixel transfer mode uses all 16b on the instruction

to transfer pixels (8b at a time), and so the pixel move operations are blocking and can-

44

Table 5.1: The 32 instructions of the MEACC2 instruction set

Opcode In/Out Instruction Name

0 In Write Burst ACT

1 In Set Burst REF X

2 In Set Burst REF Y

3 In Write Burst REF

4 In Set Burst Width

5 In Set Burst Height

6 In Set Write Pattern Addr

7 In Write Pattern DX

8 In Write Pattern DY

9 In Write Pattern JMP

10 In Write Pattern VLD Top

11 In Write Pattern VLD Bot

12 In Set PMV DX

13 In Set PMV DY

14 In Set BLKID

15 In Set Thresh Top

16 In Set Thresh Bot

17 In Set ACT PT X

18 In Set ACT PT Y

19 In Set REF PT X

20 In Set REF PT Y

21 In Set Output Register

22 In Start Search

23 In Send Pixels to Unit

24 Out Result Read

25 Out Register Read

26 Out Pixel Request

27 Out Send Pixels to AsAP

28 In Read REF MEM

29 In Read ACT MEM

30 In Read Register

31 In/Out Issue Ping

45

Pixel SAD Datapath

Configuration

Registers

Search

Pattern

Memory

Search

Pattern

ROM

Execution Control Unit (FSM & Logic)

Active Frame

Memory

Reference

Frame

Memory

Align

SAD Compute

Block

A
cc

u
m

u
la

to
r

Input

FIFO

Output

FIFO

Full Search

Address

Generator

Pattern

Search

Address

Generator

Address Out of

Bound Checker

Top

Controller

(FSM)

Instruction

Decoder

Pattern Data

Pixel Data

Pattern Search

Address

Pattern Wr/Rd

Address

Figure 5.1: Top level block diagram

not be interrupted. There exists a ping instruction which can be used to flush through a

pixel mode by repeated use until the responding ping from MEACC2 is transmitted onto

the Output FIFO. Further details on this particular debug technique are located with the

description of the Ping instruction in Section 5.1.5.1.

5.1.1 Register Input Instructions

These instructions write their operand value to the named register. These opera-

tions take a single cycle, and return the MEACC2 state machine to IDLE after resolution.

These can be queued one after another in the input FIFO.

5.1.1.1 Set Burst REF X

The Burst REF X register is used only when writing a block of pixels to the

reference memory outside of an active search. It denotes the X value of the top left corner

of the block of pixels to move into memory. Its structure is given in Table 5.2.

46

Search

Pattern

Memory

Search

Pattern

ROM

Execution Control Unit (FSM & Logic)

Active Frame

Memory

Reference

Frame

Memory

Align

SAD Compute

Block

A
cc

u
m

u
la

to
r

Output

FIFO

Full Search

Address

Generator

Pattern

Search

Address

Generator

Address Out of

Bound Checker

Top

Controller

(FSM)

Instruction

Decoder

Pattern Data

Pixel Data

Pattern Search

Address

Pattern Wr/Rd

Address

Figure 5.2: Top level register input path

Configuration

Registers

Input

FIFO

Instruction

Decoder

wr_register

allow

_reg

_wr

wr_reg_[regname]

wr_en_[regname]

Decode Instruction and State

Transition
Write Data to Register

Top

Controller

(FSM)

Data Available from

Configuration Registers

Figure 5.3: Pipeline diagram for register input instructions

47

Table 5.2: Set burst REF X structure

Op-code Unused Burst REF X

Width 5b 3b 8b

Valid Values 00001 000 [0,255]

5.1.1.2 Set Burst REF Y

The Burst REF Y register is used only when writing a block of pixels to the

reference memory outside of an active search. It denotes the Y value of the top left corner

of the block of pixels to move into memory. Its structure is given in Table 5.3.

Table 5.3: Set burst REF Y structure

Op-code Unused Burst REF Y

Width 5b 3b 8b

Valid Values 00010 000 [0,255]

5.1.1.3 Set Burst Height

The Burst Height register is used only when writing a block of pixels to the refer-

ence memory outside of an active search. It denotes the height (number of horizontal lines)

of the block of pixels to move into memory. Its structure is given in Table 5.4. The maxi-

mum value is 64, and values above that have an undefined effect (in practice, this probably

causes MEACC2to get stuck waiting for pixels. If resetting is not an option, the external

controller should push ping instructions into the device until it begins to respond).

Table 5.4: Set burst height structure

Op-code Unused Burst Height

Width 5b 4b 7b

Valid Values 00101 0000 [0,64]

5.1.1.4 Set Burst Width

The Burst Width register is used only when writing a block of pixels to the refer-

ence memory outside of an active search. It denotes the width (number of vertical lines) of

the block of pixels to move into memory. Its structure is given in Table 5.5. The maximum

48

value is 64, and values above that have an undefined effect (in practice, this probably causes

MEACC2to get stuck waiting for pixels. If resetting is not an option, the external controller

should push ping instructions into the device until it begins to respond).

Table 5.5: Set burst width structure

Op-code Unused Burst Width

Width 5b 4b 7b

Valid Values 00100 0000 [0,64]

5.1.1.5 Set Write Pattern Address

The Write Pattern Address register is used only when writing to pattern memory.

The instructions which actually write to pattern memory are separate from address selec-

tion, they are located in Section 5.1.3. This helps us handle the fact that pattern memory

is very wide, but broken up into multiple operands. So data is written by operand, into the

same address space. The pattern memory is actually split between a ROM and a RAM,

and the RAM is located in the bottom of the memory address space, so even though the

address space spans [0, 63], this command only take values from [0, 31]. Its structure is

given in Table 5.6.

Table 5.6: Set write pattern address structure

Op-code Unused Address

Width 5b 5b 6b

Valid Values 00110 00000 [0,31]

5.1.1.6 Set PMV DX

The PMV DX register is used along with the PMV DY register to fully set a

predicted motion vector. This motion vector is used to offset the starting search point from

the default center during a pattern search. It has no effect during a full search. It is not

changed except by the user or by reset. The structure for this instruction is given in Table

5.7. It is a signed value.

49

Table 5.7: Set PMV DX structure

Op-code Unused Offset

Width 5b 2b 9b

Valid Values 01100 00 [-255, 255]

5.1.1.7 Set PMV DY

The PMV DY register is used along with the PMV DX register to fully set a

predicted motion vector. This motion vector is used to offset the starting search point from

the default center during a pattern search. It has no effect during a full search. It is not

changed except by the user or by reset. The structure for this instruction is given in Table

5.8. It is a signed value.

Table 5.8: Set PMV DX structure

Op-code Unused Offset

Width 5b 2b 9b

Valid Values 01101 00 [-255, 255]

5.1.1.8 Set BLKID

The Block ID register defines the block size of any search the device executes. This

also impacts the memory replacement scheme, but won’t trigger memory replacement until a

search is started. The block size mappings are given in Table 5.9. The instruction structure

is given in Table 5.10. Register values [12,15] are undefined, but in implementation those

options are tied to a block size of width and height 4. That sizing is not supported by the

H.265 standard, but is the actual size of a single block compute. It hasn’t been verified in

simulation, so do not use the 4x4 block size without further investigation.

5.1.1.9 Set Thresh Top

The Threshold Top register contains the top 10 bits of the threshold value. The

threshold value is a 20 bit value giving the minimum threshold for a successful search.

During a search, if this value is non-zero, the search terminates if a SAD value is found less

than the threshold value (strictly less, not less than or equal to). If this register and the

50

Table 5.9: Block ID mappings

Value X Size (Width) Y Size (Height)

0 64 64

1 32 64

2 64 32

3 32 32

4 16 32

5 32 16

6 16 16

7 8 16

8 16 8

9 8 8

10 4 8

11 8 4

Table 5.10: Set BLKID structure

Op-code Unused Value

Width 5b 7b 4b

Valid Values 01110 0000000 [0,12]

bottom register are also zero, the search continues until the search pattern terminates as

defined by the pattern. The structure for this instruction is given in Table 5.11.

Table 5.11: Set thresh top structure

Op-code Unused Value

Width 5b 1b 10b

Valid Values 01111 0 XXXXXXXXXX

5.1.1.10 Set Thresh Bot

The Threshold Bottom register contains the bottom 10 bits of the threshold value.

The threshold value is a 20 bit value giving the minimum threshold for a successful search.

During a search, if this value is non-zero, the search terminates if a SAD value is found less

than the threshold value (strictly less, not less than or equal to). If this register and the

top register are zero, the search continues until the search pattern terminates as defined by

the pattern. The structure for this instruction is given in Table 5.12.

51

Table 5.12: Set thresh bot structure

Op-code Unused Value

Width 5b 1b 10b

Valid Values 10000 0 XXXXXXXXXX

5.1.1.11 Set ACT PT X

The Active Frame Point X register holds the X value of the top left corner of

the block in ACT Memory which is used in a search. This is the block of pixels which is

compared against every candidate block of pixels. The structure of this instruction is given

in Table 5.13.

Table 5.13: Set ACT PT X structure

Op-code Unused Value

Width 5b 3b 8b

Valid Values 10001 000 [0,255]

5.1.1.12 Set ACT PT Y

The Active Frame Point Y register holds the Y value of the top left corner of

the block in ACT Memory which is used in a search. This is the block of pixels which is

compared against every candidate block of pixels. The structure of this instruction is given

in Table 5.14.

Table 5.14: Set ACT PT Y structure

Op-code Unused Value

Width 5b 3b 8b

Valid Values 10010 000 [0,255]

5.1.1.13 Set REF PT X

The Reference Frame Point X register holds the X value of the top left corner of

the block in REF Memory which is used in the initial compare. This is the first block of

pixels which is compared against the block of pixels from ACT Memory. The structure of

this instruction is given in Table 5.15.

52

Table 5.15: Set REF PT X structure

Op-code Unused Value

Width 5b 3b 8b

Valid Values 10011 000 [0,255]

5.1.1.14 Set REF PT Y

The Reference Frame Point Y register holds the Y value of the top left corner of

the block in REF Memory which is used in the initial compare. This is the first block of

pixels which are compared against the block of pixels from ACT Memory. The structure of

this instruction is given in Table 5.16.

Table 5.16: Set REF PT Y structure

Op-code Unused Value

Width 5b 3b 8b

Valid Values 10100 000 [0,255]

5.1.2 Pixel Input Instructions

This is the format for encoding a pair of pixels to be transferred into MEACC2.

Pixel transfer operations can be initiated in one of three ways:

• By sending the command Write Burst REF

• By sending the command Write Burst ACT

• MEACC2 can request pixel transfers; these requests appear on the output FIFO as

command Pixel Request and the associated memory management components are

expected to handle the request.

5.1.2.1 Send Pixels to Unit

Pixels are transferred into MEACC2 in pairs, taking up the entirety of the 16b

word available, with a structure as given in Table 5.17. When looking at pixel order, Pixel

0 is the leftmost pixel in the pixel pair being transferred. Pixels are always transferred

53

Configuration

Registers

Search

Pattern

Memory

Search

Pattern

ROM

n Control Unit (FSM & Logic)

Active Frame

Memory

Reference

Frame

Memory

Align

SAD Compute

Block

A
cc

u
m

u
la

to
r

Output

FIFO

Full Search

Address

Generator

Pattern

Search

Address

Generator

Address Out of

Bound Checker

Top

Controller

(FSM)

Instruction

Decoder

Pattern Data

Pattern Search

Address

Pattern Wr/Rd

Address

Figure 5.4: Top level pixel input path

in pairs, and pixel pairs always come from the same row of pixels (they have the same Y

coordinate).

Table 5.17: Send pixels structure

Pixel 0 Pixel 1

Width 8b 8b

Valid Values [0,255] [0,255]

5.1.3 Pattern Memory Input Instructions

The pattern memory, while used as a monolith by the pattern search execution

engine, is capable of being written to by location within a particular memory word. These

instructions use their operands to load the Pattern Memory by parts. They make use of

the pattern memory address contained in the pattern memory addr register, which can be

modified using the Set Pattern Memory Address command given in Section 5.1.1.5.

54

Active Frame

Memory

Reference

Frame

Memory

Input

FIFO

Pixel Data

First Pixel Data

Transferred from

FIFO to MEM Path

Write enabled from

execution controller as

data arrives at MEM

Data available

for read from

pixel memory

Configuration

Registers

Input

FIFO

Instr.

Decode

Top

Controller

(FSM)

EXE

FSM

Compute Write

Address

Begin Burst Write transferred

from FIFO (Addr, Height,

Width already in CFGREGs)

ACT or

REF?

Write Address

ACT/REF Write

Enables

Figure 5.5: Pipeline diagram for pixel input instructions

55

Configuration

Registers

Search

Pattern

ROM

Execution Control Unit (FSM & Logic)

Active Frame

Memory

Reference

Frame

Memory

Align

SAD Compute

Block

A
cc

u
m

u
la

to
r

Input

FIFO

Output

FIFO

Full Search

Address

Generator

Pattern

Search

Address

Generator

Address Out of

Bound Checker

Top

Controller

(FSM)

Instruction

Decoder

Pattern Data

Pixel Data

Pattern Search

Address

Pattern Wr/Rd

Address

Figure 5.6: Top level pattern memory input path

Configuration

Registers

Search

Pattern

Memory

Input

FIFO

Instruction

Decoder

Pattern Data

Pattern Wr/Rd Address

Patt Addr Select

wr_ens

Decode Instruction, Request to

Top State Machine

Select wr addr from config reg, data

reaches pattern MEM

Top

Controller

(FSM)

Figure 5.7: Pipeline diagram for pattern memory input instructions

56

5.1.3.1 Write Pattern DX

This command writes a new value to the part of pattern memory responsible for

maintaining the X offset from center for the point addressed by the write pattern memory

address register. The structure of this instruction is given in Table 5.18.

Table 5.18: Write pattern DX structure

Op-code Unused Value

Width 5b 2b 9b

Valid Values 00111 000 [-255,255]

5.1.3.2 Write Pattern DY

This command writes a new value to the part of pattern memory responsible for

maintaining the Y offset from center for the point addressed by the write pattern memory

address register. The structure of this instruction is given in Table 5.19.

Table 5.19: Write pattern DY structure

Op-code Unused Value

Width 5b 2b 9b

Valid Values 01000 000 [-255,255]

5.1.3.3 Write Pattern JMP

This command writes a new value to the part of pattern memory responsible for

maintaining the jump address for the point addressed by the write pattern memory address

register. The jump address is the point in the pattern memory jumped to when the point

is picked as the next best SAD during pattern execution. The structure of this instruction

is given in Table 5.20.

Table 5.20: Write pattern JMP structure

Op-code Unused Value

Width 5b 5b 6b

Valid Values 01001 00000 [0,63]

57

5.1.3.4 Write Pattern VLD Top

This command writes a new value to the part of pattern memory responsible for

the top valid bits for the point addressed by the write pattern memory address register.

The valid bits are used to prevent repeated visiting of points during a search. The structure

of this instruction is given in Table 5.21.

Table 5.21: Write pattern VLD top structure

Op-code Unused Value

Width 5b 3b 8b

Valid Values 01010 00000 XXXXXXXX

5.1.3.5 Write Pattern VLD Bot

This command writes a new value to the part of pattern memory responsible for

the bottom valid bits for the point addressed by the write pattern memory address register.

The valid bits are used to prevent repeated visiting of points during a search. The structure

of this instruction is given in Table 5.22.

Table 5.22: Write pattern VLD bot structure

Op-code Unused Value

Width 5b 3b 8b

Valid Values 01011 00000 XXXXXXXX

5.1.4 Output Instructions

These instructions are used to read out information from registers or memories

inside MEACC2. They are intended mostly for debugging purposes.

5.1.4.1 Set Output Register

The output (control) register was initially envisioned as a way to modified what

information was read out for a search result. As implemented, it acts as a scratch register

which can be written to and read out, but doesn’t have any purpose beyond that. The

structure of the command to write the output register is given in Table 5.23.

58

Configuration

Registers

Search

Pattern

Memory

Search

Pattern

ROM

Executio

Input

FIFO

Full Search

Address

Generator

Pattern

Search

Address

Generator

Address Out of

Bound Checker

Top

Controller

(FSM)

Instruction

Decoder

Pattern Data

Pixel Data

Pattern Search

Address

Pattern Wr/Rd

Address

Figure 5.8: Top level output path

Table 5.23: Set output register structure

Op-code Unused Value

Width 5b 5b 6b

Valid Values 10101 00000 XXXXXX

5.1.4.2 Read REF MEM

This instruction causes MEACC2to output the 16 pixels in the 4x4 block of REF

memory addressed by this command. The structure of the command is given in Table 5.24.

These pixels are not necessarily in raster order, but may be rotated based on the memory

address used to get the pixels. This rotation effect is more thoroughly explained in Section

5.3.2. This command cannot access all pixels, as there is insufficient space in a single word

to get the full 16 bit address across. Instead, 5 bits each of X and Y address are used, with

the bottom 3 bits filled with 0s. Therefore, an address of (4,4) is converted into (32,32)

within the device.

59

Configuration

Registers

Search

Pattern

Memory

Active Frame

Memory

Reference

Frame

Memory

Input

FIFO

Output

FIFO

Instruction

Decoder

Request to Top State Machine (Data

already at outputs of blocks)

Output Mux Select to

Output FIFO

First Output

Word Available

Top

Controller

(FSM)

Figure 5.9: Pipeline diagram for output instructions

60

Table 5.24: Read REF MEM structure

Op-code Unused X Addr Y Addr

Width 5b 1b 5b 5b

Valid Values 11100 0 [0,31] [0,31]

5.1.4.3 Read ACT MEM

This instruction causes MEACC2to output the 16 pixels in the 4x4 block of act

memory addressed by this command. The structure of the command is given in Table 5.25.

These pixels are not necessarily in raster order, but may be rotated based on the memory

address used to get the pixels. This rotation effect is more thoroughly explained in Section

5.3.2. This command cannot access all pixels, as there is insufficient space in a single word

to get the full 16 bit address across. Instead, 5 bits each of X and Y address are used, with

the bottom 3 bits filled with 0s. Therefore, an address of (4,4) is converted into (32,32)

within the device.

Table 5.25: Read ACT MEM structure

Op-code Unused X Addr Y Addr

Width 5b 1b 5b 5b

Valid Values 11101 0 [0,31] [0,31]

5.1.4.4 Read Register

This command causes the chosen register’s value to be read out onto the output

FIFO. The registers that are readable with the read register command are given in Table

5.26, and the structure of the command is given in Table 5.27. The output word produced

by this instruction takes the form specified in Section 5.1.4.5.

5.1.4.5 Register Read

Register Read is an instruction that only ever appears on the output FIFO. It

contains the value from the register requested by the Read Register command placed on

the input FIFO. The structure is given in Table 5.28.

61

Table 5.26: Read register operand lookup table

Register ID Register

0 Burst REF X

1 Burst REF Y

2 Burst Height

3 Burst Width

4 Pattern Write Address

5 PMV DX

6 PMV DY

7 Block ID

8 Threshold Top Bits

9 Threshold Bottom Bits

10 ACT PT X

11 ACT PT Y

12 REF PT X

13 REF PT Y

14 OUT Register

15 Image SZ X

16 Image SZ Y

17 Pattern Data X Offset (bits [39:31])

18 Pattern Data Y Offset (bits [30:22])

19 Pattern Data Jump Address (bits [21:16])

20 Pattern Data Top Valid (bits [15:8])

21 Pattern Data Bottom Valid (bits [8:0])

[22:31] Undefined

Table 5.27: Read register structure

Op-code Unused Value

Width 5b 1b 8b

Valid Values 11110 0 [0,255]

Table 5.28: Register read structure

Op-code Unused Value

Width 5b 1b - 5b 10b - 6b

Valid Values 10100 0 XXXXXXXXXX

Valid Values 10111 00000 XXXXXX

5.1.4.6 Result Read

Result Read is only ever present on the output FIFO. It indicates that the infor-

mation being conveyed is the result of a search. The final result comes out over the course

62

of 4 words, with each word containing the instruction op-code and part of the answer. The

structure and order of the command is given in Table 5.29.

Table 5.29: Result read structure

Word 0

Names Op-code Unused SAD Top

Width 5b 1b 10b

Valid Values 11000 0 XXXXXXXXXX

Word 1

Names Op-code Unused SAD Bottom

Width 5b 1b 10b

Valid Values 11000 0 XXXXXXXXXX

Word 2

Names Op-code Unused X

Width 5b 3b 8b

Valid Values 11000 000 [0,255]

Word 3

Names Op-code Unused Y

Width 5b 3b 8b

Valid Values 11000 000 [0,255]

5.1.4.7 Pixel Request

Pixel request is only ever present on the output FIFO. It indicates that the

MEACC2 requires additional pixels to be put on its input FIFO to complete its current

search operation. The request takes a total of 4 words, with each word containing the

instruction op-code and part of the request. The structure and order of the command is

given in Table 5.30. In the case where pixel requests require both a horizontal and vertical

shift, two requests are issued, for a total of eight words.

5.1.5 Operation Instructions

These instructions are sent to begin operations, using data from registers that have

already been configured. Some of the instructions have operands as well.

5.1.5.1 Issue Ping

The Issue Ping command causes the device to echo the ping on its Output FIFO.

Consequently it can be used to clear inappropriate requests for pixels, or used to ensure the

63

Table 5.30: Pixel request structure

Word 0

Names Op-code Unused X

Width 5b 3b 8b

Valid Values 11010 000 [0,255]

Word 1

Names Op-code Unused Y

Width 5b 3b 8b

Valid Values 11010 000 [0,255]

Word 2

Names Op-code Unused W

Width 5b 4b 7b

Valid Values 11010 000 [1,64]

Word 3

Names Op-code Unused H

Width 5b 4b 7b

Valid Values 11010 000 [1,64]

silicon is alive before attempting to use it for more complex things. The structure is given

in Table 5.31.

Table 5.31: Issue ping structure

Op-code Value

Width 5b 11b

Valid Values 11111 00000000001

5.1.5.2 Write Burst ACT

The Write Burst ACT command puts the device into a mode, ready to accept a

number of pixel pairs sufficient to fill the whole ACT memory (64x64 pixels of 1 byte, 2048

pixel pairs) in raster-scan order starting from the top left pixel pair [(1,0),(0,0)]. This mode

is the only way to move memory into ACT memory. It is okay to use such a constrained

method because ACT frame pixels change infrequently, only once per search, and if the block

size is not the largest supported (64x64) less than once per search overall. The structure is

given in Table 5.32.

5.1.5.3 Write Burst REF

The Write Burst REF command puts the device into a mode, ready to accept a

number of pixel pairs sufficient to fill the REF Memory in raster-scan order starting from

64

Output

Interface

Figure 5.10: Top level block diagram annotated by function

Table 5.32: Write burst ACT structure

Op-code Value

Width 5b 11b

Valid Values 00000 00000000000

the top left pixel defined in registers Burst REF X and Burst REF Y, and for the width and

height given by the Burst Width and Burst Height registers. This is the only user-initiated

way to move pixels into REF Memory. Pixels are also moved into REF Memory when

the unit requests pixels. The structure is given in Table 5.33. The unit also maintains

an internal set of registers which track where the top left hand point of the REF memory

is located in the overall image. These registers are visible to the user through the Read

Register command.

Table 5.33: Write burst REF structure

Op-code Value

Width 5b 11b

Valid Values 00011 00000000000

65

5.1.5.4 Start Search

The start search command executes either a full search or a pattern search based

on its form. Full Searches also take their decimation arguments here, while pattern searches

take their starting pattern address. A full search can be decimated up to 32x in either (or

both) dimensions. The search progresses, generating pixel requests if necessary, until it

terminates. Once the search terminates it pushes a read result command onto its output

FIFO. All searches terminate, eventually. There should only be one set of four words of

read result for every one start search command placed on the input FIFO. The structures

of the two types of search commands are given in Table 5.34.

Table 5.34: Start search structure

Full Search

Names Op-code X Decimation Y Decimation PS

Width 5b 5b 5b 1b

Valid Values 10110 [0,31] [0,31] 0

Pattern Search

Names Op-code Unused Pattern Address PS

Width 5b 4b 6b 1b

Valid Values 10110 0000 XXXXXX 1

5.1.6 Limitations

The primary design constraint which the MEACC2 must compensate is the rel-

atively limited bandwidth of the 16b AsAP word. The given width means that 2 pixels

can be moved into the unit per machine cycle. Further research has been done into pixel

truncation, as an attempt to save memory bandwidth and storage area but the quality of

the final search results suffers too much beyond one of two bits of truncation [87]. Future

designs could accept the reduction in quality of a 5b pixel to fit 3 pixels/word, or 4b pixels

to fit 4 pixels/word.

5.1.7 Example Programs and Latency

A basic use of MEACC2 execution contains 3 major phases: Load, Configuration,

and Execution. The execution loop requests additional pixels (if necessary) from the ad-

jacent AsAP tile until the search is resolved. Load is done before register configuration

66

because after the initial pixel load, a user can execute multiple searches by changing con-

figuration registers and re-executing. The unit handles the requesting and reloading the

pixels. This is the recommended flow, since MEACC2 can sense whether or not to bring

in more pixels to complete the search. To use the MEACC2 without generating any pixel

requests, the search range can be constrained so that the pixels which are out of bounds

are not considered valid locations for the search. This effectively reduces the search range,

which trades final motion estimation quality for faster or more consistent operation time.

1. Load Initial Memory

2. Configure Registers

3. Execute Search

(a) Request Additional Pixels

(b) Load Additional Pixels

(c) Repeat Requests/Loads until Search Terminates

(d) Return Search Results

An example execution of a pattern search, including search pattern configuration,

is given in Table 5.35.

67

T
a
b
le

5
.3
5
:
A
n
ex
a
m
p
le

in
st
ru
ct
io
n
st
re
a
m

G
ro

u
p

G
o
a
l

G
R
P

R
P
T

C
o
m
m
a
n
d
s

O
p
e
ra

n
d

V
a
lu
e
s

R
P
T

C
N
T

L
oa

d
A
C
T

D
at
a

1
W
ri
te

B
u
rs
t
A
C
T

-
1

20
49

P
ix
el

P
a
ir

2
x
A
C
T

P
ix
el
s

2
0
4
8

L
oa

d
R
E
F
D
at
a

1

S
et

B
u
rs
t
R
E
F

X
0

1

20
53

S
et

B
u
rs
t
R
E
F

Y
0

1

S
et

B
u
rs
t
W

id
th

6
4

1

S
et

B
u
rs
t
H
ei
g
h
t

6
4

1

W
ri
te

B
u
rs
t
R
E
F

-
1

P
ix
el

P
a
ir

2
x
R
E
F
P
ix
el
s

2
0
4
8

C
on

fi
gu

re
P
at
te
rn

M
em

or
y

2
3

S
et

W
ri
te

P
a
tt
er
n
A
d
d
r

0
1

13
8

W
ri
te

P
a
tt
er
n
D
X

0
1

W
ri
te

P
a
tt
er
n
D
Y

0
1

W
ri
te

P
a
tt
er
n
J
M
P

9
1

W
ri
te

P
a
tt
er
n
V
L
D

T
o
p

1
1
1
1
1
1
1
1

1

W
ri
te

P
a
tt
er
n
V
L
D

B
o
t

0
0
0
0
0
0
0
0

1

C
on

fi
gu

re
P
M
V

1
S
et

P
M
V

D
X

0
1

2
(P

re
d
ic
te
d
M
ot
io
n
V
ec
to
r)

S
et

P
M
V

D
Y

0
1

C
h
o
os
e
B
lo
ck

1
S
et

B
L
K
ID

2
1

1

S
et

T
h
re
sh
ol
d
V
al
u
e

1
S
et

T
h
re
sh

T
o
p

0
0
0
0
0
0
0
0
0
0

1
2

S
et

T
h
re
sh

B
o
t

0
0
0
0
0
0
0
0
0
0

1

S
et

A
ct
iv
e
B
lo
ck

1
S
et

A
C
T

P
T

X
0

1
2

S
et

A
C
T

P
T

Y
0

1

S
et

S
ea
rc
h
C
en
te
r

1
S
et

R
E
F

P
T

X
0

1
2

S
et

R
E
F

P
T

Y
0

1

B
eg
in

S
ea
rc
h

1
S
ta
rt

S
ea
rc
h

0
1

1

68

5.2 Compute Datapath

The execution unit consists of the pixel datapath and an execution controller,

shown in Figure 5.11. The functions supported are burst write and read into the pixel

memories and block pixel compares of the supported block shapes. These three functions

end up being the base on which all the search operations work. This also means that the

execution unit could be instantiated on a stand alone basis, or as part of a MEACC2 which

could be tiled out for more throughput.

The datapath has an initial latency of 6 cycles. There are improvements that

can be made to increase latency in order to improve throughput, but these enhancements

are not in line with the serial nature of the configurable search patterns, since the largest

patterns still only chain together 12 checkpoints before having to stop for an evaluation

step. If block sizes were larger, than the throughput advantages of a deeper pipeline might

be justified. The pipeline diagram for the pixel datapath is show in Figure 5.11

The upper level controller is in charge of executing the search and handling the I/O

interactions with the FIFOs, so the execution controller only indicates when it is ready for

the next data word. At synthesis, the critical path was the read path of the REF memory.

This is due to the large (x256) output read multiplexor required by the REF memory’s

SCM. If the design was re-architected for 8x8 access, the path could be reduced, but there

would be wasted accesses when dealing with the smaller block sizes (4x8 and 8x4). Further

analysis on the ideal, or most common, block sizes present in average video sequences could

reveal whether or not the tradeoff is justified.

5.2.1 Adder Architecture

The compression tree for the SADs is a classic CSA. It could be pipelined, at the

cost of registers, but since it wasn’t on the critical path, it was not split. If the reference

frame memory is reworked to have a shorter critical path, then it may be necessary to

revisit the compression tree and split it across pipeline cycles. The required bit widths of

the entire SAD operation are given in Figure 5.12, these calculations are based on 8 bit

wide pixels.

69

Active Frame

Memory

Reference

Frame

Memory

Align

Abs. Diff

Compute

Block

A
ccu

m
u

la
to

r

Pixel Data

REF Frame DataACT Frame Data

SAD

C
o

m
p

re
ss

Bypass to Output

To
 C

o
m

p
a

ra
to

r

F
ro

m
 In

p
u

t

Generate

Address in

EXE

Control

Fetch Data and Rotate

ACT MEM

Compute 16x

Pixel/Pixel

Absolute

Differences

C
o

m
p

re
ss

A
ccu

m
u

la
te

S
A

D

A
va

ila
b

le

DEBUG: Pixel Data Available for Read Out

EXE Controller

Addrs +

Offst.

Compute Offst.

ACT base addr.

REF base addr.

Block offsets

new accumulate

Compute block

offsets, new

accumulate signal

Figure 5.11: Pipeline diagram of the pixel datapath

5.3 Pixel Memory

Pixels are stored in two locations in MEACC2, active frame memory, and reference

frame memory. These two memories act as 1st level caches of the image data while the search

pattern is being executed and the SAD is being computed. They are both dual-pixel write

and 4x4 block access. Pixels are written in pairs in raster-scan order, but are read in 16

pixel, 4x4 blocks from a single address. The read-address is the address of the top left

corner pixel. Write addresses use the address of the leftmost pixel.

5.3.1 Line Access and Block Access Memory Architectures

Line access architectures are common for memories. The classic 1R/1W SRAM is

a line-access architecture. Thea primary advantage of the line access architectures is they

are simple to address, and are intuitive to use as they have a data-structure parallel in

the 2-dimensional array. However, SAD operations are done primarily on MxN blocks of

70

BigMem

(256x256)

RefMem

(64x64)

ActMem

(64x64)

Accumulator

SAD Compute

16b

16 x [0,255] = [0,4080] ->

12b

128b128b

256 x [0,4080] = [0, 1044480] -> 20b

Figure 5.12: Required bit widths for full precision throughout the SAD compute process

71

Pixel Memory

Read 1

Read 2

Read 3

Read 4

Pixels

of

Interest

Figure 5.13: Line based memory access

pixels, and for these operations line-based architectures are inefficient, fetching pixels that

are not used, or can only be consumed by additional hardware tiled out for the purpose,

for example, systolic arrays. At the same time, the additional complexity of block-access

memory architectures begins to be worth investigating further, especially for mostly-linear

search patterns without wide block fanouts. An example of line-access memory pattern is

shown in Figure 5.13, including the wastage from activating unnecessary pixels. An example

of block-access memory pattern is shown in Figure 5.14.

5.3.2 SCMs and Block Access Memory Architectures

The core component of a standard cell memory in MEACC2 is a clock gated

register. Based on Meinerzhagen’s work, both latch and register based memories can be built

from a standard flow. The latch based memories are more area efficient, and have a more

robust operating profile at sub-threshold voltages, but the design target is high throughput

through high frequency operation. For that goal, the register memory is superior [59].

The clock gate is made with the expected latch and logic gate, to prevent spurious

72

Pixel Memory

Read 1 Read 2

Read 3 Read 4

Pixels

of

Interest

Figure 5.14: Block based memory access

writes due to glitches in the write enable signal. This primary block can be either a single

bit, or a row of bits, which all share a clock gate. An example of an SCM style word row is

shown in Figure 5.15. Each row of bits can then be combined into the words of a memory

array with the enable signals of the clock gates being fed by the write enable signal from

a write address decoder. This decoder produces a one-hot encoded signal for the SCM

writes. To prevent read before write errors, the read has a forced latency of 1 cycle from

the write. This means that if there is a simultaneous write and read from the same memory

location (an illegal operation) the read takes the new value. Meinerzhagen also pointed out

that a one-hot encoding for the read signal allows for a multiplexor that takes advantage

of that encoding to prevent read glitches [60]. If it becomes necessary to squeeze out the

most performance possible from our pipeline, that optimization can be sacrificed, or tile

out more registers and bring the read-encoding across the pipeline stage. An example of a

small SCM is shown in Figure 5.16.

The active (ACT) and reference (REF) frame memories are SCM arrays. The

complexity of the arrays and their address decoders are a function of the kinds of access

73

Clock

Gate
clk_in

wr_en

d_in[7:0] d_out[7:0]

Figure 5.15: A word of standard sell memory

Write

Encoder

Read

Decoder

SCM Row

SCM Row

SCM Row

SCM Row

write_data read_data

addr

wr_en

Figure 5.16: A multi-word standard cell memory

74

7,0

6,0

7,1

6,1

5,0

4,0

5,1

4,1

3,0

2,0

3,1

2,1

1,0

0,0

1,1

0,1

7,2

6,2

7,3

6,3

5,2

4,2

5,3

4,3

3,2

2,2

3,3

2,3

1,2

0,2

1,3

0,3

7,4

6,4

7,5

6,5

5,4

4,4

5,5

4,5

3,4

2,4

3,5

2,5

1,4

0,4

1,5

0,5

7,6

6,6

7,7

6,7

5,6

4,6

5,7

4,7

3,6

2,6

3,7

2,7

1,6

0,6

1,7

0,7

Figure 5.17: ACT memory access pattern

patterns necessary for each type of memory. ACT frame memory accesses are aligned along

the possible CTU borders, as show in Figure 5.17. This means that to have a block-access

architecture, there are a total of 4 memory banks, one for each line of the 4x4 block that

is our atomic access component, because all possible CTU boundaries are multiples of 4. If

the CTU boundaries were not multiples of four, the ACT memory would be more similar

to the REF memory. The address decoder is a straightforward mod4 check against the y

component of the address in order to see where in each of the memory banks the necessary

pixels are. A diagram of the components of the ACT memory is given in Figure 5.18.

REF frame memory accesses have no easy pattern of alignment along multiples of

4. Therefore, any one pixel might be accessed by any of the 4x4 squares that encompass it, as

shown in Figure 5.19. This means the REF memory must be made up of 16 memory banks.

The address is separated into X and Y components, and goes through a two stage process

to determine which memory bank a pixel is present in, and where in that memory bank it

is stored. A diagram of the the components of the REF memory is given in Figure 5.20.

Both the REF and ACT memories produce the correct group of pixels, but those

75

ACTMEM

Bank
Bank

Bank

ACT Address Decoder

Pixel Write

Data

X Addr

Y Addr

{Write_en, Write_sel} Bank Addr

Pixel Read

Data

1024 Word SCM Banks x 4

8b

8b

16b 128b

Figure 5.18: Component blocks of the ACT frame memory

Figure 5.19: REF memory access pattern

76

REFMEM

Bank
Bank

Bank

Bank
Bank

Bank
Bank

Bank
Bank

Bank
Bank

REF Address Decoder

�X, �Y Decoder
X-Group

Decoder

Pixel Write

Data

X Addr

Y Addr

Bank
Bank

Bank

{Write_en, Write_sel,

Bank Addr}

Pixel Read

Data

256 Word SCM Banks x 16

16b 128b

8b

8b

Figure 5.20: Component blocks of the REF frame memory

77

pixels are rotated based on how their memory address aligns with multiples of 4 in the X

and Y direction. Since the compute goal is the sum of absolute differences between all of

the corresponding pixel pairs, pixels are not rotated completely back to a zero rotation, but

rather only enough so that each pixel is aligned with its partner. In each address decoder,

a component of the address called Sr is computed, which locates the bank of the pixel, but

also the rotation of the block if that pixel is the top left corner of the block access. These Sr

values can be compared, and then only the output of the ACT pixels are pushed through

a rotator to align them with their REF counterparts. The ACT pixels are rotated because

the simpler design of the ACT memory decoder results in a shorter critical path through

the ACT memory than through the REF memory. Therefore, given the choice between

which pixels to rotate, the design should rotate the pixels not already on the critical path

through the stage.

5.3.3 REF Memory Access Patterns

The REF and ACT frame memories are not sufficient to contain the whole image

at once. The ACT memory is only loaded all at once, because each CTU block is stored

in ACT memory only until its SAD is computed, and then the ACT can be refilled with

new CTU blocks after all the current CTU blocks have been checked. The REF memory,

however, can be loaded partially, and in the middle of a search. An out of bounds unit in

the top level controller maintains the current REF memory state in the complete image,

and make requests outside of MEACC2 for additional pixel memory if necessary. These

pixel requests must be fulfilled in order, as the unit transitions into a pixel-receptive state

once the request is issued. Based on the type of frame motion required to bring the next

checking point into memory range, the request may be given in either one or two requests.

Cardinal directions only require a single burst write to complete, and so only

generate one set of request words (remembering that each pixel request consists of a total

of four words). This kind of frame pattern movement is shown in Figure 5.21. Diagonal

directions require two burst writes to complete, and so generate two set of requests words.

This kind of pattern movement is shown in Figure 5.22. The order of the requests is also

shown in the Figure. If a pixel request completely replaces the REF memory (for example,

78

R
e

p
la

ce
d

N
e

w
 R

e
q

. 1

In
 P

la
ce

Tile Pixel Search Area (256 x 256)

64 pixels

64 pixels

64 pixels

Replaced

In Place

New Req. 1

64 pixels

64 pixels

64 pixels

Figure 5.21: Memory replacement scheme for cardinal frame shifts

. New pixels are in green, retained pixels are in blue, and pixels cleared to make room for

new pixels are in red. The pixel request is broken into two requests to take advantage of

the burst pixel-write mode in the execution controller.

during a 64x64 block compare, the next checking point may require a complete refresh of

the REF memory), the request is given in only one request.

5.3.4 A Smart Full Search Pattern leveraging Pixel Frame Locality

Since the memory subsystem maintains a coherent frame of pixels at all times,

pixels close to each other in frame are brought into the memory system together. A full

search must visit all possible points in the search area, but there is no given restriction on

the order those points must be visited. Therefore, it is possible to reorder the visiting order

of full search to take advantage of this inherent pixel locality. A diagram of a sector based

full search pattern is shown in Figure 5.23. This smart full-search is what is implemented

by MEACC2. This scheme prevents the MEACC2 from having to request the same pixels

from the large frame memory multiple times, instead checking all valid blocks which are

79

Tile Pixel Search Area (256 x 256)

64 pixels

64 pixels
64 pixels

64 pixels

64 pixels

64 pixels

New Req. 1

R
e

q
. 2

New Req. 1

R
e

q
. 2

In Place

In Place

Replaced

Replaced

Figure 5.22: Memory replacement scheme for diagonal frame shifts

. New pixels are in green, retained pixels are in blue, and pixels cleared to make room for

new pixels are in red. The pixel request is broken into two requests to take advantage of

the burst pixel-write mode in the execution controller.

80

Figure 5.23: The pixel checking pattern of a sector based full search

. A block frame memory aware full search pattern will check points within the current

cached memory before moving on. This full search has 6 sectors and 3 partial sectors.

Once the first row in a sector has been checked, the rest of the pixels needed to check the

row have already been brought into frame memory.

covered by its reference frame memory before moving on in the search.

This smart-search does require additional hardware at the full-search controller

level, but saves many thousands of cycles transferring pixels from the larger memory system

into the reference frame memory.

5.4 Pattern Memory

The pattern memory has two main components, an SCM and a ROM. The SCM

and ROM are addressed together, with the top most bit of the address determining whether

81

or not the data comes from the SCM or the ROM. This allows us to store common pattern

endings in the ROM, as well as containing a full pattern search for debug and default

purposes. Each row in a pattern contains the following fields: x offset, y offset, jump address,

and valid bits. The overall structure of the Pattern Memory is shown in Figure 5.24. The

x and y offsets are in relation to the current center of the pattern. The jump address is

where in pattern memory the controller should jump to if this point is picked as the new

center for the pattern, and the valid bits include the valid settings for the search stage if the

current point is picked as the next center. These valid bits are used to skip repeated search

locations when the same pattern stage is exercised multiple times as the center moves. These

repetitions can be known ahead of time, and so removed. Each of the offsets are signed,

and resolve to the full range of pattern addresses, and so take up 9 bits. The jump address

points to an address in the overall pattern memory (either ROM or SCM), and so requires

6 bits. The valid bit field does not have a required size, but for this design I chose a size

of 16 bits. This is sufficient to contain the 12-point stage pattern, and all the other most

commonly used search patterns have fewer points per stage. A step by step walk through of

how to store patterns in pattern memory is given in Section 5.4.1, using the built in ROM

pattern as an example.

5.4.1 ROM Pattern

The ROM contains a set of useful patterns for either finishing a search, or as a stand

alone. As a stand along it contains a three-stage search using a Diamond-8, Diamond-4 and

Cross-1 pattern. It also contains a Diamond-2 Pattern that leads into a Cross-1 pattern

as well. Any pattern stored in pattern memory can be directed to jump into the ROM,

which allows configurable patterns to inherit the stages already stored in ROM. A decimal

representation of the pattern ROM is shown in Table 5.36, and its binary equivalent is given

in Table 5.37. A graphical representation of the pattern stored is shown in Figure 5.25. The

ROM occupies the top 32 words of the pattern memory. Patterns which are configurable

are located in words 0 - 31.

82

Pattern Memory

X Offset

SCM
Y Offset

SCM
JMP Addr.

SCM
VLD Bot

SCM

Pattern

ROM

VLD Top

SCM

Pattern Addr.

Pattern

Write

Data

Pattern

Read

Data

Write Enables

5b

40b

6b

10b

5b

Figure 5.24: Component Blocks of the pattern memory

83

Table 5.36: Pattern ROM Contents in decimal

ADDR X Offset Y Offset JMPADR TopVLD BotVLD Stage Loc

32 0 0 41 00000000 11111111 D8 C

33 0 -8 32 00000000 11000111 D8 1

34 -4 -4 32 00000000 00000111 D8 2

35 -8 0 32 00000000 00011111 D8 3

36 -4 4 32 00000000 00011100 D8 4

37 0 8 32 00000000 01111100 D8 5

38 4 4 32 00000000 01110000 D8 6

39 8 0 32 00000000 11110001 D8 7

40 4 -4 32 00000000 00111110 D8 8

41 0 0 59 00000000 00001111 D4 C

42 0 -4 41 00000000 11000111 D4 1

43 -2 -2 41 00000000 00000111 D4 2

44 -4 0 41 00000000 00011111 D4 3

45 -2 2 41 00000000 00011100 D4 4

46 0 4 41 00000000 01111100 D4 5

47 2 2 41 00000000 01110000 D4 6

48 4 0 41 00000000 11110001 D4 7

49 2 -2 41 00000000 00111110 D4 8

50 0 0 59 00000000 00001111 D2 C

51 0 -2 50 00000000 11000111 D2 1

52 -1 -1 50 00000000 00000111 D2 2

53 -2 0 50 00000000 00011111 D2 3

54 -1 1 50 00000000 00011100 D2 4

55 0 2 50 00000000 01111100 D2 5

56 1 1 50 00000000 01110000 D2 6

57 2 0 50 00000000 11110001 D2 7

58 1 -1 50 00000000 00111110 D2 8

59 0 0 59 00000000 00000000 C1 C

60 0 -1 59 00000000 00001011 C1 1

61 -1 0 59 00000000 00000111 C1 2

62 0 1 59 00000000 00001110 C1 3

63 1 0 59 00000000 00001101 C1 4

84

Table 5.37: Pattern ROM contents in binary

ADDR X Offset Y Offset JMPADR TopVLD BotVLD Stage Loc

100000 000000000 000000000 101001 00000000 11111111 D8 C

100001 000000000 111111000 100000 00000000 11000111 D8 1

100010 111111100 111111100 100000 00000000 00000111 D8 2

100011 111111000 000000000 100000 00000000 00011111 D8 3

100100 111111100 000000100 100000 00000000 00011100 D8 4

100101 000000000 000001000 100000 00000000 01111100 D8 5

100110 000000100 000000100 100000 00000000 01110000 D8 6

100111 000001000 000000000 100000 00000000 11110001 D8 7

101000 000000100 111111100 100000 00000000 00111110 D8 8

101001 000000000 000000000 111011 00000000 00001111 D4 C

101010 000000000 111111100 101001 00000000 11000111 D4 1

101011 111111110 111111110 101001 00000000 00000111 D4 2

101100 111111100 000000000 101001 00000000 00011111 D4 3

101101 111111110 000000010 101001 00000000 00011100 D4 4

101110 000000000 000000100 101001 00000000 01111100 D4 5

101111 000000010 000000010 101001 00000000 01110000 D4 6

110000 000000100 000000000 101001 00000000 11110001 D4 7

110001 000000010 111111110 101001 00000000 00111110 D4 8

110010 000000000 000000000 111011 00000000 00001111 D2 C

110011 000000000 111111110 110010 00000000 11000111 D2 1

110100 111111111 111111111 110010 00000000 00000111 D2 2

110101 111111110 000000000 110010 00000000 00011111 D2 3

110110 111111111 000000001 110010 00000000 00011100 D2 4

110111 000000000 000000010 110010 00000000 01111100 D2 5

111000 000000001 000000001 110010 00000000 01110000 D2 6

111001 000000010 000000000 110010 00000000 11110001 D2 7

111010 000000001 111111111 110010 00000000 00111110 D2 8

111011 000000000 000000000 111011 00000000 00000000 C1 C

111100 000000000 111111111 111011 00000000 00001011 C1 1

111101 111111111 000000000 111011 00000000 00000111 C1 2

111110 000000000 000000001 111011 00000000 00001110 C1 3

111111 000000001 000000000 111011 00000000 00001101 C1 4

85

1

11

1

1

1

1

1

22

2

2

22

2 2

A

A

AA

A A

AA

3

3

3

3

C

Figure 5.25: 4-Stage pattern stored in ROM

86

5.4.2 A 12 Point Circular Search Pattern

Patterns try to capture the full range of motion within an image, in the minimum

number of points. A cross pattern, for instance, captures motion in only the cardinal direc-

tions, while a diamond pattern captures motion in both the cardinal and diagonal directions.

Hexagonal patterns capture motion, biased in either the horizontal or vertical direction de-

pending upon the type of hexagon (type A or type B). All of these search patterns were

developed in the context of H.264 and previous standards, where the maximum image size

only went to 1080p. Direction in the cardinal direction and the diagonals, then, would

capture most of the movement possible in a particular frame. With larger image sizes, up

to 4x the size of 1080p to start, motion within the image may fall within the areas missed

by cardinal and diagonal motion vectors. At the same time, H.265 brings in additional

motion vectors as possible candidates and with process shrink, the actual computation of a

candidate SAD, once its relevant pixels have been brought into memory, is also less expen-

sive. Therefore, additional patterns which contain more search points (and require more

compute), but cover more possible motion vectors, can become relevant. A 12 point cir-

cular pattern, with a three-stage example shown in Figure 5.26, balances keeping the total

number of points searched low, while still covering more possible motion directions. It also

has the same overlapping characteristics of diamond, cross, and hexagonal patterns, where

repeated searches at the same stage have overlapping check points which can be skipped,

as shown in Figure 5.27, Figure 5.28, and Figure 5.29. The rest of the re-use movements

are symmetrical about the X and Y axis. This reuse of 3 points is less than the reuse of

the diamond pattern, which reuses either 3 or 5 points depending upon the movement type,

comparable to hexagonal patterns which also reuse 3 points, and results in less distortion

on average than the cross pattern, which reuses only 1 point. Table 5.38 gives a breakdown

of points reuse in different patterns, excluding the center point of the pattern. Even as a

percentage measure, the Circular pattern compares favorably to the cross, while checking 3

times the total number of points.

87

Table 5.38: Point reuse between stages in various search patterns

Pattern NumPts Reuse Reuse Pct.

Cross 4 1 25%

Diamond 8 3 or 5 38% - 50%

HexA 6 3 50%

HexB 6 3 50%

Circular 12 3 25%

Figure 5.26: 3-Stage, 12-point circular pattern

88

1

1

1

1

1

1

1

1

1

11

1

1

2

2

2

2

2 2

2

22

Figure 5.27: Circular pattern type I reuse

1

1

1

1

1

1

1

1

1

11

1

1

2

2

2

1

2

2

2

2

2

1

2

1

Figure 5.28: Circular pattern type II reuse

89

1

1

1

1

1

1

1

1

1

11

1

1

2

2

1

2

2

1

2

2

2

22

1

Figure 5.29: Circular pattern type III reuse

Configuration

Registers

Search

Pattern

Memory

Search

Pattern

ROM

Full Search

Address

Generator

Pattern

Search

Address

Generator

Address Out of

Bound Checker

Top

Controller

(FSM)

Instruction

Decoder

Pattern Data In

Pattern Search

Address

Pattern Wr/Rd

Address

CFG Data In

Opcode In

Pixel Request Out

CFG Data Out

Address to EXE UnitCFG to EXE Unit

Figure 5.30: Controller circuitry

90

Top

Write

Burst

Memory

Read

Memory

Read

Register
Issue Ping

Read

Search

Result

Execute

Search

Full

Search

Pattern

Search

Scanner

Request

Pixels

Load

Req’d

Pixels

Figure 5.31: Hierarchy of the top control unit

5.5 Control Units

The control unit consists of the configuration registers, pattern memory, full-search

address generator, pattern-memory address generator, out of bounds point checker, the

controller FSM, and an instruction decoder, as shown in Figure 5.30. The instruction

decoder samples the op-code bits of every input word and translates these into control

signals for the controller FSM. In order to prevent random bits in the pixel transfers from

being misinterpreted, all instruction decode signals pass through the controller FSM, where

they are masked if the controller is not in an instruction-receiving state. Both address

generators can generate the next inspection point for either a smart full-search of a pattern

search run out of the pattern memory. The address out of bound checker, combined with

the controller FSM handles pixel replacement.

The top FSM controller is not a single FSM. Instead it is a series of hierarchical

FSMs. These hierarchical FSMs are built so that there is no latency lost when traveling

down the hierarchy, which requires careful handling of the idle states in each machine. This

allows us to retain the full efficiency of a fully integrated top level FSM, without paying

91

IDLE

WR

REG

Do

Ping

WR

MEM

WR

MEM

BRST

RUN

SRCH

RD

SRCH

RES

RD

MEM

RD

REG

Figure 5.32: State diagram of the top level controller

. States which trigger other FSMs are given in dashed circles, and the reset state is shown

with a double circle.

as much of the complexity price in terms of machine analysis and difficulties in correct

implementation. The list of the component FSMs, and the relational hierarchy, is shown

in Figure 5.31. Since both full search and pattern search make use of pixel replacement,

the actual implementation of the execute search contains mux logic to arbitrate between

which FSM has control of the scanner FSM. The state transition diagram is shown in

Figure 5.32 with the hierarchical FSMs marked in dashed borders. The return to IDLE

behavior adds latency to the rare register and pattern memory writes. Searches and their

associated memory operations are handled by a lower level state machine and are set up to

be pipelined. The read out commands have their own state machines so that MEACC2 can

stall correctly if its output FIFO is full.

5.6 Output Block

The output block captures signals of interest from MEACC2, and outputs them

to the FIFO in a fixed order depending upon the operation required. It contains the

92

multiplexor tree, counters to manage word-by-word output operations (such as 4-word pixel

requests, or 8-word paired pixel requests). It takes its control signals from the overall

MEACC2 controller. Data is universally 16 bits wide, to conform with the width of the

output FIFO. There is space in the output control for up to 9 more 16-bit registers. Right

now, unassigned register values are configured to return a register read value of 1.

93

Chapter 6

ME2 Physical Data

MEACC2 went through place and route targeting a 65 nm CMOS technology

node. At an expected supply voltage of 1.3 V, MEACC2 operates at a maximum frequency

of 812 MHz while dissipating 79.8 mW. By scaling the supply voltage to 0.9 V, MEACC2 op-

erates at a maximum frequency of 158 MHz and dissipates 8.06 mW. Table 6.1 summarizes

the results of place and route, and Figure 6.1 shows the dieplot with the major memory

areas outlined.

Table 6.1: MEACC2 at a Glance

Name MEACC2

Frequency 812–158 MHz

Power 79.8–8.06 mW

Supply 1.3–0.9 V

Total Area 1.041 mm2 (3 AsAP Tiles)

Block Dimensions 1020.25µm2×1020.30µm2

OnDie Memory 10 KB SCM blocks

Pixels Compares per Cycle 16, in a 4x4 block

Supported Block Sizes 8×8 to 64×64 pixels

Largest Supported Tile Size 256×256 pixels

94

Figure 6.1: A plot of the physical layout of the MEACC2.

95

Chapter 7

Matlab Model

Modeling can be a way of quickly estimating the value of architectural changes,

and models can also be extended to act as the basis for initial pre-silicon validation of a

device. A model was designed and implemented in matlab to both verify the operation of

the device, and also produce test vectors for both pre and post silicon validation.

7.1 Model

The model is designed to be a helper tool for future implementers of an AsAP

based Codec. Additionally, it is possible for later AsAP generations to have multiple

instantiations of MEACC2 in their core network. To enable both of these functions, the

model is written as a Matlab class, which can be instantiated multiple times. The model

does not directly emulate a cycle-by-cycle operation, but instead computes the expected

cycle latency and reports that, as well as a cost function, at the completion of an instruction.

This saves time, and also keep the model’s code at a higher level of abstraction, so that the

actual operation is not obfuscated.

Due to the level of abstraction necessary for fast operation, the model does not

actually emulate pixel memory operations. Instead, the model tracks the current position

of the box that contains the entirety of current pixel memory, moving that tracking when

appropriate (when it is changed in the course of a search, or if new pixels are loaded into

pixel memory). This means that the model does not cover the case where a new frame

96

begins processing, but the new pixel data has not yet been loaded into MEACC2. Future

modelers must be careful to appropriately handle the model when transitioning between

frames. In my own modeling, I made sure to reload the pixel memory when changing active

or reference frames.

7.2 Implementation as a Class

The model is built around the sad comp function, which computes the SAD be-

tween two given blocks of pixels in the reference and active frame memories. This function

is then progressively wrapped by additional functionality. There are no regressive calls,

but the model is not coded in a purely functional manner. There are object level variables

which are modified by functions, even though they do not appear in that function’s call.

The model can be instantiated with differing sizes of active frame memory, refer-

ence frame memory, pattern memory, and image sizes. The image size is a virtual construct,

but its inclusion means that the model can be expanded to handle arbitrarily large images.

The actual physical MEACC2 device is limited by its IO width constraints and memory

address space, but the model should still be a usable tool for further exploring the design

space of motion estimation accelerators.

7.3 Automatic Test Generation and Transcription

The model has a property, CREATE TRANSCRIPT, which defaults to a value of

0, but if set enables four different kinds of logging. These logs persist as long as the model

object does, are public properties, and are implemented as matrices. The four different

kinds of logs are:

• Setup Logging

• Pixel Request Logging

• Search Result Logging

• Points Checked Logging

97

Setup logging generates a row every time a model starts a search. The row contains

the values of all pertinent registers for the search. In the same order as given in Table 7.1,

the expanded names are: predicted motion vector dx, predicted motion vector dy, block id,

threshold value, active frame x coordinate, active frame y coordinate, output register value,

pixel memory frame position x coordinate, pixel memory position y coordinate, decimation

factor in the x direction, decimation factor in the y direction, and the search pattern address.

Not all of these values are pertinent for both pattern search and full search, for example

pattern searches do not care about decimation factors. If a value is not pertinent for a

particular search, then those values are recorded as zero in the transcript.

Table 7.1: Setup transcript format

pmvdx pmvdy blkid thresh ax ay oreg imx imy decx decy pat addr

Pixel request logging tracks the pixel requests made by MEACC2 through its

output FIFO. Those requests, while coming out over multiple FIFO words, are condensed

into a single transcript row. In the same order as given in Table 7.2, the expanded names

are: x coordinate of the top left corner, y coordinate of the top left corner, width, and

height. In diagonal pixel memory movements, MEACC2 issues a pair of pixel requests, and

therefore adds two rows to the pixel request logging transcript.

Table 7.2: Pixel request transcript format

X Y W H

Search result logging tracks the final search result output that MEACC2 places

on its output FIFO. That report, as with the pixel requests, is made over multiple FIFO

words, but is condensed into a single row for the transcript. In the same order as given in

Table 7.3, the expanded names are: the x coordinate of the top left corner of the matched

pixel block, the y coordinate of the top left corner of the matched pixel block, and the SAD

value for the match. The SAD value is modeled in matlab as an integer, but should never

exceed the value of a 20 b unsigned number. If it does, something has gone wrong.

Points checked result logging tracks which points are considered over the course

of a search pattern. In this case, the SAD value of any pair of points was not of interest to

98

Table 7.3: Search result transcript format

X Y SAD

me in my debugging, so it is not logged. That would be a useful extension of the logging

functionality, if future students want to experiment with more rigorous regression testing.

These log only contains the X and Y coordinates of each checked point in absolute terms.

Table 7.4: Points checked transcript format

X Y

Points checked logging was used primarily for debugging purposes during RTL val-

idation. The other three logs can be consumed by calling “generate test from model run”,

which creates a testbench ready pair of stimulus files, one file for input and the other for

expected output, on a model instance that has valid transcripts. The top level function

leverages a pair of helper functions named “test input gen” and “test output gen” which

can also be used independently to generate valid MEACC2 instruction words.

7.4 Cost Functions

The Matlab model maintains a cost function which tracks the cost of each search.

The cost is meant to be a high-level estimate of the total number of cycles required to process

a pixel block. The cost function is broken into two parts, cycles spent on transferring pixels

into the block, and cycles spent computing the SADs. The pixel throughput is fixed at

2 pixels per cycle, so every two pixels transferred cost 1 cycle. Computes are done 4x4

pixels at a time, but depending upon block sizes a SAD compute could cost 4 (for an 8x8

block) or 256 cycles for a 64x64 block compare. This cost function should systematically

underestimate the total number of cycles in both categories. In pixel transfers, the cost

is underestimated because it assumes 100% FIFO utilization and no latency from pixel

request to pixels being available. In SAD computes, it only counts the cycles necessary to

perform the SAD, but does not take into account start latency, nor empty pipeline cycles

due to decisions being made for the top level search. These error rates should be similar

99

between different not-full pattern searches. Full-searches have slightly different behavior

due to the different decision unit used to run the search. So our strategy for estimating

the performance of MEACC2 then, is to use the model to generate costs, correlate those

costs by simulating those transcripts in Modelsim and developing cost modifiers for both

pixel transfer and SAD compute, and then use those correlations to make larger predictions

using our body of generated costs.

100

Chapter 8

Simulation Results

The matlab model of MEACC2, combined with the RTL and Modelsim lets us

begin to analyze the potential performance of the architecture.

8.1 Cost Function Correlation

Our cost function properly has two missing factors, the efficiency of the FIFOs

and the efficiency of the computes. FIFO performance can be predicted based on bit width

and operating frequency, but the FIFO efficiency is based on the overall system’s ability to

handle pixel requests from the large memory. The compute efficiency can be estimated as

a function of block size and the number of points checked per pattern stage.

8.1.1 FIFO Limits

Assuming perfect memory usage (no repeated memory accesses), perfect FIFO

usage (the FIFOs are transmitting useful data 100% of the time), and perfect pixel latency

from the external memory establishes an upper bound of performance based purely on

inter-chip communication block, and see that is should be sufficient for the current data

throughput target. Table 8.1 gives effective FIFO throughput at various usage levels and

operating frequencies, while Table 8.2 gives the throughput required to transfer at the

specified framerate for each video format.

Taking Table 8.1 and Table 8.2 together, the 16b FIFO with 50% utilization can

101

Table 8.1: 16b FIFO throughput

Throughput, Mpix /s

Freq (GHz) 100% 75% 50% 25%

0.45 900 675 450 225

0.55 1100 825 550 275

0.65 1300 975 650 325

0.75 1500 1125 750 375

0.85 1700 1275 850 425

0.95 1900 1425 950 475

1.05 2100 1575 1050 525

1.15 2300 1725 1150 575

1.25 2500 1875 1250 625

1.35 2700 2025 1350 675

1.45 2900 2175 1450 725

1.55 3100 2325 1550 775

1.65 3300 2475 1650 825

Table 8.2: Video format throughput requirements

Mpix / s

Name X Y Pixel Count 30 FPS Req 60 FPS Req

QCIF 176 144 25344 1 2

CIF 352 288 101376 3 6

480p 640 480 307200 9 18

720p 1280 720 921600 28 55

1080p 1920 1080 2073600 62 124

2160p 3840 2160 8294400 249 498

4320p 7680 4320 33177600 995 1991

Digital 4K 4096 2160 8847360 265 531

IMAX 5616 4096 23003136 690 1380

102

produce sufficient memory throughput to handle all video formats in 30 FPS if the device

operating frequency can hit 1.05 GHz. Lower frequencies, or lower utilization result in

MEACC2 operation being FIFO bound.

8.1.2 Compute Limits

Given that the compute datapath executes a 4x4 pixel search with a latency of

6 cycles and a throughput of 1 4x4 block per cycle, what is the maximum bound on our

performance if the pipeline is kept constantly full. This establishes an upper bound on

the expected performance based purely on the pixel datapath. How does this relate to the

compute requirements of various target performance points, what does it suggest for future

devices? Compare pattern search using cost functions from the matlab model.

The stage efficiency, E is a function of how many cycles it takes to process a block,

the amount of latency to begin processing, and how long it takes to make a decision at the

end of a stage. This implies, that given a perfect memory subsystem, the whole efficiency

is determined by the relationship between start up latency, decision latency, and how many

cycles are taken to process a block.

EStage =
N × (Cycles/Block)

LStartup +N × (Cycles/Block) + LDecision

Table 8.3 demonstrates the pattern of efficiency usage across various points per

stage and block sizes. Effectively, the larger each particular unit of computation gets, the

less of an impact the initial latency of the datapath and decision.

8.2 Pattern Search Performance

MEACC2 is configurable, and can support arbitrary stage-based patterns. Previ-

ous work called for the pattern memory to be resynthesized for each type of pattern, but by

fixing the maximum pattern size at 16 points, MEACC2 can be implemented with a con-

figurable pattern memory. This also allows for a direct performance comparison between

different search pattern algorithms on the same set of video data and making use of the same

memory and datapath architectures. Each of the pattern shown in Tables 8.4 through 8.9

103

Table 8.3: Compute efficiency of a 16xSAD 6 cycle pipeline, 2 cycle decision unit

Block Size Stage Efficiency

Cycles / Blk X Y 3 5 7 9 13 FS Eff

2 4 8 42.86% 55.56% 63.64% 69.23% 76.47% 99.994%

2 8 4 42.86% 55.56% 63.64% 69.23% 76.47% 99.994%

4 8 8 60.00% 71.43% 77.78% 81.82% 86.67% 99.997%

8 8 16 75.00% 83.33% 87.50% 90.00% 92.86% 99.998%

8 16 8 75.00% 83.33% 87.50% 90.00% 92.86% 99.998%

16 16 16 85.71% 90.91% 93.33% 94.74% 96.30% 99.999%

32 16 32 92.31% 95.24% 96.55% 97.30% 98.11% 100.000%

32 32 16 92.31% 95.24% 96.55% 97.30% 98.11% 100.000%

64 32 32 96.00% 97.56% 98.25% 98.63% 99.05% 100.000%

128 32 64 97.96% 98.77% 99.12% 99.31% 99.52% 100.000%

128 64 32 97.96% 98.77% 99.12% 99.31% 99.52% 100.000%

256 64 64 98.97% 99.38% 99.56% 99.65% 99.76% 100.000%

were run with a fixed block size of 8x8, and each pattern is a three stage pattern with sim-

ilar spreads. The hybrid pattern uses diamond patterns in the first two stages, and then a

cross pattern in the last stage. The circular pattern uses a circular pattern for the first two

stages and then finishes with a cross pattern as well, to match the pattern proposed earlier.

The MAE is the mean absolute error across all frames and candidate blocks. Percentage

differential is computed from the smallest error-case of each class, for example in Table 8.5,

the pattern that finds the smallest MAE is a circular pattern, while the pattern that checks

the least number of points per block is the cross pattern.

The MEACC2 can only handle a tile of up to 256x256 pixels, and these images are

significantly larger, so the first step is to divide the image into tiles, and then process each

of those tiles in turn. This does mean that the search only takes place within a particular

tile, so the results differ from a straightforward full-search across the entire image. Overall,

the 832x480 video streams are partitioned into 8 tiles (3 full tiles and 5 partial tiles), and

the 1280x720 streams are partitioned into 15 tiles (8 full tiles, and 7 partial tiles). When

considering performance limitations, these tiles could be each spread to a different instance

of MEACC2, provided the system can afford the area and energy, the scaling is perfect up

to the full tiles, but partial tiles only offer some fraction of speedup instead of full speedup.

The reference frame is taken as the first frame in the video stream, and then the remaining

104

frames are processed. Therefore, the higher framerate videos: Fourpeople, Johnny, and

Kristen and Sara, have less overall movement per frame than the lower framerate videos:

BasketballDrill, BQMall, and Flowervase.

Table 8.4: Pattern performance on BasketballDrill 832x480, 30 frames

pattern mae avg pts mae pct pts pct

cross 19.11 16.43 139.51% 0.00%

diamond 10.35 28.65 29.71% 74.42%

hybrid 10.83 28.01 35.76% 70.47%

hex aaa 14.95 20.36 87.37% 23.95%

hex bbb 15.22 20.20 90.71% 22.93%

hex aba 14.88 20.40 86.48% 24.18%

circular 7.98 38.02 0.00% 131.42%

Table 8.5: Pattern performance on BQMall 832x480, 30 frames

pattern mae avg pts mae pct pts pct

cross 17.15 19.41 127.54% 0.00%

diamond 9.47 33.86 25.61% 74.46%

hybrid 10.17 32.45 34.91% 67.18%

hex aaa 15.07 22.72 99.97% 17.06%

hex bbb 13.07 23.90 73.45% 23.11%

hex aba 14.13 23.33 87.52% 20.18%

circular 7.54 44.95 0.00% 131.56%

Table 8.6: Pattern performance on Flowervase 832x480, 30 frames

pattern mae avg pts mae pct pts pct

cross 3.10 15.15 134.47% 0.00%

diamond 1.60 24.45 21.03% 61.38%

hybrid 1.81 23.30 37.00% 53.82%

hex aaa 3.46 17.17 161.83% 13.33%

hex bbb 2.65 17.90 100.60% 18.17%

hex aba 3.18 17.79 140.17% 17.45%

circular 1.32 31.82 0.00% 110.03%

Across all 6 video streams, the circular pattern delivers the smallest MAE, while

checking up to 139% more points per block. This reflects the predicted tradeoff, a smaller

SAD match is found, but at the cost of more compute. The smaller SAD match has a

105

Table 8.7: Pattern performance on FourPeople 1280x720, 60 frames

pattern mae avg pts mae pct pts pct

cross 5.75 16.62 137.03% 0.00%

diamond 3.21 29.43 32.33% 77.02%

hybrid 3.31 28.77 36.36% 73.05%

hex aaa 4.69 20.47 93.07% 23.14%

hex bbb 4.62 20.63 90.43% 24.12%

hex aba 4.68 20.48 92.73% 23.20%

circular 2.43 38.95 0.00% 134.29%

Table 8.8: Pattern performance on Johnny 1280x720, 60 frames

pattern mae avg pts mae pct pts pct

cross 4.12 18.66 148.86% 0.00%

diamond 2.32 32.18 40.05% 72.45%

hybrid 2.45 30.97 47.85% 65.97%

hex aaa 3.35 22.79 102.20% 22.12%

hex bbb 3.28 23.32 97.67% 24.99%

hex aba 3.35 22.80 102.04% 22.20%

circular 1.66 44.60 0.00% 139.00%

Table 8.9: Pattern performance on Kristen and Sara 1280x720, 60 frames

pattern mae avg pts mae pct pts pct

cross 3.84 18.83 149.48% 0.00%

diamond 2.17 32.14 40.81% 70.67%

hybrid 2.30 30.83 49.60% 63.68%

hex aaa 3.14 22.79 103.77% 21.02%

hex bbb 3.06 23.43 98.88% 24.40%

hex aba 3.14 22.79 103.87% 21.01%

circular 1.54 44.88 0.00% 138.29%

106

MAE of approximately half that of previously introduced patterns. Therefore, the circular

pattern can be used in applications whose video throughput requirements fall short of the

capacity of MEACC2, in order to produce a smaller compression while still making full use

of all the hardware already implemented in a fixed video-coding system, or simple patterns

can be used to maximize pixel throughput, at a quantifiable cost to the MEA.

8.3 Performance Prediction

A performance prediction is made from simulation, based on the cost functions

built into the model, as well as scaling factors derived from previous work on the AsAP

platform.

8.3.1 From Cost Function to Performance Prediction

The cost function is used to capture a predicted cycle count during simulation

and is divided into two parts, the cost associated with moving the reference memory frame,

and the cost to perform the necessary computes. Compute is normally a raw number of

SAD pairs computed, so an 4x4 block SAD would count for a cost of 16. The performance

simulations were run with a block size of 8x8, since when considering the compute pipeline,

the 8x8 block was the least efficiently used by the pipeline. This means that the cost

function would be scaled by 64/16, or 4, to account for the number of cycles the datapath

actually takes to compute the required SAD block.

This separation of the cost function also allows us to evaluate the overall split in

cycles spent between pixel movement and SAD compute. In Table 8.10, the hybrid diamond-

diamond-cross search split 30%/70% compute and move. This effect was similarly constant

across all tested patterns, though the more points in a pattern the more the breakdown

favored the compute side. At the most extreme, a circular pattern spends about 45% of the

cost doing compute.

107

8.3.2 Performance Prediction Across Video Streams

Across 6 different video streams, the hybrid search gives a good balance between

search time (performance) and final distortion (MAE). Nominal performance can be es-

timated by taking the sum of the two cost-function components and translating them to

expected cycles. A more realistic estimation of the final performance is gained by scaling the

nominal value by 0.3. This scaling factor is derived from the work of Landge, when she de-

veloped the accelerator [83], and Xiao, Le, and Baas when they developed an encoder using

Landge’s accelerator. The pixel throughput achieved by the overall system was only about

30% what Landge projected. A similar process takes place to build a workable encoder from

MEACC2 so it should be fair to use a similar scaling factor to translate nominal throughput

into actual expected performance. Xiao, Le, and Baas’ work also provided the expected

power number, scaling a 1.1W system at 400 MHz, to a 1.375W system at 500 MHz, and a

2.75W system at 1 GHz, which should be workable assumptions when fabricating in 65nm.

The power numbers, along with expected performance for both operating frequencies is used

to project our performance and efficiency against other designs in Table 4.4 and Table 4.5.

Table 8.10: Hybrid search performance from simulation

Work Breakout Throughput (FPS) Throughput (Mpix/s)

Video Comp% MV% Nom. 1 GHz 0.5 GHz Nom. 1 GHz 0.5 GHz

BBall 32.92% 66.88% 471.01 141.30 70.65 188.10 56.43 28.22

BQMall 30.89% 68.95% 381.37 114.41 57.20 152.30 45.69 22.85

Flower 29.41% 70.38% 505.68 151.70 75.85 201.95 60.58 30.29

4 Ppl. 35.40% 64.51% 213.65 64.09 32.05 196.90 59.07 29.53

Johnny 32.74% 67.19% 183.52 55.05 27.53 169.13 50.74 25.37

K & S 34.15% 65.77% 192.35 57.71 28.85 177.27 53.18 26.59

480p 31.08% 68.74% 452.68 135.81 67.90 180.78 54.24 27.12

720p 34.10% 65.82% 196.50 58.95 29.48 181.10 54.33 27.16

8.3.3 Performance Scalability

One of the advantages of building MEACC2 to tile sizes is that multiple instances

of MEACC2 can work in parallel. Each image stream is divided into 256x256 tiles, and

each tile can be processed separately. For an 832x480 image, the partitioning fills 3 tiles

108

completely, and 5 partial tiles. Since our simulations was run in series for each tile, this

means that the work can be sped up at least 3 times, as 3 tiles can be kept at full utilization,

while partial tiles have less utilization. Similarly, for a 1280x720 stream, there are 8 full

tiles and 7 partial tiles, resulting in, at minimum, an 8x speedup. This additional silicon

area is not free, especially in power and memory bandwidth terms, but if a system calls for

maximum throughput, the option exists. Table 8.11 show the top line performance increase

from a conservative scaling with tiles.

Table 8.11: Hybrid search performance with tiling scalability

Tiles Throughput (FPS) Throughput (Mpix/s)

Video Full Partial Nom. 1 GHz 0.5 GHz Nom. 1 GHz 0.5 GHz

BBall 3.00 5.00 1413.02 423.91 211.95 564.31 169.29 84.65

BQMall 3.00 5.00 1144.10 343.23 171.61 456.91 137.07 68.54

Flower 3.00 5.00 1517.04 455.11 227.56 605.84 181.75 90.88

4 Ppl. 8.00 7.00 4045.43 1213.63 606.81 1615.58 484.68 242.34

Johnny 8.00 7.00 1709.17 512.75 256.38 1575.17 472.55 236.28

K & S 8.00 7.00 1468.13 440.44 220.22 1353.03 405.91 202.95

480p 3.00 5.00 1358.05 407.42 203.71 542.35 162.71 81.35

720p 8.00 7.00 2407.58 722.27 361.14 1514.59 454.38 227.19

109

Chapter 9

Conclusions

9.1 Contributions

I have designed and implemented an new motion estimation engine, MEACC2,

for a future AsAP platform, verified that it functions correctly, and projected it to have a

worst-case throughput on par with ASIC designs, 2x the pixel/joule efficiency of the previ-

ous accelerator, and capable of 3.5x the pixel throughput, sufficient for real-time processing

in 720p in the worst case at 110 FPS. Additionally, an extension on the full-search algo-

rithm was proposed, smart-full-search to save memory bandwidth for minimal additional

hardware, and a performance analysis of a novel 12-point center-biased search pattern was

performed, where the pattern was found to improve MAE of a search by 2x, in exchange

for searching 120% more points.

9.2 Non-Video Compression Applications

The primary focus of the research was in the development of a block for video

compression purposes, but some of the circuit could be adapted for other uses.

9.2.1 Pattern Matching

A possible uses case is for matching patterns in a database, using the pixel array

as a database of patterns. Run a decimated full search, based on the size of the patterns

110

that have been stored. Very fast if used with proper thresholding and a slice of database

small enough to fit in all of Reference Memory.

9.2.2 Motion Stabilization

Motion estimation for compression produces motion vectors which give a good

sense of how objects in the image have moved over the sampling period. A system which

took a set of blocks and computed their motion could make use of the generated vectors

to estimate the overall system movement. This estimate could be fed into a stabilization

system to stabilize the camera or platform, or could be applied to a video stream encoding

as additional input, so that the video itself appears stable.

9.2.3 Burst Memory

Since there are instructions to allow the retrieval of pixel data that has been stored

in either active or reference frame memory, it is possible to make use of the frame memory as

a general purpose memory. If it is being used that way, it should be noted that the memory

reads have a native locality to them, since pixels are produced in a 4x4 block. However, this

locality would not necessarily be correlated unless the target application made an effort to

handle the rotation of memory words. If such a rotation was desired in operation, it should

be possible to use the MEACC2 memory to perform that operation.

9.3 Future Research

The 30/70 breakdown between pixel compute and pixel movement implies that

there is additional performance to be found in executing more than one search in parallel,

and using those parallel searches to fill the compute pipeline while waiting for pixel infor-

mation to return. It also implies that the information bottleneck in these designs continues

to be the memory system. The beginnings of an interesting solution to this problem might

tile out multiple instances of the control modules, to conduct multiple searches which each

request access to the datapath. An overall controller would decide when to move the mem-

ory, probably when there were no more points to be checked. This would allow the device

111

to unroll the search patterns, similar to loop unrolling. A greedy search algorithm, which

computes all the different divisions of a CTU, while attempting to move the memory as

infrequently as possible, could help bridge the gap between these serial pattern processors

and the 2d systolic arrays which compute everything in parallel.

There is also, of course, the goal of building an actual encoder around the bones

provided by the MEACC2. Video encoding, in a low power and configurable context,

remains a wide-open domain for novel solutions, and the AsAP platform, with its scalable

mesh and the MEACC2 with its scalable design for tiles, seem ideally positioned to create

a high performance, low power, real-time HEVC system.

112

Chapter 10

Glossary

ACT Mem. Active Frame Memory. In block motion algorithms, the memory being re-

peatedly operated on against a previous reference frame. Sometimes referred to as

the current frame, or current pixels.

AMP Asymmetric Motion Prediction

AMVP Asymmetric Motion Vector Prediction

AsAP Asynchronous Array of Processors, the UC Davis VCL fine-grain many-core pro-

cessing platform, originally for DSP and the demonstration platform for MEACC2.

ASIC Application Specific Integrated Circuit (IC), a circuit designed for a specific appli-

cation.

ASIP Application Specific Instruction Processor, and processor whose instruction set is

design for a specific application.

B-Frame Bidirectionally-predictive-coded Frames. These frames are never ref. frames,

and use information from both temporal directions. They tend to compress more

than P frames, all else being equal.

BMA Block Motion Algorithm. An algorithm primarily concerned with estimating the

motion of blocks of pixels, not the motion of individual pixels.

CABAC Context-adaptive binary arithmetic coding [4]

113

CAVLC Context-adaptive variable length coding [5]

Center Biased Patterns BMAs which have a bias towards the center of the search area.

Chroma Color information is referred to as Chroma.

CPU Central Processing Unit

CSA Carry Save Adder, shorthand for a type of adder architecture making use of various

kinds of compressors to ”‘save”’ the carry bit of an addition for a final compression

step, while the rest of the addition is done in parallel, independent of carrys from

further down the adder chain [88].

CTB Coding Tree Block, a block of pixels which will be processed together.

CTU Coding Tree Unit, analogous to the macroblocks of H.264, these are groups of CTBs

which represent the same frame area, but can be processed separately as they contain

separate Luma/Chroma information.

CUDA NVidia’s (a GPU manufacturer) proprietary GPGPU compute language for its

GPUs

DRAM Dynamic Random-Access Memory, a memory which requires periodic refreshes to

maintain its value, but more dense than SRAM. Typically used when large amounts

of data storage are required for an application.

DSP Digital Signal Processing

FFT Fast Fourier transform, a mathematical operation frequently used in digital signal

processing (DSP) applications.

FIFO First In First Out, describing the order in which messages are passed through the

interface

FPGA Field Programmable Gate Array, and ASIC which can be configured to emulate

different types of hardware using a HDL.

114

FPS Frames Per Second, a common measure of throughput in video encode and decode

applications

FSM Finite State Machine

Full Search BMA which is not center biased, and checks every possible block location.

GoP Group of Pictures, a collection of I, P, and B frames which make up a subset of a

video stream to be encoded.

GPGPU General Purpose GPU, used to describe compute applications which us a GPU

for general purpose processing.

GPU Graphics processing unit, typically a highly parallel SIMD architected ASIC.

H.264/AVC Advanced Video Compression, a coding standard, introduced in 2003 for

video compression and playback standardization.

H.265/HEVC High Efficiency Video Coding, a coding standard, introduced in 2012, to

replace H.264/AVC with new features and targeted at reducing encoded video size by

50%.

HDL Hardware description language such as Verilog or VHDL. Used to describe hardware

as the first step in both ASIC and FPGA design flows.

HFSM Hierarchical Finite State Machine. A state machine which can be decomposed into

a set of constituent FSMs [89].

I-Frame Intra-coded Frames is a compressed version of a raw frame containing information

from only a single frame, and can therefore be decoded independently of its neighbors.

Inter-Frame Between Frames

Intra-Frame Within Frames

Luma Light intensity information is referred to as Luma, a picture can be decomposed

into its Luma and Chroma parts.

115

MAE Mean Absolute Error, a figure of merit when comparing the distortion between two

blocks of pixels.

MEACC2 The 2nd generation Motion Estimation Accelerator

MV Motion Vector, a pair of (dX, dY) coordinates denoting the offset of the best match

of a block of pixels from its starting location.

OpenCL Open source C-based framework for parallel computing, sometimes used as a

substitute for CUDA, or to achieve GPGPU with non-NVidia GPUs.

P-Frame Predictive-coded Frame, are encoded using data from previous I and P frames

allowing for more efficient compression.

Pattern Search A search which follows a particular pattern, rather than checking all the

possibilities as in Full Search.

PB Prediction Block, the block of pixels which will be evaluated and compressed together.

PE Processing Elements

PMV Predicted Motion Vector

REF Mem. Reference Frame Memory. In block motion algorithms, the memory from a

previous frame.

ROM Read Only Memory, used to store values which are fixed at design time.

SAD Sum of Absolute Differences, a figure of merit when comparing the distortion between

two blocks of pixels.

Search Area The area in a frame which will be searched for the best-match candidate.

SIMD Single Instruction Multiple Data, describing compute architectures where a single

instruction operates on multiple data simultaneously.

SCM Standard Cell Memory. Memory built primarily with latches or registers.

116

SRAM Static Random-Access Memory, on chip memory used to store data during opera-

tion.

Tile The unit of division in H.265 for parallel processing. Individual tiles can be processed

independently of each other with a final merge step to bring the whole encoded image

together.

TSS Three Step Search, a type of center-biased search pattern with a Diamond-Diamond-

Cross pattern progression.

VBSME Variable Block Size Motion Estimation, describes encodings which have mac-

roblocks (if H.264) or CTBs (if H.265) of multiple sizes.

117

Appendix A

Matlab Model Code

A.1 motion estimation engine.m

classdef motion estimation engine model < handle

% A bit accurate model of Michael's Motion Estimation Engine.

properties

% Transcript Values

CREATE TRANSCRIPT = 0;

OFILE = '';

IFILE = '';

% Setup Matrix: pmvdx, pmvdy, blkid, thresh, ax, ay,

% oreg, imx, imy, decx, decy, pat addr

SU MAT = [];

% Pixel Request Matrix: X, Y, W, H

PR MAT = [];

% Search Result Matrix: X, Y, SAD

RS MAT = [];

% Matrix of Points Checked, X/Y

PT MAT = [];

% Physical Characteristics

REF MEM SIZEXY = [64, 64];

ACT MEM SIZEXY = [64, 64];

PAT MEM SIZE = 32;

118

% Memories

REF MEM = [];

ACT MEM = [];

PAT MEM OFFSETS = [];

PAT MEM VLDS = [];

PAT MEM JMPADDR = [];

% Frames (Virtual Constructs, not present in actual Unit)

FRAME SIZEXY = [256, 256];

REF FRAME = [];

ACT FRAME = [];

PAT MEM FORMAT = [];

% Flags (Virtual Constructs)

STEP EN = 0;

PLOT EN = 0;

REPORT EN = 0;

PLOT NEW EN = 0;

ENABLE LAST CHECK REG = 0;

% Logs

LOG NUM MOVES = uint64(0);

LOG MOVE COST = uint64(0);

LOG SAD COST = uint64(0);

LOG NUM PTS CHECKED = uint64(0);

%Externally Visible Registers

BURST REF ORIGIN X REG = 0;

BURST REF ORIGIN Y REG = 0;

BURST REF HEIGHT REG = 0;

BURST REF WIDTH REG = 0;

PAT WRITE ADDR REG = 0;

PMV DX REG = 0;

PMV DY REG = 0;

BLK ID REG = 0;

THRESH TOP REG = 0;

THRESH BOT REG = 0;

ACT PT X REG = 0;

ACT PT Y REG = 0;

REF PT X REG = 0;

119

REF PT Y REG = 0;

IM SZ X REG = 256;

IM SZ Y REG = 256;

MV X REG = 0;

MV Y REG = 0;

end % properties

% Internal Properties / Registers.

properties (SetAccess = private)

BLK WIDTH = 0;

BLK HEIGHT = 0;

SAD THRESHOLD = 0;

REF ORIGIN X REG = 1; % index starts at 1 in matlab

REF ORIGIN Y REG = 1; % index starts at 1 in matlab

MEM MOVED REG = 0;

CURR VLDS REG = '0000000000000000';

SEARCH CENTER X REG = 0;

SEARCH CENTER Y REG = 0;

NEW SEARCH CENTER X REG = 0;

NEW SEARCH CENTER Y REG = 0;

BEST SAD VAL REG = 1048576; % max value of 20 unsigned bits + 1

SEARCH BASE PAT ADDR = 0;

NEW SEARCH BASE PAT ADDR = 0;

PAT SEARCH FINISHED = 0;

LAST CHECK X = 0;

LAST CHECK Y = 0;

end

methods

% Need a method for each command word and a constructor.

% Also a reset function.

function enable transcription(obj, name)

obj.CREATE TRANSCRIPT = 1;

obj.OFILE = ['trans ' name ' outputs'];

obj.IFILE = ['trans ' name ' inputs'];

120

end

function obj = motion estimation engine model(ref szxy, act szxy, ...

patsz, framesxy)

obj.REF MEM SIZEXY = ref szxy;

obj.REF MEM = zeros(ref szxy(1), ref szxy(2));

obj.ACT MEM SIZEXY = act szxy;

obj.ACT MEM = zeros(act szxy(1), act szxy(2));

obj.PAT MEM SIZE = patsz;

obj.PAT MEM OFFSETS = zeros(patsz, 2);

obj.PAT MEM JMPADDR = zeros(patsz, 1);

obj.PAT MEM VLDS = repmat('0000000000000000', patsz, 1);

obj.PAT MEM FORMAT = repmat('.g', patsz, 1);

obj.FRAME SIZEXY = framesxy;

obj.IM SZ X REG = framesxy(2);

obj.IM SZ Y REG = framesxy(1);

obj.REF FRAME = zeros(framesxy(1), framesxy(2));

obj.ACT FRAME = zeros(framesxy(1), framesxy(2));

end % end motion estimation engine model (constructor)

function set burst ref x(obj, value)

obj.BURST REF ORIGIN X REG = value;

end % end set burst ref x

function set burst ref y(obj, value)

obj.BURST REF ORIGIN Y REG = value;

end % end set burst ref y

function set burst ref height(obj, value)

obj.BURST REF HEIGHT REG = value;

end % end set burst ref height

function set burst ref width(obj, value)

obj.BURST REF WIDTH REG = value;

end % end set burst ref width

121

function set pmv x(obj, value)

obj.PMV DX REG = value;

end % end set pmv x

function set pmv y(obj, value)

obj.PMV DY REG = value;

end % end set pmv y

% Set Block ID will also set the internal values blk width and

% blk height. This mimics the lookup table the unit uses.

function set blkid(obj, value)

obj.BLK ID REG = value;

switch value

case 0

obj.BLK WIDTH = 64;

obj.BLK HEIGHT = 64;

case 1

obj.BLK WIDTH = 32;

obj.BLK HEIGHT = 64;

case 2

obj.BLK WIDTH = 64;

obj.BLK HEIGHT = 32;

case 3

obj.BLK WIDTH = 32;

obj.BLK HEIGHT = 32;

case 4

obj.BLK WIDTH = 16;

obj.BLK HEIGHT = 32;

case 5

obj.BLK WIDTH = 32;

obj.BLK HEIGHT = 16;

case 6

obj.BLK WIDTH = 16;

obj.BLK HEIGHT = 16;

case 7

122

obj.BLK WIDTH = 8;

obj.BLK HEIGHT = 16;

case 8

obj.BLK WIDTH = 16;

obj.BLK HEIGHT = 8;

case 9

obj.BLK WIDTH = 8;

obj.BLK HEIGHT = 8;

case 10

obj.BLK WIDTH = 4;

obj.BLK HEIGHT = 8;

case 11

obj.BLK WIDTH = 8;

obj.BLK HEIGHT = 4;

otherwise

obj.BLK WIDTH = 4;

obj.BLK HEIGHT = 4;

end

end % end set blkid

function set thresh top(obj, value)

obj.THRESH TOP REG = value;

obj.SAD THRESHOLD = value * 2ˆ10 + obj.THRESH BOT REG;

end % end set thresh top

function set thresh bot(obj, value)

obj.THRESH BOT REG = value;

obj.SAD THRESHOLD = obj.THRESH TOP REG * 2ˆ10 + value;

end % end set thresh top

function set act pt x(obj, value)

obj.ACT PT X REG = value;

end % end set act pt x

function set act pt y(obj, value)

obj.ACT PT Y REG = value;

123

end % end set act pt y

function set ref pt x(obj, value)

obj.REF PT X REG = value;

end % end set ref pt x

function set ref pt y(obj, value)

obj.REF PT Y REG = value;

end % end set ref pt y

function log setup(obj, decx, decy, pat base, isFS)

% Setup Matrix: pmvdx, pmvdy, blkid, thresh, ax, ay, oreg, imx,

% imy, decx, decy, pat base, isFS

SU = [obj.PMV DX REG, obj.PMV DY REG, obj.BLK ID REG, ...

obj.SAD THRESHOLD, obj.ACT PT X REG, obj.ACT PT Y REG, ...

obj.REF PT X REG, obj.REF PT Y REG, 0, ...

obj.IM SZ X REG, obj.IM SZ Y REG, decx, decy, ...

pat base, isFS];

obj.SU MAT = [obj.SU MAT; SU];

end % end log setup

function log result(obj)

% Search Result Matrix: X, Y, SAD

RS = [obj.SEARCH CENTER X REG, obj.SEARCH CENTER Y REG, ...

obj.BEST SAD VAL REG];

obj.RS MAT = [obj.RS MAT; RS];

% put a 0 pixel request into the log (which is illegal) to show end

% of log.

obj.PR MAT = [obj.PR MAT; [0 0 0 0]];

end

function [] = run simple full search(obj, decx, decy)

% Given a decimation count, use the blk size and image sizes to run

% through all possible points in the search frame. Decimation in

% this case means the skip value in x and y directions. A standard

% full search therefore has decimation of 1.

124

obj.LOG NUM MOVES = 0;

obj.LOG MOVE COST = 0;

obj.LOG SAD COST = 0;

obj.LOG NUM PTS CHECKED = 0;

obj.BEST SAD VAL REG = 1048576;

if(obj.CREATE TRANSCRIPT)

obj.log setup(decx, decy, 0, 1);

end

% check first point

sad = obj.sad comp memcheck(1, 1, obj.ACT PT X REG, obj.ACT PT Y REG);

obj.BEST SAD VAL REG = sad;

obj.SEARCH CENTER X REG = 1;

obj.SEARCH CENTER Y REG = 1;

% check the rest of the points

for x = 1:decx:obj.IM SZ X REG - obj.BLK WIDTH

for y = 1:decy:obj.IM SZ Y REG - obj.BLK HEIGHT

sad = obj.sad comp memcheck(x, y, ...

obj.ACT PT X REG, obj.ACT PT Y REG);

if sad < obj.BEST SAD VAL REG

obj.BEST SAD VAL REG = sad;

obj.SEARCH CENTER X REG = x;

obj.SEARCH CENTER Y REG = y;

end

end

end

if(obj.CREATE TRANSCRIPT)

obj.log result();

end

end

function [] = run smart full search(obj, decx, decy)

125

obj.LOG NUM MOVES = 0;

obj.LOG MOVE COST = 0;

obj.LOG SAD COST = 0;

obj.LOG NUM PTS CHECKED = 0;

obj.BEST SAD VAL REG = 1048576;

if(obj.CREATE TRANSCRIPT)

obj.log setup(decx, decy, 0, 1);

end

% check first point

sad = obj.sad comp memcheck(1, 1, ...

obj.ACT PT X REG, obj.ACT PT Y REG);

obj.BEST SAD VAL REG = sad;

obj.SEARCH CENTER X REG = 1;

obj.SEARCH CENTER Y REG = 1;

% check the rest of the points, sector by sector.

for x = 1:obj.REF MEM SIZEXY(1)-obj.BLK WIDTH+1: ...

obj.IM SZ X REG - obj.BLK WIDTH

for y = 1:obj.REF MEM SIZEXY(2)-obj.BLK HEIGHT+1: ...

obj.IM SZ Y REG - obj.BLK HEIGHT

for dx = 0:decx:obj.REF MEM SIZEXY(1)-obj.BLK WIDTH

for dy = 0:decy:obj.REF MEM SIZEXY(2) - obj.BLK HEIGHT

checkx = x + dx;

checky = y + dy;

%fprintf('(%i, %i)\n', checkx, checky)

if and((checkx < ...

obj.IM SZ X REG-(obj.BLK WIDTH-1)), ...

(checky < obj.IM SZ Y REG-(obj.BLK HEIGHT-1)))

%fprintf('(%i, %i)\n', checkx, checky)

sad = obj.sad comp memcheck(x + dx, y + dy, ...

obj.ACT PT X REG, obj.ACT PT Y REG);

if sad < obj.BEST SAD VAL REG

obj.BEST SAD VAL REG = sad;

obj.SEARCH CENTER X REG = x + dx;

126

obj.SEARCH CENTER Y REG = y + dy;

end

end

end

end

end

end

if(obj.CREATE TRANSCRIPT)

obj.log result();

end

end

function [] = run search(obj, pat addr)

% Run Search

% Do a 3-stage diamond search.

%

% NOTE: Open and hold the picture first if PLOT EN is 1.

% Reset the logging variables.

obj.LOG NUM MOVES = 0;

obj.LOG MOVE COST = 0;

obj.LOG SAD COST = 0;

obj.LOG NUM PTS CHECKED = 0;

obj.BEST SAD VAL REG = 1048576; % max value of 20 unsigned bits + 1

obj.PAT SEARCH FINISHED = 0;

% Set base of search pattern

obj.SEARCH BASE PAT ADDR = pat addr;

if(obj.CREATE TRANSCRIPT)

obj.log setup(0,0, pat addr, 0);

end

127

% Check Center Point, save SAD value to register, save coordinates

% to register setup the current vlds, and Plot.

[sad] = obj.sad comp memcheck(obj.REF PT X REG, obj.REF PT Y REG, ...

obj.ACT PT X REG, obj.ACT PT Y REG);

if obj.ENABLE LAST CHECK REG

obj.LAST CHECK X = obj.REF PT X REG;

obj.LAST CHECK Y = obj.REF PT Y REG;

end

obj.SEARCH CENTER X REG = obj.REF PT X REG;

obj.SEARCH CENTER Y REG = obj.REF PT Y REG;

obj.BEST SAD VAL REG = sad;

%obj.SEARCH BASE PAT ADDR = 0;

obj.CURR VLDS REG = obj.PAT MEM VLDS(obj.SEARCH BASE PAT ADDR+1,:)-'0';

obj.CURR VLDS REG;

if obj.PLOT EN

plot(obj.SEARCH CENTER X REG, obj.SEARCH CENTER Y REG, 'r.');

end

if obj.STEP EN

waitforbuttonpress;

end

% If the center point doesn't meet threshold, continue.

if obj.BEST SAD VAL REG > obj.SAD THRESHOLD

while obj.PAT SEARCH FINISHED == 0

old center x = obj.SEARCH CENTER X REG;

old center y = obj.SEARCH CENTER Y REG;

obj.check pattern();

if obj.PLOT NEW EN

imshow(obj.REF FRAME)

end

if obj.PLOT EN

plot(obj.SEARCH CENTER X REG, obj.SEARCH CENTER Y REG, ...

128

'r.');

line([obj.SEARCH CENTER X REG, old center x], ...

[obj.SEARCH CENTER Y REG, old center y]);

end

if obj.STEP EN

waitforbuttonpress;

end

if obj.BEST SAD VAL REG <= obj.SAD THRESHOLD

break;

end

end

end

obj.MV X REG = obj.SEARCH CENTER X REG - obj.ACT PT X REG;

obj.MV Y REG = obj.SEARCH CENTER Y REG - obj.ACT PT Y REG;

if obj.REPORT EN

fprintf('Block Search Completed for block: [%i, %i]\n', ...

obj.ACT PT X REG, obj.ACT PT Y REG);

end

if(obj.CREATE TRANSCRIPT)

obj.log result();

end

end

end % public methods

methods %(Access = protected)

function [] = check pattern(obj)

% CHECK PATTERN

% Given frames, pattern center, the top left corner of the block we're

% matching, the dimensions of the block, the current best SAD,

129

% which points are vld (a vector or 1's and 0s, where 0 means invalid),

% and a pattern (a vector of (x,y) offsets corresponding to vlds).

%

% Check each scan point and return the next center, next SAD,

% next set of vlds, and whether or not the center moved (1 if it moved).

%

% Do saturation checking to make sure the SAD requests stay within the

% boundary of the image.

%num scan points = length(scan points);

% This got more complicated with the movement to a register model.

% Now we want to loop over pattern memory - not just the simple model

% of providing each pattern separately.

last vld pt = 0;

for position = 1:length(obj.CURR VLDS REG)

if obj.CURR VLDS REG(position) == 1

last vld pt = position;

end

end

if last vld pt == 0

obj.PAT SEARCH FINISHED = 1;

return;

end

center moved = 0;

pt chosen = obj.SEARCH BASE PAT ADDR + 1;

for j = 1:last vld pt

if obj.CURR VLDS REG(j) == 1 ...

&& obj.BEST SAD VAL REG > obj.SAD THRESHOLD

px = obj.SEARCH CENTER X REG ...

+ obj.PAT MEM OFFSETS(pt chosen + j, 1);

py = obj.SEARCH CENTER Y REG ...

+ obj.PAT MEM OFFSETS(pt chosen + j, 2);

130

% saturate if we are about to step outside the image

% boundary. Remember that matlab indexes from 1.

if px > obj.IM SZ X REG - obj.BLK WIDTH;

px = obj.IM SZ X REG - obj.BLK WIDTH;

end

if px < 1

px = 1;

end

if py > obj.IM SZ Y REG - obj.BLK HEIGHT

py = obj.IM SZ Y REG - obj.BLK HEIGHT;

end

if py < 1

py = 1;

end

% end saturation checks.

if obj.ENABLE LAST CHECK REG

% if skip register enabled, check to see if this is repeat

% work, if it is, skip it, else update the register.

if (obj.LAST CHECK X == px && obj.LAST CHECK Y == py)

continue;

else

obj.LAST CHECK X = px;

obj.LAST CHECK Y = py;

end

end

if obj.PLOT EN

plot(px, py, obj.PAT MEM FORMAT(pt chosen + j, :));

end

if obj.STEP EN

waitforbuttonpress();

end

point sad = obj.sad comp memcheck(px, py, ...

obj.ACT PT X REG, obj.ACT PT Y REG);

131

%if obj.MEM MOVED REG

% mem pos ever moved = 1;

%end

if point sad < obj.BEST SAD VAL REG

obj.BEST SAD VAL REG = point sad;

obj.NEW SEARCH CENTER X REG = px;

obj.NEW SEARCH CENTER Y REG = py;

next pt chosen = j + obj.SEARCH BASE PAT ADDR + 1;

center moved = 1;

end

end

end

%if pt chosen == 0

if center moved ~= 0

% if AR is a string of ones and zeros, then AR - '0' results in a

% one dimensional array with the characters broken out into ones

% and zeros and now index-able.

% '11110000' -> [1,1,1,1,0,0,0,0]

obj.CURR VLDS REG = obj.PAT MEM VLDS(next pt chosen,:)-'0';

obj.SEARCH BASE PAT ADDR = obj.PAT MEM JMPADDR(next pt chosen);

obj.SEARCH CENTER X REG = obj.NEW SEARCH CENTER X REG;

obj.SEARCH CENTER Y REG = obj.NEW SEARCH CENTER Y REG;

else

obj.CURR VLDS REG = ...

obj.PAT MEM VLDS(obj.SEARCH BASE PAT ADDR+1, :)-'0';

obj.SEARCH BASE PAT ADDR = ...

obj.PAT MEM JMPADDR(obj.SEARCH BASE PAT ADDR+1);

end

end

function [sad sum] = sad comp memcheck(obj, rx, ry, ax, ay)

% SAD COMP MEMCHECK

%

132

% Compute the sum absolute difference between two blocks. This version

% has dynamic bounds checkings for memory and then calls SAD COMP.

% Before doing the SAD, check to make sure all the memory we need is

% in-bound. If it is not, then move the memory's corner to bring

% it in bound.

obj.MEM MOVED REG = 0;

mem pos = [obj.REF ORIGIN X REG, obj.REF ORIGIN Y REG];

new mem pos = mem pos;

x mem = obj.REF ORIGIN X REG;

y mem = obj.REF ORIGIN Y REG;

w mem = obj.REF MEM SIZEXY(1);

h mem = obj.REF MEM SIZEXY(2);

w blk = obj.BLK WIDTH;

h blk = obj.BLK HEIGHT;

blk oob r = rx + w blk > x mem + w mem;

blk oob l = rx < x mem;

blk oob u = ry < y mem;

blk oob d = ry + h blk > y mem + h mem;

blk oob x = or(blk oob r, blk oob l);

blk oob y = or(blk oob u, blk oob d);

blk oob = or(blk oob x, blk oob y);

if blk oob

obj.MEM MOVED REG = 1;

if blk oob r

new mem pos(1) = rx + obj.BLK WIDTH - w mem;

end

if blk oob l

new mem pos(1) = rx;

end

if blk oob u

133

new mem pos(2) = ry;

end

if blk oob d

new mem pos(2) = ry + h blk - h mem;

end

mv cost = movement cost(new mem pos, mem pos, [w mem, h mem]);

obj.LOG MOVE COST = obj.LOG MOVE COST + mv cost;

if obj.REPORT EN

fprintf(...

'memory moved at SAD level, dx: %i, dy: %i cost: %i\n', ...

new mem pos - mem pos, mv cost);

movement request(obj, new mem pos, mem pos, [w mem, h mem]);

end

obj.REF ORIGIN X REG = new mem pos(1);

obj.REF ORIGIN Y REG = new mem pos(2);

obj.LOG NUM MOVES = obj.LOG NUM MOVES + 1;

if obj.PLOT EN

rectangle('Position', [new mem pos, obj.REF MEM SIZEXY]);

end

end

sad sum = obj.sad comp(rx, ry, ax, ay);

num sads = obj.BLK HEIGHT * obj.BLK WIDTH;

obj.LOG SAD COST = obj.LOG SAD COST + num sads;

obj.LOG NUM PTS CHECKED = obj.LOG NUM PTS CHECKED + 1;

if(obj.CREATE TRANSCRIPT)

obj.PT MAT = [obj.PT MAT; [rx, ry, sad sum]];

end

end

function sad sum = sad comp(obj, rx, ry, ax, ay)

% SAD COMP

134

% compute the sad between two block of given w blk and h blk in the

% given active and reference frames, with starting upper left hand

% corners being given by (rx, ry) and (ax, ay).

%

% WARNING: This function does no bound checking.

w blk = obj.BLK WIDTH;

h blk = obj.BLK HEIGHT;

%sad matrix = zeros(w blk, h blk);

%for j = 0:h blk-1,

% for i = 0:w blk-1,

% refpix = int32(obj.REF FRAME(j + ry, i + rx));

% actpix = int32(obj.ACT FRAME(j + ay, i + ax));

% sad matrix(j+1, i+1) = abs(refpix - actpix);

% end

%end

% this is faster

rslice = obj.REF FRAME(ry:ry+h blk-1, rx:rx+w blk-1);

aslice = obj.ACT FRAME(ay:ay+h blk-1, ax:ax+w blk-1);

rslice = int32(rslice);

aslice = int32(aslice);

sad matrix = abs(rslice - aslice);

% sum() works in one dimension at a time, so first sum each of the

% columns

% and then second sum to sum those sums to a final result.

% sad sum = sum(sum(sad matrix));

sad sum = sum(sad matrix(:)); % this is faster

end

function [cost] = movement cost(new mem pos, old mem pos, mem sizexy)

% MOVEMENT COST

% Compute the movement cost for moving refmem to new mem pos.

% For now, cost is the cycle cost of bringing in all the pixels, no

135

% discounts from overlapping operations. Pixels are 8b and our comm

% width is 16b, hence cost = raw cost / 2

% Built in assumption that x direction will move in multiples of two,

% btw.

delta = abs(new mem pos - old mem pos);

dx = min(mem sizexy(1), delta(1));

dy = min(mem sizexy(2), delta(2));

raw cost = dx * mem sizexy(1) + dy * mem sizexy(2) - dx * dy;

cost = raw cost / 2;

end

function [] = movement request(obj, new mem pos, ...

old mem pos, mem sizexy)

% Movment Request

% What pixel requests will the Motion Estimation Unit send to the ASAP

% Controller?

% IMPORTANT: The motion estimation unit can only take pixel pairs, not

% single pixels in the X direction. This means that the effective

% minimum width is 2, and if we're moving in the right/east direction

% we will need to adjust the X coordinate of the pixel requests. Since

% the width correction is always done, we catch it at the bottom of the

% function. Since the X request adjustment is done case-by-case, we

% need to set a flag.

delta = (new mem pos - old mem pos);

dx = delta(1);

dy = delta(2);

modify address = 0;

%dx = min(mem sizexy(1), delta(1))

%dy = min(mem sizexy(2), delta(2))

136

% Consider all possible cases

% For Message we need: X, Y, W, H of the rectangle of pixels we want.

% two commands better than 3 commands.

% Case 1 - Up

if (dx == 0 && dy < 0)

x1 = new mem pos(1);

y1 = new mem pos(1);

w1 = mem sizexy(1);

h1 = abs(dy);

num words = 1;

end

% Case 2 - Down

if (dx == 0 && dy > 0)

x1 = old mem pos(1);

y1 = old mem pos(2) + mem sizexy(2);

w1 = mem sizexy(1);

h1 = dy;

num words = 1;

end

% Case 3 - Left

if (dx < 0 && dy == 0)

x1 = new mem pos(1);

y1 = new mem pos(1);

w1 = abs(dx);

h1 = mem sizexy(2);

num words = 1;

end

% Case 4 - Right

if (dx > 0 && dy == 0)

x1 = old mem pos(1) + mem sizexy(1);

y1 = old mem pos(2);

w1 = dx;

h1 = mem sizexy(2);

num words = 1;

modify address = 1;

137

end

% Case 5 - Up & Right

if (dx > 0 && dy < 0)

x1 = new mem pos(1);

y1 = new mem pos(2);

w1 = mem sizexy(1);

h1 = abs(dy);

x2 = old mem pos(1) + mem sizexy(1);

y2 = old mem pos(2);

w2 = dx;

h2 = mem sizexy(2) - abs(dy);

num words = 2;

modify address = 1;

end

% Case 6 - Down & Right

if (dx > 0 && dy > 0)

x1 = new mem pos(1);

y1 = old mem pos(2) + mem sizexy(2);

w1 = mem sizexy(1);

h1 = dy;

x2 = old mem pos(1) + mem sizexy(1);

y2 = old mem pos(2) + dy;

w2 = dx;

h2 = mem sizexy(2) - dy;

num words = 2;

modify address = 1;

end

% Case 7 - Down & Left

if (dx < 0 && dy > 0)

x1 = new mem pos(1);

y1 = old mem pos(2) + mem sizexy(2);

w1 = mem sizexy(1);

h1 = dy;

x2 = new mem pos(1);

y2 = new mem pos(2);

w2 = abs(dx);

138

h2 = mem sizexy(2) - dy;

num words = 2;

end

% Case 8 - Up & Left

if (dx < 0 && dy < 0)

x1 = new mem pos(1);

y1 = new mem pos(2);

w1 = mem sizexy(1);

h1 = abs(dy);

x2 = new mem pos(1);

y2 = new mem pos(2) + abs(dy);

w2 = abs(dx);

h2 = mem sizexy(2) - abs(dy);

num words = 2;

end

% Case 9

% If we move completely out of frame - then we only need one word with

% the new position.

if (abs(dx) >= mem sizexy(1) | | abs(dy) >= mem sizexy(2))

x1 = new mem pos(1);

y1 = new mem pos(2);

w1 = mem sizexy(1);

h1 = mem sizexy(2);

num words = 1;

end

% Width Correction Code

if w1 == 1

w1 = 2;

if modify address == 1

x1 = x1 - 1;

end

end

if num words > 1

139

if w2 == 1;

w2 = 2;

if modify address == 1

x2 = x2 - 1;

end

end

end

fprintf('Pixel Request 1, X:%i, Y:%i, W:%i, H:%i\n', x1, y1, w1, h1);

obj.PR MAT = [obj.PR MAT; [x1, y1, w1, h1]];

if num words > 1

fprintf('Pixel Request 2, X:%i, Y:%i, W:%i, H:%i\n', ...

x2, y2, w2, h2);

obj.PR MAT = [obj.PR MAT; [x2, y2, w2, h2]];

end

end

end % protected methods

end % classdef

140

Appendix B

Matlab Instruction Generation

Code

B.1 generate test from model run.m

function [] = generate test from model run(name, model)

%GENERATE TEST FROM MODEL RUN Create a Verilog Testbench Input/Output Pair

%from the logs of a model run with the given name.

% When a search is run on the model with generate trace == 1 (default is

% 0), it will log setup, pixel requests, and result. This function

% parses those traces into testvector files suitable for the vt file.

% Also need to provide the reference and active IMAGES, and the PATTERN

% MEMORY's 3 vectors (we don't care about the format vector now).

%

% You know what, just give it the whole model.

SU = model.SU MAT;

PR = model.PR MAT;

RS = model.RS MAT;

AIm = model.ACT FRAME;

RIm = model.REF FRAME;

PM OFF = model.PAT MEM OFFSETS;

141

PM VLD = model.PAT MEM VLDS;

PM JMP = model.PAT MEM JMPADDR;

i file name = ['autogen ' name ' in.tv'];

o file name = ['autogen ' name ' out.tv'];

init refmem = RIm(1:64, 1:64);

init actmem = AIm(1:64, 1:64);

fprintf('Generating Test from given Traces & Image\n');

i file = fopen(i file name, 'w');

o file = fopen(o file name, 'w');

% load initial REF pixels

fprintf(i file, test input gen('vld', 'set burst ref x', 0));

fprintf(i file, test input gen('vld', 'set burst ref y', 0));

fprintf(i file, test input gen('vld', 'set burst width', 63));

fprintf(i file, test input gen('vld', 'set burst height', 63));

fprintf(i file, test input gen('vld', 'write burst ref'));

fprintf(i file, test input gen('vld', 'burst pixel write', init refmem));

% load initial ACT pixels

fprintf(i file, test input gen('vld', 'write burst act'));

fprintf(i file, test input gen('vld', 'burst pixel write', init actmem));

% load configurable part of PAT Memory

for x = 0:31

r = x + 1; % Matlab indexes by 1

vlds = fliplr(PM VLD(r, :)); % endianess reversed for HW

tvld = bin2dec(vlds(1:8)); % convert to decimal for helper function

bvld = bin2dec(vlds(8:16)); % convert to decimal for helper function

fprintf(i file, test input gen('vld', 'set write pattern addr', x));

fprintf(i file, test input gen('vld', 'write patt dx', PM OFF(r, 1)));

fprintf(i file, test input gen('vld', 'write patt dy', PM OFF(r, 2)));

fprintf(i file, test input gen('vld', 'write patt jmp', PM JMP(r, 1)));

142

fprintf(i file, test input gen('vld', 'write patt top vlds', tvld));

fprintf(i file, test input gen('vld', 'write patt bot vlds', bvld));

end

% For each search, parse the register initialization, the pixel requests

% and transfers, and the final output result.

sz SU = size(SU);

sz PR = size(PR);

% There is a new row in the setup matrix for each run.

num searches = sz SU(1);

pr pos = 1;

for s = 1:num searches

% configure the device

fprintf(i file, test input gen('vld', 'set pmv dx', SU(s,1)));

fprintf(i file, test input gen('vld', 'set pmv dy', SU(s,2)));

fprintf(i file, test input gen('vld', 'set blkid', SU(s,3)));

fprintf(i file, test input gen('vld', 'set threshold', SU(s,4)));

fprintf(i file, test input gen('vld', 'set act pt x', SU(s,5)-1));

fprintf(i file, test input gen('vld', 'set act pt y', SU(s,6)-1));

fprintf(i file, test input gen('vld', 'set ref pt x', SU(s,7)-1));

fprintf(i file, test input gen('vld', 'set ref pt y', SU(s,8)-1));

fprintf(i file, test input gen('vld', 'set out reg', SU(s,9)));

fprintf(i file, test input gen('vld', 'set im sz x', SU(s,10)));

fprintf(i file, test input gen('vld', 'set im sz y', SU(s,11)));

% issue execution, sense last bit of SU for isFS.

if SU(s, 13) == 1

fprintf(i file, test input gen('vld', 'start search', ...

['fs', SU(s, 12:13)]));

else

fprintf(i file, test input gen('vld', 'start search', ...

['ps', SU(s, 14)]));

end

% For each pixel request in the transcript, add the requested pixels

143

% onto the input file. The termination point is the pixel request with

% all 0s as its operands, as that is an invalid type. Also add the

% pixel request onto the output pipe.

for x = pr pos:sz PR(1)

pr pos = x;

rstart = PR(x, 2);

rend = PR(x, 2) + PR(x, 4) - 1;

cstart = PR(x, 1);

cend = PR(x, 1) + PR(x, 3) - 1;

rx = PR(x,1) -1; %correction by 1 for matlab -> real

ry = PR(x,2) -1; %correction by 1 for matlab -> real

rw = PR(x,3);

rh = PR(x,4);

if ((rstart == 0) && (rend == -1) && (cstart == 0) && (cend == -1))

pr pos = pr pos + 1;

break;

else

% add inputs

pixels = RIm(rstart:rend, cstart:cend);

sz pixels = size(pixels);

fprintf(i file, ...

test input gen('vld', 'burst pixel write', pixels));

% add outputs

req = [rx, ry, rw, rh];

fprintf(o file, test output gen('pix req', req));

end

end

% add search result to output

% need to process search result to split it into top and bottom values.

fprintf(o file, test output gen('read srch res', ...

[RS(s, 3) (RS(s, 1)-1) (RS(s, 2)-1)]));

end

144

% close out files

fprintf(i file, test input gen('emp', 'input empty'));

fprintf(i file, test input gen('end', 'input end'));

fprintf(o file, test output gen('output end'));

fclose(i file);

fclose(o file);

fprintf('Requested Test Generated\n');

end

B.2 test input gen.m

function [wd] = test input gen(prefix, cmd, operand)

%TEST OUTPUT GEN Helper Function to create valid ME2 Instructions

word sz = 16;

instr sz = 5;

fill = 0;

% Parse Prefix

switch prefix

case 'vld'

pfx = '10 ';

case 'emp'

pfx = '00 ';

case 'end'

pfx = 'XX ';

end

% Parse Command

switch cmd

case 'write burst act'

instruction = 0;

op sz = 0;

ops = ' ';

145

case 'set burst ref x'

instruction = 1;

op sz = 8;

ops = [dec2bin(operand, op sz), ' '];

case 'set burst ref y'

instruction = 2;

op sz = 8;

ops = [dec2bin(operand, op sz), ' '];

case 'write burst ref'

instruction = 3;

op sz = 0;

ops = ' ';

case 'set burst width'

instruction = 4;

op sz = 8;

ops = [dec2bin(operand, op sz), ' '];

case 'set burst height'

instruction = 5;

op sz = 8;

ops = [dec2bin(operand, op sz), ' '];

case 'set write pattern addr'

instruction = 6;

op sz = 6;

ops = [dec2bin(operand, op sz), ' '];

case 'write patt dx'

instruction = 7;

op sz = 9;

ops = [dec2bin negsup(operand, op sz), ' '];

case 'write patt dy'

instruction = 8;

op sz = 9;

ops = [dec2bin negsup(operand, op sz), ' '];

146

case 'write patt jmp'

instruction = 9;

op sz = 6;

ops = [dec2bin(operand, op sz), ' '];

case 'write patt top vlds'

instruction = 10;

op sz = 8;

ops = [dec2bin(operand, op sz), ' '];

case 'write patt bot vlds'

instruction = 11;

op sz = 8;

ops = [dec2bin(operand, op sz), ' '];

case 'set pmv dx'

instruction = 12;

op sz = 9;

ops = [dec2bin(operand, op sz), ' '];

case 'set pmv dy'

instruction = 13;

op sz = 9;

ops = [dec2bin(operand, op sz), ' '];

case 'set blkid'

instruction = 14;

op sz = 4;

ops = [dec2bin(operand, op sz), ' '];

case 'set thresh top'

instruction = 15;

op sz = 10;

ops = [dec2bin(operand, op sz), ' '];

case 'set thresh bot'

instruction = 16;

op sz = 10;

ops = [dec2bin(operand, op sz), ' '];

case 'set threshold'

% special case, compound word. Operand needs to be split into

% its top and bottom msbs. Option for recursion here, but since

% matlab can handle our problem for us natively, why bother?

147

bits = dec2bin(operand, 20);

wd1 = [pfx, dec2bin(15, 5), ' 0', bits(1:10), ' \n'];

wd2 = [pfx, dec2bin(16, 5), ' 0', bits(11:20), ' \n'];

wd = [wd1; wd2];

wd = wd';

return;

case 'set act pt x'

instruction = 17;

op sz = 8;

ops = [dec2bin(operand, op sz), ' '];

case 'set act pt y'

instruction = 18;

op sz = 8;

ops = [dec2bin(operand, op sz), ' '];

case 'set ref pt x'

instruction = 19;

op sz = 8;

ops = [dec2bin(operand, op sz), ' '];

case 'set ref pt y'

instruction = 20;

op sz = 8;

ops = [dec2bin(operand, op sz), ' '];

case 'set out reg'

instruction = 21;

op sz = 6;

ops = [dec2bin(operand, op sz), ' '];

case 'start search'

instruction = 22;

if(strcmp(operand(1:2), 'ps'))

op sz = 7;

ops = [dec2bin(operand(3), 6) ' 1'];

else

if(strcmp(operand(1:2), 'fs'))

op sz = 11;

ops = [dec2bin(operand(3), 5), ' ' ...

dec2bin(operand(4), 5), ' 0'];

148

else

fprintf(...

'ERROR: Search invoked but bad ps/fs for operand1\n');

return;

end

end

case 'send pixels'

instruction = 23;

op sz = 11;

ops = [dec2bin(operand, op sz), ' '];

case 'set im sz x'

instruction = 24;

op sz = 11;

ops = [dec2bin(operand, op sz), ' '];

case 'set im sz y'

instruction = 25;

op sz = 11;

ops = [dec2bin(operand, op sz), ' '];

case 'read ref mem'

instruction = 28;

op sz = 10;

ops = [dec2bin(operand(1), 5), dec2bin(operand(2), 5), ' '];

case 'read act mem'

instruction = 29;

op sz = 10;

ops = [dec2bin(operand(1), 5), dec2bin(operand(2), 5), ' '];

case 'read reg'

instruction = 30;

op sz = 5;

% Decode Operand into it's integer value, throw error if not a

% name.

switch operand

case 'burst ref x'

reg id = 0;

case 'burst ref y'

reg id = 1;

149

case 'burst height'

reg id = 2;

case 'burst width'

reg id = 3;

case 'pattern write address'

reg id = 4;

case 'pmv dx'

reg id = 5;

case 'pmv dy'

reg id = 6;

case 'blkid'

reg id = 7;

case 'thresh top'

reg id = 8;

case 'thresh bot'

reg id = 9;

case 'act pt x'

reg id = 10;

case 'act pt y'

reg id = 11;

case 'ref pt x'

reg id = 12;

case 'ref pt y'

reg id = 13;

case 'out reg'

reg id = 14;

case 'im sz x'

reg id = 15;

case 'im sz y'

reg id = 16;

case 'patt dx'

reg id = 17;

case 'patt dy'

reg id = 18;

case 'patt jmp'

reg id = 19;

150

case 'patt vld top'

reg id = 20;

case 'patt vld bot'

reg id = 21;

otherwise

printf(...

'Warning, Invalid Register Requested for Read\n');

return;

end

ops = [dec2bin(reg id, op sz), ' '];

case 'issue ping'

instruction = 31;

op sz = 0;

ops = ' ';

case 'pixel pair'

% special case no instruction header, break out.

wd = [pfx, dec2bin(operand(1), 8), ...

' ', dec2bin(operand(2), 8), ' \n'];

return;

case 'input empty'

% special case non-instruction, break out.

wd = [pfx, '00000 00000000000 \n'];

return;

case 'input end'

% special case non-instruction, break out.

wd = [pfx, 'XXXXX XXXXXXXXXXX \n'];

return;

case 'burst pixel write'

% special case, compound input. Expected Operand is an array

% of pixels, sniff width and height from the given array.

[height, width] = size(operand);

% Error Catching, 0 heigth or width is invalid

if height == 0 | | width == 0

fprintf('Warning, H or W is Zero and should not be.\n');

end

151

wd = [];

% BUGFIX: must be raster scan order

%for x = 1:2:width

% for y = 1:1:height

for y = 1:1:height

for x = 1:2:width

wdx = [pfx, dec2bin(operand(y, x), 8), ' ' ...

dec2bin(operand(y, x+1), 8), ' \n'];

wd = [wd; wdx];

end

end

% transpose matrix to have proper printf behavior.

wd = wd';

return;

otherwise

printf('Warning, invalid command requested\n');

return;

end

fill sz = word sz - instr sz - op sz;

wd = [pfx, dec2bin(instruction, 5) ' ' dec2bin(fill, fill sz) ...

' ' ops '\n'];

end

function [bin] = dec2bin negsup(num, bound)

if(num < 0)

bin = dec2bin(abs(num), bound);

%invert bits

bin = double(~(bin-'0'));

% recompress

ibin = [];

for x = 1:length(bin)

ibin = [ibin, num2str(bin(x))];

end

152

%add one

num = bin2dec(ibin);

num = num + 1;

bin = dec2bin(num, bound);

else

bin = dec2bin(num, bound);

end

end

B.3 test output gen.m

function [wds] = test output gen(cmd, operands)

%TEST OUTPUT GEN Create Expected Output Words, given CMD & OPRs

% multi-word outputs get transposed before being returned, because

% fprintf reads down a column before reading across a row. Important

% to know if you want to write any more of these.

switch cmd

case 'read srch res'

instr id = 24;

%sad top = operands(1);

%sad bot = operands(2);

sad v = operands(1);

sad x = operands(2);

sad y = operands(3);

sad v = dec2bin(sad v, 20);

sad vt = sad v(1:10);

sad vb = sad v(11:20);

sad vt = bin2dec(sad vt);

sad vb = bin2dec(sad vb);

wd0 = [dec2bin(instr id, 5), ' ', dec2bin(sad vt, 11), '\n'];

wd1 = [dec2bin(instr id, 5), ' ', dec2bin(sad vb, 11), '\n'];

wd2 = [dec2bin(instr id, 5), ' ', dec2bin(sad x, 11), '\n'];

153

wd3 = [dec2bin(instr id, 5), ' ', dec2bin(sad y, 11), '\n'];

wds = [wd0 ; wd1; wd2; wd3];

wds = wds';

case 'read reg res'

instr id = 25;

wds = [dec2bin(instr id, 5), ' ', dec2bin(operands, 11), '\n'];

case 'pix req'

instr id = 26;

rq 1 x = operands(1);

rq 1 y = operands(2);

rq 1 w = operands(3);

rq 1 h = operands(4);

wd0 = [dec2bin(instr id, 5), ' ', dec2bin(rq 1 x, 11), '\n'];

wd1 = [dec2bin(instr id, 5), ' ', dec2bin(rq 1 y, 11), '\n'];

wd2 = [dec2bin(instr id, 5), ' ', dec2bin(rq 1 w, 11), '\n'];

wd3 = [dec2bin(instr id, 5), ' ', dec2bin(rq 1 h, 11), '\n'];

wds = [wd0 ; wd1; wd2; wd3];

if (length(operands) > 4)

rq 2 x = operands(5);

rq 2 y = operands(6);

rq 2 w = operands(7);

rq 2 h = operands(8);

wd4 = [dec2bin(instr id, 5), ' ', dec2bin(rq 2 x, 11), '\n'];

wd5 = [dec2bin(instr id, 5), ' ', dec2bin(rq 2 y, 11), '\n'];

wd6 = [dec2bin(instr id, 5), ' ', dec2bin(rq 2 w, 11), '\n'];

wd7 = [dec2bin(instr id, 5), ' ', dec2bin(rq 2 h, 11), '\n'];

wds = [wds ; wd4; wd5; wd6; wd7];

end

wds = wds';

case 'pix transmit'

instr id = 27;

% expected operands is a 4x4 block of pixels.

wd0 = [dec2bin(instr id, 5), ' ' dec2bin(16, 11), '\n'];

154

wds = wd0;

%for x = 1:2:4

% for y = 1:1:4

for y = 1:1:4

for x = 1:2:4

wdx = [dec2bin(operands(y, x+1), 8), ' ' ...

dec2bin(operands(y, x), 8), '\n'];

wds = [wds; wdx];

end

end

wds = wds';

case 'out pix pair'

wds = [dec2bin(operand(1), 8), ' ', dec2bin(operand(2), 8), '\n'];

case 'ping out'

instr id = 31;

wds = [dec2bin(instr id, 5), ' ', dec2bin(0, 11), '\n'];

case 'output end'

wds = 'XXXXX XXXXXXXXXXX\n';

otherwise

printf('Not an output word.\n');

return;

end

end

155

Appendix C

Testbench Code

C.1 me2 top.vt

// Michael Braly - mabraly@ucdavis.edu

// --

// Description:

// Automated Testbench to verify proper functioning of: me2 top.v

// --

// History:

// 02/25/2014 - Created

// 09/21/2014 - Modified to Act like FIFOs for Wrapping Tests

// 11/17/2014 - Adapted to Test the top level ME ACC2

// --

module automated testbench me2();

// Set the target test vector file here:

`define TV FILE IN "autogen two simple pat mem move in.tv"

`define TV FILE OUT "autogen two simple pat mem move out.tv"

//`define TV FILE IN "me2 ref wr rd all test in.tv"

//`define TV FILE OUT "me2 ref wr rd all test out.tv"

// Input and Output widths do not include the clk signal or the async reset

parameter DUT INPUT WIDTH = 18;

156

parameter DUT OUTPUT WIDTH = 16;

parameter CLK PERIOD = 10;

parameter NUM STAGES = 7;

// Testbench System Signals

reg clk, reset;

reg [31:0] invectornum, errors, numstalls;

reg [31:0] outvectornum;

reg [31:0] cycle count;

reg [DUT INPUT WIDTH-1:0] testvectors in[100000:0];

reg [DUT OUTPUT WIDTH-1:0] testvectors out[100000:0];

reg [DUT INPUT WIDTH-1:0] inputs applied;

reg [DUT OUTPUT WIDTH-1:0] outputs expected;

wire [DUT OUTPUT WIDTH-1:0] actual outputs;

wire full idle;

wire stalled waiting for input rdy;

wire stalled waiting for output rdy;

// FIFO Control Wires

wire data in rdy; // TV Driven

wire get next data in;

wire data out rdy;

wire data out full; // TV Driven

// DUT Inputs (Need a wire for every possible non-clk/rst input)

wire [15:0] data in;

// DUT Outputs (Need a register + wire pair for every output to be tested)

wire [15:0] data out;

wire [15:0] data out expected;

// Structural assignments so that the testbench logic can be written in a

// general manner for easier reuse.

assign {data in rdy, data out full, data in}

= inputs applied;

assign {data out expected}

157

= outputs expected;

assign actual outputs = {data out};

// Instantiate device under test (hook outputs to the wire part of each pair)

me2 top dut(

.clk(clk),

.rst(reset),

.data in rdy(data in rdy),

.get next data in(get next data in),

.data in(data in),

.data out(data out),

.data out rdy(data out rdy),

.data out full(data out full),

.full idle(full idle),

.input stall(stalled waiting for input rdy),

.output stall(stalled waiting for output rdy));

// --

// Begin Testbench - Should not need to edit anything below here.

// --

// Generate clock

always

begin

clk = 1;

#(CLK PERIOD/2);

clk = 0;

#(CLK PERIOD/2);

end

// load vectors before beginning testing, and pulse reset as long as it takes

// to flush any existing pipeline.

initial

begin

$readmemb(`TV FILE IN, testvectors in);

158

$readmemb(`TV FILE OUT, testvectors out);

invectornum = 0;

outvectornum = 0;

numstalls = 0;

errors = 0;

reset = 1;

#(CLK PERIOD * NUM STAGES);

reset = 0;

cycle count = 0;

end

// Apply test vectors on the rising edge of the clock.

always @ (posedge clk)

begin

//#1;

inputs applied = testvectors in[invectornum];

outputs expected = testvectors out[outvectornum];

cycle count = cycle count + 1;

end

// Check results of test vector on falling edge of the clock.

always @ (negedge clk)

if(~reset)

begin // skip during reset

// if data out rdy && ~data out full, evaluate output

if (data out rdy && ~data out full)

begin

if ({actual outputs} !== {outputs expected})

begin

$display ("Error:");

$display (" cycle number = %d", cycle count);

$display (" vector number = %d", outvectornum);

//$display (" input = %b", inputs applied);

$display (" outputs = %h", actual outputs);

$display (" expected = %h", outputs expected);

errors = errors + 1;

159

end

else

begin

$display ("Passed");

//$display (" cycle Number = %d", cycle count);

//$display (" outputs = %b", actual outputs);

end

outvectornum = outvectornum + 1;

end

// if unit requesting new input, or we're modelling a full output pipe

// increment to next test vector.

if (get next data in | | data out full)

begin

invectornum = invectornum + 1;

if (data out full)

begin

numstalls = numstalls + 1;

end

end

if (testvectors out[outvectornum] === {(DUT OUTPUT WIDTH){1'bx}})

begin

$display ("----------------------");

if(errors == 0) $display("Test Status - PASSED |");

else $display("Test Status - FAILED |");

$display ("----------------------");

$display ("%d inputs applied", invectornum);

$display ("%d input stalls applied", numstalls);

$display ("%d output words checked", outvectornum);

$display ("%d errors", errors);

$display ("%d cycles elapsed", cycle count);

$stop;

end

end

endmodule

160

Appendix D

Top-Level Hierarchical FSM

Hierarchical finite state machines are a technique for managing the complexity of

a controller with many separate states, but relatively ordered transitions [89]. For relatively

simple state machines with fewer than about 7 states, such as the execution controller which

runs the pixel datapath pipeline on MEACC2, and as shown in Figure D.1, the whole block

can be held in the active memory of a single designer. As the FSM state space grows

eventually it becomes easier to partition the design. In MEACC2 the top level controller of

was designed and implemented as a hierarchical finite state machine and Figure D.2 shows

the dependencies between each of the constituent FSMs. Since both the pattern and full

search FSMs make use of the scan FSM, there is a design choice to either replicate the Scan

FSM, or manage the transition to and from idle edges in the Scan FSM so that it can be

responsive to both pattern and full search FSMs. Since the device will never have both the

pattern and full search FSMs out of their idle states at the same time, it is safe to reuse

the same Scan FSM for both HFSMs.

D.1 Transparent Hierarchical FSMs

The goal of the partitioning is to make the block easier to design, without impact-

ing control delays or other timing sensitive paths. As an example of how these partitions

can be made, the state transition diagram of the Request Pixel FSM is given in Figure D.3

in flattened form. The collection of states that make up the Load Requested Pixels FSM are

161

IDLE

LD ACT

LD ACT

WAIT

LD REF

LD REF

WAIT

INIT

COMP

RUN

COMP

Figure D.1: State diagram for the execution controller

. With only 7 states, the complexity of the FSM is such that the whole design can be kept

in the designer’s memory at once.

Top

Write

Burst

Memory

Read

Memory

Read

Register
Issue Ping

Read

Search

Result

Execute

Search

Full

Search

Pattern

Search

Scanner

Request

Pixels

Load

Req’d

Pixels

Figure D.2: Dependency diagram for the top level controller

162

Stall

for

FIFO

Tx

SetupIdle

RDS0

RDS1

CFG0

CFG1UPP0

Load

Req.

Pixel

Figure D.3: Flattened state diagram for request pixel FSMs

. This version of the state diagram has all the states for both request pixel and load pixel

FSM components of the top level controller.

a sub-graph of the overall Request Pixel FSM, and only have a single entrance and exit path

from the rest of the FSM. Therefore, the FSM can be partitioned, as shown in Figure D.4

and Figure D.5, with the only change being the addition of an additional idle state to the

Load Requested Pixels FSM, and the addition of a composite state representing the Load

Requested Pixel FSM functionality in the Request Pixel FSM. By carefully choosing the

transition edges, the new sub-state machine will transition out of its idle state in parallel

with the Load Requested Pixels FSM transition into the composite state in its own graph,

successfully partitioning the design without adding any additional design latency.

163

Load

Req.

Pix.

Stall

for

FIFO

Tx

SetupIdle

Figure D.4: Hierarchical state diagram for request pixels FSM

. The collection of states which made up load requested pixels are combined into a

composite state, simplifying the implementation of the request pixels FSM.

RDS0

RDS1

CFG0Idle

CFG1UPP0

Figure D.5: Hierarchical state diagram for load requested pixels FSM

. The collection of states making up load requested pixels need their own additional IDLE

state to be fully self-contained.

164

Bibliography

[1] S. Vassiliadis, E.A. Hakkennes, J.S.S.M. Wong, and G.G. Pechanek. The sum-absolute-
difference motion estimation accelerator. In Euromicro Conference, 1998. Proceedings.
24th, volume 2, pages 559–566 vol.2, Aug 1998.

[2] Iain E Richardson. The H. 264 advanced video compression standard. John Wiley &
Sons, 2011.

[3] T. Wiegand, G.J. Sullivan, G. Bjontegaard, and A. Luthra. Overview of the h.264/avc
video coding standard. Circuits and Systems for Video Technology, IEEE Transactions
on, 13(7):560–576, July 2003.

[4] Detlev Marpe, Gabi Blättermann, and Thomas Wiegand. Adaptive codes for h. 26l.
ITU-T Telecommunications Standardization Sector, pages 9–12, 2001.

[5] Gisle Bjontegaard and Karl Lillevold. Context-adaptive vlc coding of coefficients. JVT
Document JVT-C028, Fairfax, VA, 19, 2002.

[6] J. Ohm, G.J. Sullivan, H. Schwarz, Thiow Keng Tan, and T. Wiegand. Comparison
of the coding efficiency of video coding standards - including high efficiency video
coding (hevc). Circuits and Systems for Video Technology, IEEE Transactions on,
22(12):1669–1684, Dec 2012.

[7] Vivienne Sze, Madhukar Budagavi, and Gary J Sullivan. High Efficiency Video Coding
(HEVC). Springer, 2014.

[8] Il-Koo Kim, Sunil Lee, Min-Su Cheon, T. Lee, and JeongHoon Park. Coding efficiency
improvement of hevc using asymmetric motion partitioning. In Broadband Multimedia
Systems and Broadcasting (BMSB), 2012 IEEE International Symposium on, pages
1–4, June 2012.

[9] J. Ohm and G.J. Sullivan. High efficiency video coding: the next frontier in video
compression [Standards in a Nutshell]. Signal Processing Magazine, IEEE, 30(1):152–
158, Jan 2013.

[10] G.J. Sullivan, J. Ohm, Woo-Jin Han, and T. Wiegand. Overview of the high efficiency
video coding (hevc) standard. Circuits and Systems for Video Technology, IEEE Trans-
actions on, 22(12):1649–1668, Dec 2012.

[11] H. Koumaras, M. Kourtis, and Drakoulis Martakos. Benchmarking the encoding effi-
ciency of h.265/hevc and h.264/avc. In Future Network Mobile Summit (FutureNetw),
2012, pages 1–7, July 2012.

165

[12] P. Helle, H. Lakshman, M. Siekmann, J. Stegemann, T. Hinz, H. Schwarz, D. Marpe,
and T. Wiegand. A scalable video coding extension of hevc. In Data Compression
Conference (DCC), 2013, pages 201–210, March 2013.

[13] J. Vaisey and A. Gersho. Image compression with variable block size segmentation.
Signal Processing, IEEE Transactions on, 40(8):2040–2060, Aug 1992.

[14] A. Ahmad, N. Khan, S. Masud, and M.A. Maud. Efficient block size selection in h.264
video coding standard. Electronics Letters, 40(1):19–21, Jan 2004.

[15] Hongtao Song, Zhiyong Gao, and Xiaoyun Zhang. Novel fast motion estimation and
mode decision for h.264 real-time high-definition encoding. In Image and Signal Pro-
cessing (CISP), 2012 5th International Congress on, pages 43–48, Oct 2012.

[16] S. Oudin, P. Helle, J. Stegemann, C. Bartnik, B. Bross, D. Marpe, H. Schwarz, and
T. Wiegand. Block merging for quadtree-based video coding. In Multimedia and Expo
(ICME), 2011 IEEE International Conference on, pages 1–6, July 2011.

[17] Muhammad Usman Karim Khan, Muhammad Shafique, Mateus Grellert, and Jorg
Henkel. Hardware-software collaborative complexity reduction scheme for the emerg-
ing hevc intra encoder. In Design, Automation Test in Europe Conference Exhibition
(DATE), 2013, pages 125–128, March 2013.

[18] A. Fuldseth, M. Horowitz, Shilin Xu, K. Misra, A. Segall, and Minhua Zhou. Tiles
for managing computational complexity of video encoding and decoding. In Picture
Coding Symposium (PCS), 2012, pages 389–392, May 2012.

[19] V. Sze and A.P. Chandrakasan. A highly parallel and scalable cabac decoder for next
generation video coding. In Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), 2011 IEEE International, pages 126–128, Feb 2011.

[20] F. Pescador, M.J. Garrido, E. Juarez, and C. Sanz. On an implementation of hevc
video decoders with dsp technology. In Consumer Electronics (ICCE), 2013 IEEE
International Conference on, pages 121–122, Jan 2013.

[21] Dajiang Zhou, Jinjia Zhou, Xun He, Jiayi Zhu, Ji Kong, Peilin Liu, and S. Goto. A
530 mpixels/s 4096x2160, 60fps h.264/avc high profile video decoder chip. Solid-State
Circuits, IEEE Journal of, 46(4):777–788, April 2011.

[22] B. M. Baas. A parallel programmable energy-efficient architecture for computationally-
intensive DSP systems. In Signals, Systems and Computers, 2003. The Thirty-Seventh
Asilomar Conference on, volume 2, pages 2185–2189, November 2003.

[23] Z. Yu, M. Meeuwsen, R. Apperson, O. Sattari, M. Lai, J. Webb, E. Work, T. Mohsenin,
M. Singh, and B. Baas. An asynchronous array of simple processors for DSP appli-
cations. In IEEE International Solid-State Circuits Conference (ISSCC), volume 49,
pages 428–429, 663, February 2006.

[24] Bevan Baas, Zhiyi Yu, Michael Meeuwsen, Omar Sattari, Ryan Apperson, Eric Work,
Jeremy Webb, Michael Lai, Daniel Gurman, Chi Chen, Jason Cheung, and Tinoosh
Mohsenin. Hardware and applications of AsAP: An asynchronous array of simple
processors. In IEEE HotChips Symposium on High-Performance Chips, August 2006.

166

[25] Zhiyi Yu, Michael Meeuwsen, Ryan Apperson, Omar Sattari, Michael Lai, Jeremy
Webb, Eric Work, Dean Truong, Tinoosh Mohsenin, and Bevan Baas. AsAP: An
asynchronous array of simple processors. IEEE Journal of Solid-State Circuits (JSSC),
43(3):695–705, March 2008.

[26] D. Truong, W. Cheng, T. Mohsenin, Z. Yu, T. Jacobson, G. Landge, M. Meeuwsen,
C. Watnik, P. Mejia, A. Tran, J. Webb, E. Work, Z. Xiao, and B. Baas. A 167-
processor 65 nm computational platform with per-processor dynamic supply voltage
and dynamic clock frequency scaling. In Symposium on VLSI Circuits, pages 22–23,
June 2008.

[27] D. N. Truong, W. H. Cheng, T. Mohsenin, Z. Yu, A. T. Jacobson, G. Landge, M. J.
Meeuwsen, A. T. Tran, Z. Xiao, E. W. Work, J. W. Webb, P. Mejia, and B. M. Baas.
A 167-processor computational platform in 65 nm CMOS. IEEE Journal of Solid-State
Circuits (JSSC), 44(4):1130–1144, April 2009.

[28] Z. Xiao, S. Le, and B. M. Baas. A fine-grained parallel implementation of a h.264/avc
encoder on a 167-processor computational platform. In IEEE Asilomar Conference on
Signals, Systems and Computers, November 2011.

[29] RyanW. Apperson. A dual-clock FIFO for the reliable transfer of high-throughput data
between unrelated clock domains. Master’s thesis, University of California, Davis, CA,
USA, September 2004. http://www.ece.ucdavis.edu/cerl/techreports/2004-5/.

[30] Bevan Baas, Zhiyi Yu, Michael Meeuwsen, Omar Sattari, Ryan Apperson, Eric Work,
Jeremy Webb, Michael Lai, Tinoosh Mohsenin, Dean Truong, and Jason Cheung.
AsAP: A fine-grain multi-core platform for DSP applications. IEEE Micro, 27(2):34–
45, March 2007.

[31] Anthony T. Jacobson. A continuous-flow mixed-radix dynamically-configurable fft
processor. Master’s thesis, University of California, Davis, CA, USA, July 2007. http:
//www.ece.ucdavis.edu/vcl/pubs/theses/2007-3.

[32] Stephen T. Le. A fine grained many-core h.264 video encoder. Master’s thesis, Uni-
versity of California, Davis, CA, USA, March 2010. http://www.ece.ucdavis.edu/

vcl/pubs/theses/2010-03.

[33] Aaron Stillmaker. Design of Energy-Efficient Many-Core MIMD GALS Processor Ar-
rays in the 1000-Processor Era. PhD thesis, University of California, Davis, Davis,
CA, USA, Dec. 2015. http://www.vcl.ece.ucdavis.edu/pubs/theses/2015-1/.

[34] Eric W. Work. Algorithms and software tools for mapping arbitrarily connected tasks
onto an asynchronous array of simple processors. Master’s thesis, University of Cali-
fornia, Davis, CA, USA, September 2007. http://www.ece.ucdavis.edu/vcl/pubs/
theses/2007-4.

[35] A.T. Tran, D.N. Truong, and B.M. Baas. A low-cost high-speed source-synchronous
interconnection technique for GALS chip multiprocessors. In Circuits and Systems,
2009. ISCAS 2009. IEEE International Symposium on, pages 996–999, May. 2009.

[36] A. T. Tran, D. N. Truong, and B. M. Baas. A reconfigurable source-synchronous on-
chip network for GALS many-core platforms. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, 29(6):897–910, Jun. 2010.

167

[37] Anh Tran, Dean Truong, and Bevan Baas. A complete full-rate 802.11a baseband
reciever implemented on an array of programmable processors. In Asilomar Conference
on Signals, Systems and Computers, October 2008.

[38] A. T. Tran and B. M. Baas. Design of bufferless on-chip routers providing in-order
packet delivery. In SRC Technology and Talent for the 21st Century (TECHCON),
page S14.3, Sep. 2011.

[39] A. T. Tran and B. M. Baas. RoShaQ: High-performance on-chip router with shared
queues. In IEEE International Conference on Computer Design (ICCD), pages 232–
238, October 2011.

[40] Michael J. Meeuwsen. A shared memory module for an asynchronous array of simple
processors. Master’s thesis, University of California, Davis, CA, USA, April 2005.
http://http://www.ece.ucdavis.edu/cerl/techreports/2005-2/.

[41] Michael Meeuwsen, Zhiyi Yu, and Bevan M. Baas. A shared memory module for asyn-
chronous arrays of processors. EURASIP Journal on Embedded Systems, 2007:Article
ID 86273, 13 pages, 2007.

[42] Z. Yu and B. Baas. Performance and power analysis of globally asynchronous locally
synchronous multi-processor systems. In IEEE Computer Society Annual Symposium
on VLSI, March 2006.

[43] Z. Yu and B. M. Baas. Implementing tile-based chip multiprocessors with GALS clock-
ing styles. In IEEE International Conference of Computer Design (ICCD), October
2006.

[44] Soheil Ghiasi Bin Liu, Mohammad H. Foroozannejad and Bevan M. Baas. Optimizing
power of many-core systems by exploiting dynamic voltage, frequency and core scaling.
In IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), Aug.
2015.

[45] D. Larkin, V. Muresan, and N. O’Connor. A low complexity hardware architecture
for motion estimation. In Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006
IEEE International Symposium on, pages 4 pp.–, May 2006.

[46] An-Chao Tsai, Kuan-I Lee, Jhing-Fa Wang, and Jar-Ferr Yang. Vlsi architecture de-
signs for effective h.264/avc variable block-size motion estimation. In Audio, Language
and Image Processing, 2008. ICALIP 2008. International Conference on, pages 413–
417, July 2008.

[47] Xuena Bao, Dajiang Zhou, Peilin Liu, and S. Goto. An advanced hierarchical motion
estimation scheme with lossless frame recompression and early-level termination for
beyond high-definition video coding. Multimedia, IEEE Transactions on, 14(2):237–
249, April 2012.

[48] G. Sanchez, D. Noble, M. Porto, and L. Agostini. High efficient motion estimation
architecture with integrated motion compensation and fme support. In Circuits and
Systems (LASCAS), 2011 IEEE Second Latin American Symposium on, pages 1–4,
Feb 2011.

168

[49] N. Purnachand, L.N. Alves, and A. Navarro. Fast motion estimation algorithm for hevc.
In Consumer Electronics - Berlin (ICCE-Berlin), 2012 IEEE International Conference
on, pages 34–37, Sept 2012.

[50] S. Wuytack, J.-P. Diguet, F.V.M. Catthoor, and H.J. de Man. Formalized methodology
for data reuse: exploration for low-power hierarchical memory mappings. Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, 6(4):529–537, Dec 1998.

[51] Jen-Chieh Tuan, Tian-Sheuan Chang, and Chein-Wei Jen. On the data reuse and
memory bandwidth analysis for full-search block-matching vlsi architecture. Circuits
and Systems for Video Technology, IEEE Transactions on, 12(1):61–72, Jan 2002.

[52] G. Kuzmanov, G. Gaydadjiev, and S. Vassiliadis. Multimedia rectangularly addressable
memory. Multimedia, IEEE Transactions on, 8(2):315–322, April 2006.

[53] J.K. Tanskanen, T. Sihvo, and J. Niittylahti. Byte and modulo addressable parallel
memory architecture for video coding. Circuits and Systems for Video Technology,
IEEE Transactions on, 14(11):1270–1276, Nov 2004.

[54] J. Vanne, E. Aho, T.D. Hamalainen, and K. Kuusilinna. A parallel memory system
for variable block-size motion estimation algorithms. Circuits and Systems for Video
Technology, IEEE Transactions on, 18(4):538–543, April 2008.

[55] S. Chandrakar, A. Clements, A. Sudarsanam, and A. Dasu. Memory architecture
template for fast block matching algorithms on fpgas. In Parallel Distributed Process-
ing, Workshops and Phd Forum (IPDPSW), 2010 IEEE International Symposium on,
pages 1–8, April 2010.

[56] M.E. Sinangil, A.P. Chandrakasan, V. Sze, and Minhua Zhou. Memory cost vs. coding
efficiency trade-offs for hevc motion estimation engine. In Image Processing (ICIP),
2012 19th IEEE International Conference on, pages 1533–1536, Sept 2012.

[57] M.E. Sinangil, A.P. Chandrakasan, V. Sze, and Minhua Zhou. Hardware-aware mo-
tion estimation search algorithm development for high-efficiency video coding (hevc)
standard. In Image Processing (ICIP), 2012 19th IEEE International Conference on,
pages 1529–1532, Sept 2012.

[58] Yiran Li and Tong Zhang. Reducing dram image data access energy consumption in
video processing. Multimedia, IEEE Transactions on, 14(2):303–313, April 2012.

[59] P. Meinerzhagen, C. Roth, and A. Burg. Towards generic low-power area-efficient
standard cell based memory architectures. In Circuits and Systems (MWSCAS), 2010
53rd IEEE International Midwest Symposium on, pages 129–132, Aug 2010.

[60] P. Meinerzhagen, S.M.Y. Sherazi, A. Burg, and J.N. Rodrigues. Benchmarking of
Standard-Cell Based Memories in the Sub- VT Domain in 65-nm CMOS Technology.
Emerging and Selected Topics in Circuits and Systems, IEEE Journal on, 1(2):173–182,
June 2011.

[61] P. Meinerzhagen, O. Andersson, B. Mohammadi, Y. Sherazi, A. Burg, and J.N. Ro-
drigues. A 500 fw/bit 14 fj/bit-access 4kb standard-cell based sub-vt memory in 65nm
cmos. In ESSCIRC (ESSCIRC), 2012 Proceedings of the, pages 321–324, Sept 2012.

169

[62] M. Budagavi and Minhua Zhou. Video coding using compressed reference frames.
In Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International
Conference on, pages 1165–1168, March 2008.

[63] A.D. Gupte, B. Amrutur, M.M. Mehendale, A.V. Rao, and M. Budagavi. Memory
bandwidth and power reduction using lossy reference frame compression in video en-
coding. Circuits and Systems for Video Technology, IEEE Transactions on, 21(2):225–
230, Feb 2011.

[64] D. Silveira, G. Sanchez, M. Grellert, V. Possani, and L. Agostini. Memory bandwidth
reduction in video coding systems through context adaptive lossless reference frame
compression. In Programmable Logic (SPL), 2012 VIII Southern Conference on, pages
1–6, March 2012.

[65] Zhe Wang, D. Chanda, S. Simon, and T. Richter. Memory efficient lossless compression
of image sequences with jpeg-ls and temporal prediction. In Picture Coding Symposium
(PCS), 2012, pages 305–308, May 2012.

[66] Zhan Ma and A. Segall. Frame buffer compression for low-power video coding. In Image
Processing (ICIP), 2011 18th IEEE International Conference on, pages 757–760, Sept
2011.

[67] H. Kaul, M.A. Anders, S.K. Mathew, S.K. Hsu, A. Agarwal, R.K. Krishnamurthy, and
S. Borkar. A 320 mV 56µW 411 GOPS/Watt Ultra-Low Voltage Motion Estimation
Accelerator in 65 nm CMOS. Solid-State Circuits, IEEE Journal of, 44(1):107–114,
Jan 2009.

[68] Jinglin Zhang, J.-F. Nezan, and J.-G. Cousin. Implementation of motion estimation
based on heterogeneous parallel computing system with opencl. In High Performance
Computing and Communication 2012 IEEE 9th International Conference on Embedded
Software and Systems (HPCC-ICESS), 2012 IEEE 14th International Conference on,
pages 41–45, June 2012.

[69] Xiangwen Wang, Li Song, Min Chen, and Junjie Yang. Paralleling variable block
size motion estimation of hevc on cpu plus gpu platform. In Multimedia and Expo
Workshops (ICMEW), 2013 IEEE International Conference on, pages 1–5, July 2013.

[70] Yeong-Kang Lai and Liang-Gee Chen. A data-interlacing architecture with two-
dimensional data-reuse for full-search block-matching algorithm. Circuits and Systems
for Video Technology, IEEE Transactions on, 8(2):124–127, Apr 1998.

[71] M. Elgamel, A.M. Shams, and M.A. Bayoumi. A comparative analysis for low power
motion estimation vlsi architectures. In Signal Processing Systems, 2000. SiPS 2000.
2000 IEEE Workshop on, pages 149–158, 2000.

[72] Yu-Wen Huang, Tu-Chih Wang, Bing-Yu Hsieh, and Liang-Gee Chen. Hardware archi-
tecture design for variable block size motion estimation in mpeg-4 avc/jvt/itu-t h.264.
In Circuits and Systems, 2003. ISCAS ’03. Proceedings of the 2003 International Sym-
posium on, volume 2, pages II–796–II–799 vol.2, May 2003.

[73] Lei Deng, Wen Gao, Ming Zeng Hu, and Zhen Zhou Ji. An efficient hardware im-
plementation for motion estimation of avc standard. Consumer Electronics, IEEE
Transactions on, 51(4):1360–1366, Nov 2005.

170

[74] Ching-Yeh Chen, Shao-Yi Chien, Yu-Wen Huang, Tung-Chien Chen, Tu-Chih Wang,
and Liang-Gee Chen. Analysis and architecture design of variable block-size motion
estimation for h.264/avc. Circuits and Systems I: Regular Papers, IEEE Transactions
on, 53(3):578–593, March 2006.

[75] Zheng Zhaoqing, Sang Hongshi, Huang Weifeng, and Shen Xubang. High data reuse
vlsi architecture for h.264 motion estimation. In Communication Technology, 2006.
ICCT ’06. International Conference on, pages 1–4, Nov 2006.

[76] J. Byun, Y. Jung, and J. Kim. Design of integer motion estimator of hevc for asym-
metric motion-partitioning mode and 4k-uhd. Electronics Letters, 49(18):1142–1143,
August 2013.

[77] A. Akin, O.C. Ulusel, T.Z. Ozcan, G. Sayilar, and I. Hamzaoglu. A novel power reduc-
tion technique for block matching motion estimation hardware. In Field Programmable
Logic and Applications (FPL), 2011 International Conference on, pages 269–272, Sept
2011.

[78] H. Niitsuma and T. Maruyama. Sum of absolute difference implementations for im-
age processing on fpgas. In Field Programmable Logic and Applications (FPL), 2010
International Conference on, pages 167–170, Aug 2010.

[79] Zhang Chun, Yang Kun, Mai Songping, and Wang Zhihua. A dsp architecture for
motion estimation accelerating. In Intelligent Multimedia, Video and Speech Processing,
2004. Proceedings of 2004 International Symposium on, pages 583–586, Oct 2004.

[80] M.R.H. Fatemi, H.F. Ates, and R. Salleh. A bit-serial sum of absolute difference accel-
erator for variable block size motion estimation of h.264. In Innovative Technologies in
Intelligent Systems and Industrial Applications, 2009. CITISIA 2009, pages 1–4, July
2009.

[81] J. Vanne, E. Aho, K. Kuusilinna, and T.D. Hamalainen. A configurable motion es-
timation architecture for block-matching algorithms. Circuits and Systems for Video
Technology, IEEE Transactions on, 19(4):466–477, April 2009.

[82] Zhibin Xiao, S. Le, and B. Baas. A fine-grained parallel implementation of a h.264/avc
encoder on a 167-processor computational platform. In Signals, Systems and Com-
puters (ASILOMAR), 2011 Conference Record of the Forty Fifth Asilomar Conference
on, pages 2067–2071, Nov 2011.

[83] Gouri Landge. A configurable motion estimation accelerator for video compression.
Master’s thesis, University of California, Davis, CA, USA, December 2009. http:

//www.ece.ucdavis.edu/vcl/pubs/theses/2009-4.

[84] Sung Dae Kim and Myung Hoon Sunwoo. Mesip: A configurable and data reusable
motion estimation specific instruction-set processor. Circuits and Systems for Video
Technology, IEEE Transactions on, 23(10):1767–1780, Oct 2013.

[85] Shengqi Yang, W. Wolf, and N. Vijaykrishnan. Power and performance analysis of
motion estimation based on hardware and software realizations. Computers, IEEE
Transactions on, 54(6):714–726, Jun 2005.

171

[86] J. Vanne, E. Aho, T.D. Hamalainen, and K. Kuusilinna. A high-performance sum of
absolute difference implementation for motion estimation. Circuits and Systems for
Video Technology, IEEE Transactions on, 16(7):876–883, July 2006.

[87] S.K. Chatterjee and I. Chakrabarti. Power efficient motion estimation algorithm and
architecture based on pixel truncation. Consumer Electronics, IEEE Transactions on,
57(4):1782–1790, November 2011.

[88] Neil Weste and David Harris. CMOS VLSI Design: A Circuits and Systems Perspective
(3rd Edition). Addison Wesley, 3 edition, 5 2004.

[89] Michael Keating. The Simple Art of SoC Design: Closing the Gap Between RTL and
ESL. Springer Science & Business Media, 2011.

172

