
Hardware, Software, and Tools for an AsAP2 Many-Core
System

By

NIMA MOSTAFAVI
B.S. (University of California Berkeley) July, 2011

THESIS

Submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE

in

Electrical and Computer Engineering

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Bevan M. Baas, Chair

S. J. Ben Yoo

Venkatesh Akella

Committee in charge
2014

– i –

© Copyright by Nima Mostafavi 2014
All Rights Reserved

Abstract

This thesis describes the design and implementation of hardware and software which enable

the integration of the 167-processor AsAP2 processor array chip into a system containing DRAM

memory, mass storage, and high-speed interconnect. A new daughtercard utilizes high-speed LVDS

interconnect for data and control interfaces between the array processor chip and a commercial

FPGA board which serves as a hub for the entire system. Verilog code on the FPGA board automates

programming of the AsAP2 chip using PCIe or JTAG connections and also enables the AsAP2 input

and output data interfaces to communicate through a PCIe connection to the host computer. A

scheduler program written in Perl reduces instruction counts and increases performance of AsAP2

assembly code by line re-arranging, register forwarding, and register renaming. Many Perl and C

programs on the host computer simplify the conversion of the assembly programs and the input and

output data in human readable format on the host computer to the machine code formats transferable

to the FPGA board and vice versa. This interface design enables the design and implementation of

many features such as SSD hard drives, DDR3 memories, and fiber optic networks that lead to the

use of the low power AsAP2 chip in a large enterprise system.

– ii –

Acknowledgments

First, I would like to sincerely thank my advisor Professor Bevan Baas for his support

and guidance throughout my years at UC Davis. I was extremely lucky to have the opportunity of

working in VLSI Computation Lab under his supervision, and it was thoroughly an enriching and

delightful experience. I would also like to thank Professor S. J. Ben Yoo for his constant support

and valuable advice through my graduate study. I would like to thank Professor Venkatesh Akella

for his time and consideration in reviewing my thesis.

There were many people without their help this work could not be accomplished. I would

like to express my appreciation to Aaron Stillmaker, Jon Pimentel, and Jeremy Webb for helping me

with learning the tools, and their endless support and valuable advice through the projects. I would

also like to thank all the people at VCL lab Aaron Stillmaker, Jon Pimentel, Jonathan Earl, Timothy

Andreas, Michael Braly, Bin Liu, Emmanuel Adeagbo, Brent Bohnenstiehl, and Dean Truong for

providing me with a friendly and exciting environment, inspiring me to keep following my research

aspirations while helping me with my work.

I would also like to thank Roberto Proietti and Zheng Cao for helping me with many of

my decisions in this project.

I would like to recognize Patty Hunter for her support in designing the daughter card,

Ted Park from Green Circuits for fabricating and loading the boards, Eli Billauer from Xillybus for

providing me with the PCIe interface.

I am grateful for the support from our sponsors ST Microelectronics, UC Micro, NSF

Grants, SRC GRC Grants, C2S2 Grants, Intel Corporation, Intellasys Corporation, UC Davis Fac-

ulty Research Grant, and SEM. I am also thankful for the support of Mentor Graphics, Xilinx, and

Cadence for the tools provided.

Finally, my special thanks goes to my beloved family for all their patience throughout these

years.

– iii –

Contents

Abstract ii

Acknowledgments iii

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 AsAP2 Interface Considerations . 2
1.2 Design of the Large Enterprise System . 2

1.2.1 Logical Design of a Picoblade . 2
1.3 Previous Work . 5
1.4 Project Contributions . 6
1.5 Organization . 7

2 AsAP2 Chip Interfaces 9
2.1 Input and Output Data Interface . 9

2.1.1 Input Data Interface . 9
2.1.2 Output Data Interface . 10

2.2 Programming Interface . 12
2.2.1 Physical Interface . 12

2.2.1.1 Serial Programming Interface . 12
2.2.1.2 Configuration Interface . 13

2.2.2 Instruction Format . 13
2.3 Test Signals Interface . 14
2.4 Power Delivery . 14

2.4.1 Input Source Voltages . 14
2.4.2 Ground . 14

2.5 Other Signals . 15

3 Daughter Card Design 16
3.1 Design Goals . 16
3.2 Daughter Card Design at a Glance . 17
3.3 Daughter Card Evolution and Redesign Factors . 19

3.3.1 Testboard1 . 19
3.3.2 Testboard2-v1 . 21
3.3.3 Testboard2-v2 . 22
3.3.4 Testboard2-v3 . 24

3.3.4.1 Phase One . 25
3.3.4.2 Phase Two . 28

– iv –

3.3.5 Other Design Considerations and Factors . 29
3.3.5.1 Design Consultant . 37

3.4 Design Tools and Limitations . 38
3.5 Final Board and Fabrication . 39

4 FPGA Verilog Code Design and Logic 42
4.1 Architecture and Testing Setup . 43
4.2 Programming and Logic of AsAP2 Interface . 45

4.2.1 AsAP2 Programmer . 45
4.2.1.1 Programmer Logic and Programming 47
4.2.1.2 Simulation . 49

4.2.2 Input and Output Logic . 50
4.2.2.1 Input Logic and Programming . 51
4.2.2.2 Output Logic and Programming . 51

4.2.3 Dynamic Delay (Not Verified) . 52
4.2.4 Temporary Arbitration . 54

4.3 Future Work . 55

5 PCIe Bring up and Host Data Interface 56
5.1 Bring up and Hardware . 56
5.2 Xillybus IP Core . 57
5.3 Linux . 58

6 Host Computer Programming Chain 60
6.1 Host Design Interface . 60
6.2 Host Programming Interface . 61

6.2.1 First Host Programming Interface Method . 61
6.2.1.1 Programming Converter . 62
6.2.1.2 Scheduler . 65
6.2.1.3 Assembler . 72
6.2.1.4 AsAP2 programmer (aprog) . 73

6.2.2 Second Host Programming Interface Method 73
6.2.2.1 Input and Output Programming Converter 74
6.2.2.2 Stream Run . 75

6.3 Host Data Interface . 76
6.3.1 Input and Output Data Converter . 77
6.3.2 FIFO Run . 77

6.4 Future Work . 78

7 Battery Powered Supply for AsAP2 79
7.1 Schematics and Components . 80
7.2 Prediction and Results . 81

8 Conclusion 84
8.1 Future Work . 84

A Daughter Card Signal Layers Gerber Files 86

B Schematic View of the PCBoard Desgin 111

C Scheduler Code Changes and Improvements 126

Glossary 130

Bibliography 134

– v –

List of Figures

1.1 Macroblade view of the dsesign . 3
1.2 Different types of a Picoblade in two Microblades . 4
1.3 Simple design model of a Picoblade . 7

2.1 AsAP2 processor array labels and corresponding locations 10
2.2 AsAP2 BGA package pinout . 11

3.1 Daughter card stack up layers . 18
3.2 Daughter card stack up text . 19
3.3 Previous daughter card - testboard1 . 20
3.4 Daughter card - testboard2-v1 . 22
3.5 Daughter card - testboard2-v2 . 23
3.6 Daughter card - testboard2-v3 - phase 1 . 24
3.7 Daughter card - testboard2-v3 - phase 2 . 29
3.8 Schematic of ground connections on the AsAP2 and the fabricated daughter card . . 35
3.9 Power plane with potential issue . 36
3.10 Power plane without potential issue . 37
3.11 Top view of the fabricated daughter card . 39
3.12 Bottom view of fabricated daughter card . 40
3.13 FPGA board with the fabricated daughter card attached 41

4.1 VC709 FPGA board . 43
4.2 Schematic view of FPGA/JTAG on Xilinx VC709 FPGA board 44
4.3 FPGA internal architecture . 44
4.4 programmer logic state machine . 48
4.5 Programmer SPI and config signals . 50

5.1 Xillybus bring up common error message . 57
5.2 Xillybus internal FPGA board design . 58

6.1 First host programming interface . 62
6.2 Scheduler program performance effects . 70
6.3 Scheduler program performance difference . 71
6.4 Scheduler instruction count and percentage reduction 72
6.5 Second host programming interface . 73
6.6 Data transfer between FPGA board and PCIe . 76

7.1 Battery powered demo - schematics . 80
7.2 Battery powered demo . 82

8.1 Future Designs . 85

– vi –

A.1 Board outline for reference . 88
A.2 Drill drawing . 89
A.3 Through hole drill drawing . 90
A.4 Top signal layer . 91
A.5 Signal 2 . 92
A.6 Signal 3 . 93
A.7 Signal 4 . 94
A.8 Signal 5 . 95
A.9 Signal 6 . 96
A.10 Signal 7 . 97
A.11 Signal 8 . 98
A.12 Signal 9 . 99
A.13 Signal 10 . 100
A.14 Signal 11 . 101
A.15 Bottom signal layer . 102
A.16 Bottom silkscreen . 103
A.17 Top silkscreen . 104
A.18 Bottom soldermask . 105
A.19 Top soldermask . 106
A.20 Bottom paste mask . 107
A.21 Top paste mask . 108
A.22 Non plated drills . 109
A.23 Plated drills . 110

B.1 Schematic design sheet index . 112
B.2 AsAP2 bank 0 (GND) . 113
B.3 AsAP2 bank 1 (I/O), terminations, external clock 114
B.4 AsAP2 bank 1 (I/O) continued . 115
B.5 AsAP2 bank 2 (config), terminations, testout header 116
B.6 AsAP2 bank 2 (config) continued . 117
B.7 AsAP2 bank 3 (VDDH), decoupling capacitors . 118
B.8 AsAP2 bank 4 (VDDL), decoupling capacitors . 119
B.9 AsAP2 bank 5 (VDDON), decoupling capacitors . 120
B.10 AsAP2 bank 6 (VDDIO), decoupling capacitors . 121
B.11 AsAP2 bank 7 (VDDOSC), decoupling capacitors . 122
B.12 AsAP2 bank 8 (analog) . 123
B.13 Power inputs . 124
B.14 FMC connector, SATA connector . 125

– vii –

List of Tables

3.1 testboard1 trace lengths . 20
3.2 Testboard2-v1 trace lengths . 22
3.3 Testboard2-v2 trace lengths . 24
3.4 Level shifters . 26
3.5 LVDS drivers/receivers . 26
3.6 Length matching values for testboard2-v3 . 31
3.7 Length matching values for testboard2-v3 (continues) 32
3.8 Testboard2-v3 trace lengths . 33
3.9 Male FMC signal connections . 34

4.1 FMC pin connections to Virtex7 and AsAP2 chip . 46

– viii –

1

Chapter 1

Introduction

There is a high demand for systems with low power consumption and huge storage that

can perform desired operations of an application on a massive input data in high speed and ef-

ficiency [1], [2]. For this purpose, the first generation of many core processors such as Array of

Simple Asynchronous Processor (AsAP) with 36 tiled-based cores and low area for digital signal

processing [5], [6] was designed and evaluated [7], [8]. Later the second generation of AsAP called

AsAP2 with 167 heterogeneous [9] cores was introduced with a low-area [10], [11] circuit switch iner-

processors networking [12] and shared input queues . In this architecture the concept of Globally

Asynchronous Locally Synchronous (GALS) processor was introduced to have different cores being

able to run at different clock frequencies using independent oscillators [14], [15] that helps reduce the

power consumption of low activity cores by reducing their clock frequencies [16]. Due to scalability

of this design [17], there has also been many efficient scalable sorting algorithm running on large

data sets using many core processors [18] as well as many encryption algorithms such as AES [19]

to be used on enterprise systems or data centers.

As a very good example of high performance low power cores, AsAP2 is selected to be used

with two targeted goals in this document. First, is the interface of AsAP2 with different devices

such as memories, hard drives, displays, etc for Digital Signal Processing (DSP) and embedded

system [20] applications. Second interconnect of large enterprise system with many blades. Since

the second targeted goal can include the first goal, enterprise system is only discussed briefly.

2

1.1 AsAP2 Interface Considerations

The AsAP2 interface is a simple parallel input and output data interface with a serial

programming interface. By enabling the connection between this simple interface and other devices

many applications and programs such as AES encryption [19], H.264 video decoding [21] for 720p

HDTV [22], ultrasound signal processing [23], real-time 802.11a baseband receiver [24], and fast

fourier transform [25] can be tested on the many core platform with very low power consumption

using dynamic voltage and frequency scaling [26] implemented in AsAP2 chip. In addition, The

parallelism of many designs such as H.264 encoder [27] and AES [28] can be exploit. However, in

order for a AsAP2 package to communicate with other devices it must be connected to an arbiter to

convert this simple system to the correct standard used in the peripheral device. In order to achieve

this goal a daughter card connecting AsAP2 to an arbiter device such as FPGA board must be

considered. In this design due to the difference in clock frequency domains between these different

devices and AsAP2 output or input processors, dual-clock FIFOs [29] are used. In addition to These

connections many more software tools must be written to provide the required interface to program

the AsAP2 processors to run any application efficiently.

1.2 Design of the Large Enterprise System

The desired enterprise system is a combination of AsAP2 and optical interconnect network

with DDR Memories and SSD Hard drives. The desired system with large optical network and

compute units can be broken down into many sub blocks in the network level with the highest level

being called a Macroblade, second level of the design is called Miniblade, the next level in hierarchy

below the Miniblade is called a Microblade, and finally the lowest level is called a Picoblade [30].

Figure 1.1 displays the Macroblade view of this design while Figure 1.2 displays a detailed view of

a Picoblade.

This document is only dedicated to the design and implementation of some parts of the

Picoblade. In the next subsection, the logical view of a Picoblade is described then the physical view

of the Picoblade is explained.

1.2.1 Logical Design of a Picoblade

In order to meet the requirements of this design, the design should have storage units,

network connectors, processing units, processor programming connectors, input data units, output

3

Figure 1.1: The schematic displaying the Macroblade level of the enterprise system (above Figure
reproduced with permission from Prof. S. J. B. Yoo)

data units, and control units. Based on this the tasks has been divided into two separate types of

Picoblade units as follows:

1. Computational Picoblade

2. System interface Picoblade

Figure 1.2 displays a diagram of a simple Miniblade displaying the two types of Picoblades.

The red rectangle on this picture represents a host computer, and each green rectangle represents a

Microblade. There are two Microblades in this picture.

1. Computational Picoblades: The computational Picoblades in this design only have storage

units, network connectors, processing units, processor programming connectors, and a control

unit. These Picoblades don’t require an input/output data unit in addition to the internal

network connection since all the information is received/sent from/to the outside of this sys-

tem through only one Picoblade called a system interface Picoblade. The system interface

Picoblade is designed to transfer data between other Picoblades and a server (host) com-

puter, so they can be displayed or used later. This Picoblade has all the components that a

computational unit has with the addition of the input and output data unit.

In order to achieve these goals in a computational Picoblades, A Xilinx FPGA (Field - Pro-

grammable Gate Array) board (Xilinx Virtex 7 VC 709 [31]) is used to act as the control

unit and connects all the parts together. AsAP2 processor arrays are used in this system as

the computational unit. AsAP2 is connected to the FPGA board using a custom designed

4

Figure 1.2: The schematic displaying both types of Picoblades in the Miniblade level

daughter card. Each one of these daughter cards has two SATA (Serial Advanced Technology

Attachment) connectors, an AsAP2 chip, and one FMC (FPGA Mezzanine Card) connec-

tor. The AsAP2 chip and the two SATA SSDs (Solid State Drives) can be connected to each

computational Picoblade (FPGA board) using the FMC connector. Even though SSDs con-

nect to AsAP2 daughter board, but they won’t be communicating to AsAP2 chip directly.

These connections are all made through the control unit (FPGA board) to make them more

flexible. Each computational FPGA (Picoblade) is connected to the network via four SFP

(Small form-factor pluggable) high-speed optical connectors.

A control unit (FPGA Board) in a computational unit is programmed through a JTAG (Joint

Test Action Group) interface before the FPGA verilog is fully tested. Afterward, it can

be reprogrammed through the same JTAG interface or just by using the BPI (Byte Pe-

ripheral Interface) Parallel NOR flash memory on the Virtex 7 FPGA board. The AsAP2

Chip can be programmed using either the BRAM (Block Random Access Memory) on the

FPGA board or the USB (Universal Serial Bus) to UART (Universal Asynchronous Receiver-

Transmitter) Bridge. Computational Picoblades distribute the input data coming in from

the system interface Picoblade between all the SSD Drives before the main program starts.

Then, they start their computational intensive computation and compute the results. Finally,

5

these results get transferred back to the system interface Picoblade to be sent out to the user

interface or the host computer.

2. System Interface Picoblade: This unit acts as a data collector or a data distributor in the

network system as well as doing the computations like other computational Picoblades. It

uses a PCIe (Peripheral Component Interconnect Express) connection to burst in the input

information from a host computer or a server into this optical network system. Also, after the

computation is done, all internal computational Picoblades send their final results back into

this Picoblade using the optical network to be transferred back to the server. System interface

Picoblade has all the components of a computational Picoblade, but it also has an additional

capability of communicating with outside world. This node can be used as a firewall blocking all

the outside accesses to the internal information stored in the SSD drives in case of an intrusion.

Also these units instead of using the USB to UART Bridge connection for reprogramming use

PCIe to reprogram AsAP2 instructions into BRAM in addition to programming the FPGA

board using the JTAG connection. The AsAP2 chip can be rapidly reprogrammed using the

BRAM.

1.3 Previous Work

The AsAP2 chip has been designed, fabricated, and tested using a daughter card designed

by previous members of the VCL group by connecting to an Avnet Virtex-5 LX evaluation kit via

an Expansion (EXP) connector. This board uses a single ended connection to transfer data between

the AsAP2 chip and the FPGA board. The design interface has been implemented in a way that

a new AsAP2 program gets loaded to AsAP2 chip using a UART connection to the FPGA board

from the host every time. The start command is sent from the host computer every time to start

the AsAP2 program, so a constant host connection to the board is required and the board can’t be

programmed and removed from the host for remote functionality. The verilog code on FPGA board

converts the 8 bit UART input data to the correct format before sending it to the AsAP2 chip to

get it programmed. The input to AsAP2 chip has not been implemented on the old FPGA board.

The output from AsAP2 chip can only be streamed out to a set of pins to be displayed on a digital

oscilloscope or a similar tool.

The written assembly code had to be manually optimized and written with all the hardware

detailed instructions such as no operation instructions (NOPs). There had been a scheduler program

6

written with limited functionality that wasn’t included in the system interface to be used to optimize

or add extraneous instructions such as NOPs.

1.4 Project Contributions

1. A new AsAP2 daughter card was designed from scratch. This redesign provides higher com-

munication speed and compatibility with the new FPGA board. This complete redesign was

made since a new FPGA has been required to enable the capability of optical modules in the

network. This new FPGA board requires a different connection that doesn’t connect to the

previously designed daughter card.

2. The verilog code for the FPGA board has been completely rewritten to provide an easier

interface for programming, input, and output. The programs can be loaded to the FPGA

board in two different ways while it doesn’t require a host instantiating the start signal. The

program can be loaded and start signal can be initiated directly from the FPGA board to

the AsAP2 chip. This interface also gives the possibility to read multiple lines from BRAM

and make modification to the program stored on the FPGA board BRAM. Xillybus provided

a PCIe interface to transfer input and output data between the host and the FPGA board

in addition to the reprogramming interface previously mentioned. The Xillybus template

programs were modified, and additional programs were added to convert a simple ASCII input

data and programs to a binary format to be sent to the FPGA board. Also, new programs were

added to take the output data or instruction from AsAP2 to ASCII format. These programs

act as an interface between the PCIe logic and human ASCII visible input and output.

3. A scheduler and a converter were completed to convert a simple assembly or simulator pseudo C

program to optimized code by inserting all required extra instructions to be either transferred

back to the simulator for further simulation or to the assembler to be programmed into the

AsAP2 chip. This peripheral software reports the memory usage and instruction count of the

assembly program.

4. Different host software has been written in Perl and C to provide the required machine format

from a higher-level human readable format for the inputs and output data to the AsAP2 as

well as the programming interface on the host computer.

7

Figure 1.3: A physical view of the designed Picoblade with a layout view of the daughter card

1.5 Organization

Chapter 2 discusses the AsAP2 chip and its functionalities. This chapter introduces the

AsAP2 chip built by students in VLSI Computational Lab (VCL) [32]. The focus of this chapter is

mostly on the power, input, and output data interfaces of this chip in addition to the programming

of this chip since there are being considered many times in the future chapters.

Chapter 3 discusses the process and consideration on building the AsAP2 daughter card

used to connect the AsAP2 chip to the FPGA board in addition to possible future hard drive

connections. This board has been fabricated with all the components loaded on the board.

Chapter 4 discusses the design and logic used in the verilog code used to design the internal

communication logics in the FPGA board to program and communicate between AsAP2 and the

FPGA board. Figure 1.3 displays a simple picture of how the daughter card (PCB board) connects

to the FPGA board in a Picoblade.

Chapter 5 discusses host programs and modifications done in order to make the previously

implemented host codes to run with the new system. This section mostly discusses about how the

interface has been modified for the new interface to program a FPGA board for a system interface

Picoblade using a JTAG connection.

Chapter 6 discusses the PCIe interface bring up, and the host interface for reprogramming

8

and data input and output verilog logic.

Chapter 7 briefly discusses about the small battery powered system that was build to power

the previously build daughter card. This section describes the decisions and the full schematic design

of different components in that demo.

Finally Chapter 8 concludes the discussion about this project and gives some future op-

portunities to improve and complete this project.

9

Chapter 2

AsAP2 Chip Interfaces

The Asynchronous Array of Simple Processors 2 [10] (AsAP2) consists of 164 fine-grained,

homogeneous programmable processors in addition to three special purpose processors for motion

estimation, veterbi decoding, and fast fourier transform (FFT). Each of these 164 programmable

processors can be programmed to run a different set of instructions running at their independent

clock frequencies below 1.3GHz.

In order to program AsAP2, programmer requires writing their program in AsAP2 assembly

language and for each of the 164 processors independently. In order to do this each program has

been labeled with their location as is shown in Figure 2.1.

2.1 Input and Output Data Interface

The input and output data interfaces of AsAP2 chip run at 2.5 V with single ended con-

nections. This 19-bit interface consists of 16 data signals, one clock signal, one request signal, and

one valid signal.

2.1.1 Input Data Interface

Inputs to the AsAP2 chip can go to any of the 12 processors on the first column (proc 0,0

to proc 0,11 on Figure 2.1) of the AsAP2 array. Each processor can be statically assigned the input

data stream coming in from pins marked as in data[0:15] (DI#) in Figure 2.2.

Three signals in valid(IV), in clk(IC), and in request(IR) are additional signals coming

to or leaving the input processor. The in clk is the input clock to the input buffer of the input

processor. The in request and the in valid are the handshaking signals between the transmitter and

10

Figure 2.1: The schematic view of AsAP2 processors with their corresponding labels in the AsAP2
chip array

the receiving processor in AsAP2 chip. The AsAP2 processor sets the in request signal high (logical

one) to show it is ready to receive data, and the input source, sending the data to AsAP2 chip, sets

the in valid signal high (logical one) when the data coming to AsAP2 chip is valid and low (logical

zero) when there is no data available to be sent to the AsAP2 input processor.

2.1.2 Output Data Interface

The outputs from AsAP2 chip can go to any of the 12 processors on the last column (proc

12,0 to proc 12,11 on Figure 2.1) of the AsAP2 array. Similar to the input data interface, each

processor can statically be assigned to be the output source of the AsAP2 chip. These output pins

are labeled out data[0:15](DO#) in Figure 2.2.

Similar to the input data interface, the output data interface also has three additional

signals out clk (OC), out valid (OV), and out request (OR). The out clk signal outputs the clock

signals that the output processor runs to process and produce the output data. The out valid signal

displays whether the data on out data lines are valid or not while the out request signals the output

processor when the receiver is ready to receive the output data from the AsAP2 output processor.

11

Figure 2.2: The AsAP2 pinout diagram. This is an actual pin readout from the package when facing
the pins side

12

2.2 Programming Interface

The AsAP programming interface is designed for simplicity. It is a serial interface that loads

the instruction and configuration information into the AsAP2 chip. Each processor’s instruction

memory (IMEM) can store up to 128 instructions. In addition, each processor’s clock frequency

can be separately configured in addition to may other settings that can be set on each processor.

In general the programming interface can be divided into two different sections of physical and

functional (Instruction Format).

2.2.1 Physical Interface

Physical programming interface is divided into two different sections. The Serial Program-

ming Interface (SPI) and the Configuration Interface (CFG).

2.2.1.1 Serial Programming Interface

The SPI consists of five signals clk spi (CS, also called spi clk), spi sel (SS), spi mosi

(SOI), spi load (SL), and spi miso (SIO) as shown in Figure 2.2. The clk spi, labeled as SCK in

spi slave.v file of the AsAP2 verilog source code, is the clock signal that the input serial bits of data

come into AsAP2 programming unit in spi slave.v file.

In the AsAP2 programming design, the master is the source that sends program data to

AsAP2 chip and the slave is the AsAP2 programming unit. Considering the master and slave rule,

spi mosi (Serial Programming Interface — Master Out Slave In) sends the programming data bits

to AsAP2 from the source of programming while spi miso (Serial Programming Interface — Master

In Slave Out) returns the input data bits in a loop back format, back to the master for error checking

and signal integrity.

The spi sel, labeled as CSn in spi slave.v file of AsAP2 verilog source code, is an active

low input signal to AsAP2 chip to signals AsAP2 programming unit that the input MOSI signal is

valid. This signal stays low only when the actual programming data is being sent to be loaded in

AsAP2 chip. While the two MSBs (Most Significant Bits) of the programming packets (Explained

in Instruction Format in Section 2.2.2 on page 13) are being loaded, this signal stays high.

Finally, spi load signal, labeled as LOAD EN in spi slave.v file, is an active high input

signal to AsAP2 programming unit that only goes high when one packet has completely arrived to

the AsAP2 chip to be stored as a valid packet.

13

2.2.1.2 Configuration Interface

The configuration interface consists of two signals, cfg valid (CV) and cfg clk (CC) as

shown on Figure 2.2. The cfg clk signal is the clock frequency at which the input programming

packets (explained in instruction format in Section 2.2.2) enter the configuration unpack unit (in

cfg unpack.v file of AsAP2 verilog source code). This signal runs 40× slower than spi clk signal since

for every 20 spi clk clocks cfg clk make one transition from high to low or low to high to latch. Each

20-bit packet gets sent only when the cfg clk is low, but when the cfg clk goes high the received

20 bits gets latched in for another 20 cycles of spi clk.

The cfg valid signal is an active high input signal that signals the configuration unpack

unit (in cfg unpack.v file of AsAP2 verilog source code) that the current stored packet by AsAP2

programming unit in spi slave.v is a valid packet and must be unpacked based on the two MSBs of

the programming packets described in the next section.

2.2.2 Instruction Format

Input program packets could be :

1. Instructions that go to Instruction Memory (IMEM)

2. Configuration data that go to Configuration Memory or CMEM (not to be confused with Dy-

namic Configuration Memory (DCMEM) that can be modified during the program execution)

3. Other configuration and signals such as Configuration (CFG) pre-instruction runs to fill Data

Memories (DMEM) or set other DCMEM settings before processors run the main program.

Each instruction or CFG pre-instruction sent to AsAP2 to program AsAP2 processors consists of

a maximum total of 56 bits. There are 21 bits for address and 35 bits for the instruction itself.

Each configuration settings sent to CMEM of AsAP2 to configure AsAP2 processors also consists

of a total of 37 bits. There are 21 bits for address and 16 bits for data. This information is based

on parse.c from aprog module as a part of the host computer programming chain described more in

Chapter 6.

The serial packets coming to the AsAP2 programming unit are divided into four different

kinds of packets with all 20 bits long labeled as Address Upper, Address Lower, Data Upper, and

Data Lower. The two most significant bits (MSBs — bits 19 and 18) specify the type of packet. The

least significant bits (LSBs — bits 0 – 17) are either address or data (both data and address were

referred to data in previous sections) bits. Bit 18 describes whether the information in the packet is

14

a Data packet (bit 18 set to 1 — high) or Address packet (bit 18 set to 0 — low). Bit 19 describes

whether the data or address information in the packet is for the upper half or the lower half of the

data or the address bits. When this bit is set to 0 (low) upper half is selected, and it is the lower

half of the address or data bits when it is set to 1 (high).

2.3 Test Signals Interface

Testing Interface of AsAP2 consists of 9 test signals test out [0:8] (T#) as shown on Fig-

ure 2.2. These test signals are used to output different values based on the configuration settings.

These signals can be used to output the clock of a processor or other information about the FIFOs,

stall, and program counter in a processor.

2.4 Power Delivery

2.4.1 Input Source Voltages

AsAP2 has a total of 136 pins on its package for input voltages as shown on Figure 2.2.

These pins feed five separate power rails. The first power rail is VddHigh taking 56 pins. This power

rail is used for high clock frequency load when the high performance is desired. This voltage can go

up to 1.3 V. The second power rail is VddLow taking only 33 pins. This power rail is normally set

below VddHigh for low power operations. This voltage rail is normally used with lower frequencies

to minimize the power dissipation of the chip. The third power rail is VddOn taking 12 pins on the

package. These pins power the always-on logic such as the DVFS circuitry on AsAP2 chip. This

voltage can set to maximum voltage of 1.3 V. The fourth power rail is VddOsc and uses 6 pins. This

power rail is used for the oscillator logic block on each processor. This pin can be set to a maximum

voltage of 1.3 V. The fifth power rail is VddIO taking 29 pins. This power rail is used to power

input/output receivers and drivers of the AsAP2 chip. These receivers and drivers run at 2.5 V.

2.4.2 Ground

There are a total of 102 pins associated to ground as shown on Figure 2.2. These pins

break down into three categories. The first category is GndCom taking 67 pins. GndCom is the

ground corresponding to VddHigh, VddLow , and VddOn source voltages ground connection. The

second category is GndOsc taking 6 pins. This ground corresponds to VddOsc. Finally, the third

15

category is GndIO taking 29 pins corresponding to VddIO pins.

2.5 Other Signals

Four signals are output analog pins, and they are connected to one particular processor in

the AsAP2 array to measure some Analog values. These four signals measure VddHigh, VddLow ,

VddOn, and Clk values. The last signal is an input clock signal and mainly used for testing purposes.

These signals are analog high precision signals that require special attention for correct display values.

16

Chapter 3

Daughter Card Design

The Printed Circuit Board (PCB) design of a daughter card was one of the key parts of

the project, and required very careful design and consideration due to high cost of both Fabrication

and AsAP2 chip used on this board. Many changes were made due to many limitations between the

two interfaces after in-depth consideration.

3.1 Design Goals

The main goals of this design are summarized as follows:

1. Correct Functionality: One of the main goals of this design is correct functionality of the

devices. The PCB connects to a Field Programmable Gate Array (FPGA) board built by

Xilinx called “Xilinx Virtex-7 FPGA VC709 Connectivity Kit” using a FPGA Mezzanine

Card (FMC) connector, so AsAP2 chip on the PCB can connect and communicate with the

programmed FPGA board logic. In addition, PCB requires implementing a connection to Solid

State Drives (SSDs) using a Serial Advanced Technology Attachment (SATA) connection for

mass storage capability through the FPGA board.

2. High Reliability: One of the main focuses of this design is the high reliability of the design.

This term is used more in the context of this chapter mainly in Section 3.3.5. Daughter cards

that produce different results due to emission, Electromagnetic Interference (EMI), or other

environmental factors are not desired in the design of a printed circuit board, and they require

special attention.

3. High Speed: This design goal requires a large amount of consideration due to crucial limiting

17

factors, such as maximum clock frequency, imposed on the input and the output data interfaces

of the AsAP2 chip using single ended signals in the pervious designs of AsAP2 daughter card.

Some of these considerations try to improve the design of the PCB to provide a faster interface

than the previous design. This faster speed results in more results in less time

4. High Yield: High yield is desired in any mass produced design [33], and this design is no

exception. High yield design reduces the extra overhead cost by decreasing damaged and

unwanted boards. Following the design rules given by the fabrication and assembly company

increases the design yield greatly.

5. Low Total Cost: One of the most important factors in the design of any device or system is

the cost. The total cost equation considered for the PCB design is as follow.

TotalCost = NRECost+ PCBFabricationCost+BoardComponentsCost+

LoadingBoardCost[+ConsultantCost] (3.1)

ConsultantCost is an optional part of this analysis that can be removed from the equation

especially when a professional designer designs the PCB.

To further explore this option below shows an example list of cost for each item for the AsAP2

designed board. This quote is given based on fabrication and assembly of 32 PCBs by Green

Circuits [34].

NonRecurringExpense(NRE) = $400.00 (3.2)

PCBFabricationCost = $74.00 cost/board ∗ 32 = $2, 368.00 (3.3)

BoardComponentsCost = $212.10 cost/board ∗ 32 = $6, 787.20 (3.4)

LoadingBoardCost = $75.00 cost/board ∗ 32 = $2, 400.00 (3.5)

ConsultantCost = NotEnclosed (3.6)

The total cost for 32 boards is $11 , 955 .20 .

3.2 Daughter Card Design at a Glance

The new designed board for AsAP2, called testboard2, has 12 layers and made of Flame

Retardant 4 (FR4) material with dielectric constant (Er) of 4.2 according to Green Circuits. The

18

Figure 3.1: Layer stack up of the testboard2 scaled thickness drawing

board thickness is 77 mils. Figure 3.1 is a scale drawing of the PCB layers.

This board consists of 4 signal layers, 3 power layers, 4 ground layers, and 1 layer with both

ground and power planes. The ground layers have been divided into three different ground Regions

of GNDG (labeled as GG on the PCB), GNDSATA (labeled as GS on the PCB), and GNDOSC

(labeled as GO on the PCB). The power layers have been divided into 5 different power regions of

VDDON (labeled as VN on the PCB), VDDOSC (labeled as VO on the PCB), VDDH (labeled as

VH on the PCB), VDDL (labeled as VL on the PCB), and VDDIO (labeled as VIO on the PCB).

The width of the signals in the signal layers was sized to match 50 ohms while the width of

power and ground signals in the signal layers were selected to minimize resistance. Figure 3.2 shows

the width and the thickness of the different signal layers of this design in addition to the impedance

of these signals.

The PCB has two SATA connectors to connect SSD drives, one FMC connector to connect

19

Figure 3.2: The stack up view of the PCB with trace width impedance values

to the FPGA board, and one AsAP2 chip to do the processing in addition to other parts and

connectors for the total of 302 components.

The board dimensions are 4850 mil (width) x 4250 mil (height). These dimensions were

chosen so the PCB can be attached to the FPGA board via FMC connector while it is installed

into the special computer purchased for this project since the FPGA board is too big to fit in most

desktop computers.

3.3 Daughter Card Evolution and Redesign Factors

The design of the daughter card can be broken into four different evolution sections. The

first evolution describes briefly about the previous fabricated daughter card, called testboard1, de-

signed for a different FPGA board. In the second section, the first version of the new PCB, called

testboard2-v1, is described. Next the second version of the PCB, called testboard2-v2, is described

in details. Finally, the final version of the Test board, called testboard2-v3, is explained. This final

version is the version that has been fabricated, so it can be attached to the VC709 FPGA board.

3.3.1 Testboard1

The original AsAP2 daughter card was designed, so it can be installed on a FPGA board

using an Expansion (EXP) connector. Figure 3.3 shows the layout view of the original daughter

20

Table 3.1: testboard1 trace lengths

Max Length (mil) Min Length (mil) Difference Time* (ps)

Input 2341.37 875.79 1465.58 249.15

Output 2272.75 1066.9 1205.85 204.99

*The Time column values are based on 170 psec
in

traces.

Figure 3.3: The layout view of the original daughter card — testboard1

card with only the main signals displayed.

The maximum and minimum length of the signals in this design is as follow where 170ps/inch

is calculated using Equation 3.7:

PCBSignalSpeed−1 =
Speedoflight√

Er
=

3× 108√
4.2

m

sec
× 4× 10−11

sec× in

psec×m
= 0.0058554

in

psec

PCBSignalSpeed = 170.7
psec

in
(3.7)

Table 3.1 displays the regional trace length for the maximum and the minimum traces as

well as the difference in length between the maximum and minimum traces and the corresponding

delay difference between the two signals in testboard1 design. This table displays two regions of

input and output where the input region is considered as all the in coming, outgoing, and clock

21

signals that are required to input a value to the AsAP2 chip, and the output region is defined

similarly to input region except it is for all the signals used to send out a value from AsAP2 chip.

The trace difference delay timing is achieved based on 170 psec/In PCB signal speed calculated in

Equation 3.7.

3.3.2 Testboard2-v1

The first attempt to make testboard1 design compatible with the requirement of the project,

was made to modify the implementation of the PCB, so it can be connected to VC709 FPGA board

using the FMC connector as well as having the capability of stacking up two boards on top of each

other. With this requirement, two AsAP2 chips could connect to the same FPGA board.

In this version of the designed board, all the connections to AsAP2 are single ended, similar

to the previous board design, and the number of decoupling capacitors used are kept the same as

well. Also, the dimensions of the board are kept the same.

The main modification from the old design is the replacement of the EXP connector with

two FMC connectors (one male and one female connector). The male FMC connector is used to

connect to the FPGA board while the female FMC connector is used to connect the second daughter

card on top of the first daughter card. All the power, ground, and test connectors are moved to the

sides of the board, and all of them are replaced by right angled parts instead of straight parts to

provide enough gap, so the two boards can stack on top of each other.

Also, two SATA connectors are added to the PCB. These connectors are connected to the

FPGA board through the FMC connector using a Low Voltage Differential Signaling (LVDS) con-

nection. This design includes an additional power region for VDDSATA with decoupling capacitors,

matching network resistors, power source connectors, and ground connectors for the SATA LVDS

signals.

In this design the orientation of the AsAP2 chip was kept the same as before so all the

single ended signals for input and output regions (i.e. input region is based on all the in coming and

outgoing signals and clock signals related to inputting data to AsAP2 chip) were routed from the

sides of the chip (Figure 3.4 Displays the layout view of this design) with minimal length matching

considerations. The auto route feature built in to the software couldn’t completely route the design

due to complexity of the design, so every signals was had routed. The maximum and minimum

trace length values are shown in Table 3.2 for different regions of AsAP2 signals where 170 ps/inch

used in this table is calculated based on Equation 3.7 for the maximum and minimum trace length

22

Figure 3.4: The layout view of the first version of the new daughter card — testboard2-v1

Table 3.2: Testboard2-v1 trace lengths

Max Length (mil) Min Length (mil) Difference Time* (ps)

Input 3014.12 1350.03 1664.09 282.90

Output 2611.35 1293.61 1317.74 224.01

*The Time column values are based on 170 psec
in

traces.

difference delay timing. As it is visible the difference between the maximum and minimum signals

has increase, but they are still in the same orders of magnitude.

3.3.3 Testboard2-v2

This version of the board is designed with many modifications to the first version of the

testboard2 design while still keeping the dimensions of the board the same. There are still two FMC

connectors, and all the connectors are kept in the right-angled format and on the sides of the board.

The main change is done on the SATA connector side of the board. The extra matching

resistors and decoupling capacitors are removed from the board because the resistive matching is

only required at the source or the destination of a signal and the PCB is not located at either end

of the SATA connections. The VDDSATA power region is completely removed because it isn’t used

at all with the connectors when the resistor matching is removed from the board, and it is replaced

with another GNDSATA region. This design reduces the distance of the return loop current from

23

Figure 3.5: The layout view of the second version of the new daughter card — testboard2-v2

the LVDS SATA signals on the 9th layers of the board since instead of a VDDSATA region on the

10th layer a GNDSATA region is used next to the SATA signals on the 9th layer. This ground region

is mainly added in addition to the GNDSATA on the 11th layer that was mainly used to reduce the

distance of the return loop current from the SATA signals on the 12th layer of the board. Figure 3.5

displays this modification.

In addition to the SATA connector area modification, most of capacitors are modified to

X2Y capacitors for higher decoupling of the input powers from ground. This modification reduces

the number of capacitors required in the design to almost half. Some of the capacitors are still kept

the same as before just because of the low quantity of these capacitors required for some power and

ground regions of the design such as VDDOSC to GNDOSC decoupling capacitors.

The final modification is done on the orientation of the AsAP2 chip to reduce the difference

between the length of each signal region on the AsAP2 input and output signals. This reduction is

summarized in Table 3.3 where 170ps/inch is calculated using Equation 3.7. This modification has

reduced the different between the signal lengths in the same region by about 1000 mil. After this

modification, the traces were hand routed again and many parts were moved around.

24

Table 3.3: Testboard2-v2 trace lengths

Max Length (mil) Min Length (mil) Difference Time* (ps)

Input 2872.79 2568.19 304.6 51.78

Output 1422.57 1082.6 339.97 57.79

*The Time column values are based on 170 psec
in

traces.

Figure 3.6: The layout view of the third version of the new daughter card — testboard2-v3 — phase
one (Quoted Version)

3.3.4 Testboard2-v3

The final version of the PCB is done in two phases. The first phase is considered pre

consultants changes (Quoted Board) — Figure 3.6, and the second phase is considered as post

consultants changes (Fabricated Board) — Figure 3.7 on page 29.

25

3.3.4.1 Phase One

One of the big issues found in the previous designs of the PCB was the voltage difference

between the FPGA board’s High Precision (HP) single ended drivers/receivers operating at max-

imum of 1.8 V and the AsAP2 single ended drivers/receivers operating at 2.5 V. This different in

voltage values, results in some major changes in the design. There are two possible solutions to this

issue. The first possible solution is the use of voltage level shifters to change the voltage levels to

the desired voltage values. The second possible solution is to use LVDS drivers and receivers that

generate signals according to the LVDS standard and are available on both sides.

After some search on different web sites based on bit rate of the voltage level shifters and

differential drivers/receivers the following result was gathered.

From the Table 3.4, the maximum bit rate for an industrial voltage level shifter between

1.8 V and 2.5 V is about 320 Mbps (fifth Item on the table), and since the input and outputs of

AsAP2 require to transfer the clock as well as data and control signals, only maximum operating

clock frequency of 160 MHz can be achieved using voltage level shifters.

Based on Table 3.5 the maximum bit rate achievable by a LVDS transmitter at 2.5 V is

630 Mbps. Also the maximum bit rate achievable by a LVDS receiver is 500 Mbps. Considering the

clock signal in both cases, a clock frequency of 315 MHz for the LVDS transmitter and 250 MHz for

LVDS receiver is achievable. Also since LVDS signals swing at low differential voltage of 250 mV

with the common voltage of 1.2 V, voltage level change from 2.5 V to 1.8 V is not required with a

LVDS signal pair. However, two signal traces instead one is required to transmit each signal value.

These two signals are complementary of each other and are labeled as p and n for positive and

negative respectively.

Based on these results the LVDS drivers and receivers were used in implementation of

the final version of the PCB. This decision also enforced the reduction in the number of possible

PCBs connecting to the FPGA board because the increase in the number of trace signals used on

the FMC connector has doubled. This increase disables the capability of connecting two daughter

cards stacking up on top of each other that resulted in removal of the female FMC connector from

the daughter card. In addition to the previous solution, there is also the possibility of converting

each signal to LVDS at AsAP2 side and then back to single ended right before entering the FMC

connector and vise versa to keep the possibility of stacking up two daughter cards on top of each

other, but due to increase in the number of components this option was not implemented.

In the new design test out pins also require special considerations. Previously these pins

26

Table 3.4: Level shifters

#
MFG Model

Bit Rate (Mbps)
Bits

Dimension
(mmxmm)

Distr Pin
Count

Link
to
1.8 V

to
2.5 V

Max

1 MAXIM MAX13055E
MAX13058E

100 100 100 8 Digi-key 24–
28

Manual

2 ST ST4G3234 210 260 380 4 2.04×1.41 Digi-key 11 Manual

3 ST ST1G3234 210 260 380 1 1.36×1.02 Digi-key 5 Manual

4 ON Semi NLSV4T244 4 1.70×2.00 Digi-key 12 Manual

5 TI SN74AVCH2T45 320 320 500 2 1.918×.918
BG

Digi-key 8 Manual

6 ON Semi NLSV8T244 8 4.00×2.00 Digi-key 20 Manual

7 ON Semi NLSV4T3234 4 1.41×2.04 Digi-key 11 Manual

8 TI TXB0104 60 60 100 4 1.89×1.39 Digi-key 12 Manual

9 TI TXB0106-Q1 60 60 100 6 5.10×6.60 Digi-key 16 Manual

10 TI SN74AVC2T45 320 320 500 2 4.25×3.15 Digi-key 8 Manual

11 Maxim MAX3002 30 30 35 8 6.55×6.60 Digi-key 20 Manual

12 ON Semi NLSX3014 100 100 100 4 1.70×2.00 Digi-key 12 Manual

13 TI SN74LVC1T45 75 140 420 1 1.418×.918
BG

Digi-key 6 Manual

14 ST ST2378E 13 8 2.46×1.98 Digi-key 20 Manual

15 TI TXS0102 24 2 1.918×.918 Digi-key 8 Manual

16 TI SN74AVC4T245 200 200 380 4 2.65×1.85 Digi-key 16 Manual

17 ON Semi NLSX3012 140 140 140 2 1.80×1.20 Digi-key 8 Manual

18 TI SN74AVCH1T45 200 200 380 1 1.418×.918 Digi-key 6 Manual

19 TI SN74AVC1T45 320 320 500 1 1.418×.918 Digi-key 6 Manual

20 ON Semi NLSX5011 100 140 100 1 1.2×1.0 Digi-key 6 Manual

21 TI TXS0108E 60 60 60 8 3.10×2.60
BG

Digi-key 20 Manual

22 TI SN74AVC2T45-
Q1

320 320 500 2 2.10×3.20 Digi-key 8 Manual

23 TI SN74LVC1T45 75 140 420 1 1.418×.918 Digi-key 6 Manual

24 TI SN74AVC2T245 320 320 500 2 1.85×1.45 Digi-key 10 Manual

25 ON Semi NLSX3013 100 100 100 8 2.03×2.54 Digi-key 20 Manual

26 TI TXS0104E 24 24 24 4 1.89×1.39 Digi-key 12 Manual

27 TI TXS0101 21 21 24 1 1.418×.918 Digi-key 6 Manual

28 ON Semi NLSX3018 100 100 100 8 4.00×2.00 Digi-key 20 Manual

Table 3.5: LVDS drivers/receivers

#
MFG Model

Bit Rate (Mbps)
Bits

Dimension
(mmxmm)

Distr Pin
Count

Link
to
1.8 V

to
2.5 V

Max

1 TI SN65LVDS1 630 630 630 1 3.05×3.00 Digi-key 5 Manual

2 TI SN65LVDS4 500 500 500 1 2.35×1.85 Mouser 10 Manual

http://www.ti.com/lit/ds/symlink/sn65lvds4.pdf
http://datasheets.maximintegrated.com/en/ds/MAX13055E-MAX13058E.pdf
http://www.st.com/web/en/resource/technical/document/datasheet/CD00044859.pdf
http://www.st.com/web/en/resource/technical/document/datasheet/CD00044852.pdf
http://www.onsemi.com/pub_link/Collateral/NLSV4T244-D.PDF
http://www.ti.com/lit/ds/symlink/sn74avch2t45.pdf
http://www.onsemi.com/pub_link/Collateral/NLSV8T244-D.PDF
http://www.onsemi.com/pub_link/Collateral/NLSV4T3234.PDF
http://www.ti.com/lit/ds/symlink/txb0106-q1.pdf
http://www.ti.com/lit/ds/symlink/sn74avc2t45.pdf
http://datasheets.maximintegrated.com/en/ds/MAX3000E-MAX3012.pdf
http://www.onsemi.com/pub_link/Collateral/NLSX3014-D.PDF
http://www.ti.com/lit/ds/symlink/sn74lvc1t45.pdf
http://www.st.com/web/en/resource/technical/document/datasheet/CD00003335.pdf
http://www.ti.com/lit/ds/symlink/txs0102.pdf
http://www.ti.com/lit/ds/symlink/sn74avc4t245.pdf
http://www.onsemi.com/pub_link/Collateral/NLSX3012-D.PDF
http://www.ti.com/lit/ds/symlink/sn74avch1t45.pdf
http://www.ti.com/lit/ds/symlink/sn74avc1t45.pdf
http://www.onsemi.jp/pub_link/Collateral/NLSX5011-D.PDF
http://www.ti.com/lit/ds/symlink/txs0108e.pdf
http://www.ti.com/lit/ds/symlink/sn74avc2t45-q1.pdf
http://www.ti.com/lit/ds/symlink/sn74lvc1t45.pdf
http://www.ti.com/lit/ds/symlink/sn74avc2t245.pdf
http://www.onsemi.com/pub_link/Collateral/NLSX3013-D.PDF
http://www.ti.com/lit/ds/symlink/txs0104e.pdf
http://www.ti.com/lit/ds/symlink/txs0101.pdf
http://www.onsemi.com/pub_link/Collateral/NLSX3018-D.PDF
http://www.ti.com/lit/ds/symlink/sn65lvds1.pdf

27

were routed to a right angle connector as well as FMC connector. This could increase the capacitance

and inductance of these traces by generating stubs in the path of these signals. In addition, due to

voltage difference between the AsAP2 chip and the FPGA board, a direct connection to the FMC

connector is not feasible anymore. The follow is the list of the possible solutions.

1. Routing the test out pins only differentially to the FMC connector

2. Routing the test out pins using only single ended wires to a right angled connector (selected

option)

3. Routing the test out pins using single ended wires to a connector and then differentially to the

FMC connector

4. Routing the test out pins using single ended wires to a right-angled connector and then to the

FMC connector after being voltage level shifted

The first option wasn’t implemented because the test out pins are normally used for testing

purposes. These signals get connected to the oscilloscope in most cases and sending that signal only

to the FPGA board isn’t a good choice for this design.

The second option was implemented due to ease of implementation and ease of use for

testing. Only a series termination to 50 Ω resistance is required for this option, and test out signals

can be probed with oscilloscope or any other device.

The third option wasn’t selected because of the introduction of an additional capacitance

and inductance added to these signals. The increase in capacitance and inductance is due to the

long stubs created by the right-angled connector on the single ended signals that cause reduction in

reliability of these signals.

The fourth option wasn’t also selected since it requires an additional 1.8 V power plane

with all the required connectors and decoupling capacitors to be added to the existing design. This

implementation would increase the number of required parts in the design and also the cost of the

design.

The next modification is the orientation of AsAP2 chip. The orientation is changed to

the old orientation used in the first version of the testboard2 because the positive and the negative

LVDS signals are required to be coupled together closely and any via or separation between the two

signals degrade he signal integrity and reliability of the signal by introducing differential noise.

Two straight connectors and one right angle connector are added to the design at this stage.

The right angled connector is used to bring out the Test Data In (TDI), Test Data Out (TDO),

28

Test Mode Select (TMS), and Test ClocK (TCK) out of FPGA board and accessible for testing. For

this project the TDI signal should be shorted to the TDO signal for connectivity of the Joint Test

Action Group (JTAG) signal.

Pins PG M2C, PRSNT M2C L, and PG C2M from the FMC connector have been brought

to one of the straight connectors next to ground to be shorted using a jumper in order to select

different selections explained shortly. These signals can be connected to GNDG plane using a

jumper while they are internally connected to a pull up resistor connecting to 3.3 V (at 3.3 V with

out a jumper to GNDG). The shorted PG M2C shows that the board is defective while shorted

PRSNT M2C L switches off the JTAG by pass between TDI and TDO, so the TDI, TDO, TMS,

and TCK can be used for JTAG Chaining. The PG C2M is an output pin, but it has brought to

a pin in case it is required in the future with the FPGA board while it can be left alone for this

project. These are based on page 23 of Xilinx VC709 Evaluation Board for the Virtex-7 FPGA User

Guide [35] and VC709 board schematics [36].

The other straight connector is used for power connection. VIO B M2C connections are

input power connections that should be connected to 1.8 V to provide power to the HB bank (bank

35) of the Virtex 7 chip. These connections are directed to the connector pins to be connected using

a jumper to VADJ (1.8 V) that are being directed to a same connector from the FMC connector.

3.3.4.2 Phase Two

After a design review and the consultant recommendations, the final modifications were

done on the design. Figure 3.7 displays the final layout view of this design. The final signal layer

gerber view of this design is available at Appendix A.

In this design almost all of the Silk Screen drawings and references were modified to have

a clearer representation of each signal. The LVDS signals were distanced such a way that they have

minimal cross talk between each pair. The test out traces were length matches, so they can be easily

connected to oscilloscope for measurement.

The straight connector connecting the FPGA power signal VIO B M2C to 1.8 V was re-

placed with Zero ohm resistors. This was done because the jumper implementation using the straight

connector would introduce undesired inductance, and it would reduce the reliability and functionality

of the FPGA board bank.

The right-angled connector was removed and the TDI signal of the FPGA JTAG signal was

shorted to the TDO signal of the FPGA using a zero ohm resistor instead of a jumper to increase

29

Figure 3.7: The layout view of the third version of the new daughter card — testboard2-v3 — phase
two (Fabricated Version)

the reliability of this signal.

3.3.5 Other Design Considerations and Factors

As previously mentioned FPGA supply runs at 1.8 V while AsAP2 IO runs at 2.5 V in

order to compensate for this difference LVDS drivers and receivers have been used. These LVDS

Integrated Circuit (IC) chips run at 2.5 V using VDDIO voltage, and because of increase in the

number of components on VDDIO the number of X2Y bypass Capacitors for VDDIO has been

doubled to compensate for the additional load due to LVDS ICs connected to VDDIO in the final

design. The failsafe resistors connecting the LVDS signals to VDDIO and GNDG before the LVDS

receivers are picked based on page 13 of TI SN65LVDS4 data sheet [37] where VCC is equal to

2.5 V.

The 100 Ω differential and the 50 Ω single ended daughter card trace resistance matching

are picked based on the 50 Ω impedance matching on the FPGA board. All the inputs and outputs

30

connection on the FMC connector of VC709 are HP type, but they don’t have the capability of using

Digitally Controlled Impedance (DCI) drivers and receivers. They are only matched to 50 Ω.

The test out, 5.9 Ω, serial terminations resistors are picked assuming the test out drivers

are 44 Ω. These resistors can be replaced by shorting wires in case these values come out to be

in accurate while a 50 Ω matching active probe can be used on the scope to compensate for the

50 Ω mismatching issues. The 6 Ω resistance is calculated based of given assumption in the AsAP2

drivers as follow:

LoadCapacitance = C L = 25 pF(drivers) + 15 pF(trace) + 13 pF(scope) + 10 pF(probe)+

17 pF(forcompensationofprobeandviascapacitance) = 80 pF (3.8)

LowtoHighPropagationDelay = Tp LH = .69×Reqp× C L (3.9)

HightoLowPropagationDelay = Tp HL = .69× reqn× C L (3.10)

Equations 3.9 and 3.10 are based on Digital Integrated Circuits — A Design Perspective

by Jan M. Rabaey and etl. [38].

AverageTp LH = Tp LH avg = (2.1 ns + 2.8 ns)/2 = 2.45 ns (3.11)

AverageTp HL = Tp HL avg = (1.9 ns + 2.8 ns)/2 = 2.35 ns (3.12)

The values used in Equations 3.11 and 3.12 are based on the classified document accessible

by request from VLSI Computational Lab (VCL).

AveragePropagationDelay(bothHLandLH) = Tp avg = (2.45 ns + 2.35 ns)/2 = 2.4 ns (3.13)

DriverResistance = R Tp avg = tp avg/(.69∗C L) = 2.4 ns/(.69∗80 pF) = 43.478 ≈ 44 Ω (3.14)

Based on the final result of 44 Ω for AsAP2 driver output resistance, in order to match to

50 Ω transmission line resistance, a 6 Ω resistor in series with the transmission line is required.

31

Table 3.6: Length matching values for testboard2-v3

S
ig
n
al

N
am

e

S
in
gl
e

E
n
d
ed

L
en

gt
h
(m

il
)

S
in
gl
e

E
n
d
ed

D
el
ay

(n
s)

D
iff

P
L
en

gt
h

(m
il
)

D
iff

N
L
en

gt
h

(m
il
)

D
el
ay

D
iff
er
en

ce
(n
s)

T
ot
al

L
en

gt
h

(m
il
)

T
ot
al

D
el
ay

(n
s)

S
te
p
s
to

O
n
e

D
ec
im

al

S
te
p
s

(D
ec
im

al
)

S
te
p

S
ke
w

(D
ec
im

al
)

S
te
p
s

S
ke
w

(B
in
ar
y)

CONFIG SIGNAL LENGTHS

RESET COLD 617.55 0.1 1194.58 1194.85 0.2 1812.4 0.3 3.6 4
RESET
COUNTCLK

664.32 0.11 1205.95 1205.75 0.2 1870.27 0.31 1.9 2

SPI CLK 491.59 0.08 1345.97 1346.62 0.23 1838.21 0.31 1.9 2 15 01111

SPI LOAD 400.04 0.07 1368.94 1368.16 0.23 1768.98 0.3 2.1 2 15 01111

SPI MISO 275.45 0.04 1437 1437.36 0.25 1712.81 0.29 2.3 2 15 01111

SPI MOSI 411.36 0.07 1377.26 1377.47 0.23 1788.83 0.3 2.1 2 15 01111

SPI SEL 384.08 0.06 1335.56 1335.37 0.23 1719.64 0.29 2.3 2 15 01111

CFG CLK 746.51 0.13 1660.49 1660.03 0.28 2407 0.41 0 0 13 01101

CFG VALID 693.99 0.12 1228.38 1228.61 0.21 1922.6 0.33 1.5 2 15 01111

TEST OUT SIGNAL LENGTHS

TEST OUT0 2715.28 0.41 0 0 0 2715.28 0.41 0.6 1

TEST OUT1 2717.47 0.42 0 0 0 2717.47 0.42 0.4 0

TEST OUT2 2700.53 0.44 0 0 0 2700.53 0.44 0 0

TEST OUT3 2805.96 0.4 0 0 0 2805.96 0.4 0.8 1

TEST OUT4 2717.12 0.44 0 0 0 2717.12 0.44 0 0

TEST OUT5 2732 0.41 0 0 0 2732 0.41 0.6 1

TEST OUT6 2704.99 0.43 0 0 0 2704.99 0.43 0.2 0

TEST OUT7 2730.09 0.42 0 0 0 2730.09 0.42 0.4 0

TEST OUT8 2766.14 0.42 0 0 0 2766.14 0.42 0.4 0

IN DATA SIGNAL LENGTHS

IN CLK 425.11 0.07 2846.15 2844.19 0.49 3271.26 0.56 8.7 9 15 01111

IN DATA0 704.45 0.12 5188.16 5187.85 0.89 5892.61 1.01 0 0 6 00110

IN DATA1 671.24 0.11 4782.63 4783.29 0.82 5454.53 0.93 1.5 2 8 01000

IN DATA2 522.6 0.09 4422.98 4422.46 0.76 4945.58 0.85 3.1 3 9 01001

IN DATA3 577.93 0.1 3999.23 4000.63 0.69 4578.56 0.79 4.2 4 10 01010

IN DATA4 515.8 0.09 3558.86 3558.5 0.61 4074.66 0.7 6 6 12 01100

IN DATA5 454.72 0.08 4627.23 4626.69 0.8 5081.95 0.88 2.5 3 9 01001

IN DATA6 377.19 0.06 4216.66 4217.8 0.73 4594.99 0.79 4.2 4 10 01010

IN DATA7 405.31 0.07 3857.61 3856.89 0.66 4262.92 0.73 5.4 5 11 01011

IN DATA8 546.66 0.09 3136.21 3135.49 0.54 3682.87 0.63 7.3 7 13 01101

IN DATA9 435.78 0.07 2734.46 2734.74 0.47 3170.52 0.54 9 9 15 01111

IN DATA10 504.19 0.08 2514.1 2514.77 0.43 3018.96 0.51 9.6 10 16 10000

IN DATA11 575.53 0.1 1988.79 1988.91 0.34 2564.44 0.44 11 11 17 10001

IN DATA12 649.8 0.11 1757.67 1757.13 0.3 2407.47 0.41 11.5 12 18 10010

IN DATA13 626.99 0.11 1659.08 1657.95 0.28 2286.07 0.39 11.9 12 18 10010

IN DATA14 527.3 0.09 1078.65 1078.66 0.18 1605.96 0.27 14.2 14 20 10100

IN DATA15 445.48 0.07 1081.1 1081.63 0.18 1527.11 0.25 14.6 15 21 10101

IN REQUEST 295.88 0.05 3064.23 3064.44 0.53 3360.32 0.58 8.3 8 14 01110

IN VALID 335.33 0.06 3328.55 3328.76 0.57 3664.09 0.63 7.3 7 13 01101

32

Table 3.7: Length matching values for testboard2-v3 (continues)
S
ig
n
al

N
am

e

S
in
gl
e

E
n
d
ed

L
en

gt
h
(m

il
)

S
in
gl
e

E
n
d
ed

D
el
ay

(n
s)

D
iff

P
L
en

gt
h

(m
il
)

D
iff

N
L
en

gt
h

(m
il
)

D
el
ay

D
iff
er
en

ce
(n
s)

T
ot
al

L
en

gt
h

(m
il
)

T
ot
al

D
el
ay

(n
s)

S
te
p
s
to

O
n
e

D
ec
im

al

S
te
p
s

(D
ec
im

al
)

S
te
p

S
ke
w

(D
ec
im

al
)

S
te
p
s

S
ke
w

(B
in
ar
y)

OUT DATA SIGNAL LENGTHS

OUT CLK 382.65 0.06 2536.72 2536.05 0.44 2919.37 0.5 7.7 8 15 01111

OUT DATA0 611.1 0.1 4636.39 4636.31 0.8 5247.49 0.9 0 0 7 00111

OUT DATA1 478.5 0.08 4045.68 4046.25 0.7 4524.75 0.78 2.3 2 9 01001

OUT DATA2 708.05 0.12 4282.32 4281.78 0.74 4990.37 0.86 0.8 1 8 01000

OUT DATA3 475.01 0.08 3656.3 3656.31 0.63 4131.32 0.71 3.7 4 11 01011

OUT DATA4 471.45 0.08 3222 3222.57 0.56 3694.02 0.64 5 5 12 01100

OUT DATA5 494.52 0.08 3662.33 3663.74 0.63 4158.26 0.71 3.7 4 11 01011

OUT DATA6 613.25 0.1 3303.45 3303.09 0.57 3916.7 0.67 4.4 4 11 01011

OUT DATA7 554.4 0.09 2889.05 2888.74 0.5 3443.45 0.59 6 6 13 01101

OUT DATA8 573.33 0.1 3034.5 3034.39 0.52 3607.83 0.62 5.4 5 12 01100

OUT DATA9 415.03 0.07 1740.43 1739.21 0.28 2155.46 0.35 10.6 11 18 10010

OUT DATA10 397.53 0.07 2497.76 2498.63 0.43 2896.16 0.5 7.7 8 15 01111

OUT DATA11 539.9 0.09 1988.89 1989.44 0.34 2529.34 0.43 9 9 16 10000

OUT DATA12 587.53 0.1 1887.58 1885.98 0.32 2475.11 0.42 9.2 9 16 10000

OUT DATA13 274.24 0.05 1633.57 1633.76 0.28 1908 0.33 11 11 18 10010

OUT DATA14 571.7 0.1 1708.81 1709.66 0.29 2281.36 0.39 9.8 10 17 10001

OUT DATA15 435.75 0.07 1473.59 1473.71 0.23 1909.46 0.3 11.5 12 19 10011
OUT
REQUEST

303.52 0.05 2663 2663.71 0.45 2967.23 0.5 7.7 8 15 01111

OUT VALID 429.32 0.07 2946.82 2945.49 0.51 3376.14 0.58 6.2 6 13 01101

SATA SIGNAL LENGTHS

SATA0 C2M 0 0 536.66 536.53 0.09 536.66 0.09

SATA0 M2C 0 0 1292.8 1292.45 0.19 1292.8 0.19

SATA1 C2M 0 0 972.5 972.2 0.17 972.5 0.17

SATA1 M2C 0 0 537.06 537.74 0.08 537.74 0.08

FPGA SIGNAL LENGTHS

TDI 165.28 0.84 0 0 0 165.28 0.84

TDO 179.98 0.86 0 0 0 179.98 0.86

TEST SIGNALS LENGTHS

VCORE 2746.5 0.41 0 0 0 2746.5 0.41

VHIGH 2189.64 0.32 0 0 0 2189.64 0.32

VLOW 1965.39 0.29 0 0 0 1965.39 0.29

ASAP CLK 3223.75 0.48 0 0 0 3223.75 0.48
EXTERNAL
CLK

2850.35 0.49 0 0 0 2850.35 0.49

33

Table 3.8: Testboard2-v3 trace lengths

Max Length (mil) Min Length (mil) Difference Time* (ps)

Config 2407 1713 694.19 0.12

Test out 2805.96 2701 105.43 0.04

Input 5892.61 1527 4365.5 0.76

Output 5247.49 1908 3339.5 0.6

SATA 1292.8 536.7 756.14 0.11

FPGA 179.98 165.3 14.7 0.02

Test 3223.75 1965 1258.4 0.2

*The Time column values are based on 170 psec/in traces.

There are no matching resistors between the LVDS ICs and AsAP2 pins since these traces

are not considered transmission lines. The validity of this statement is based on Equation 3.15 which

is a simple rule of thumb to show whether a trace is a transmission line with the requirement of

resistance matching or not.

Length Of Trace×
Clock Frequency

Trace V elocity
≥ 0.02 (3.15)

With velocity of 146,385,010.9 m/s based on Equation 3.16 and maximum trace length of

750 mil or 0.01905 m running at 315 MHz, the left side of equation equal to 0.02 which is equal to the

right side of the equation which is 0.02. Since all traces are kept shorter than 750 mils, these traces

won’t act as transmission line and won’t require resistance matching. Tables 3.6 and 3.7 display the

delay and trace length for all the main signals on the PCB while Table 3.8 displays the maximum

and minimum trace length and their difference in length and delay for each signal group.

TraceV elocity =
Speedoflight√

Er
=

3× 108√
4.2

m

sec
= 146385010.9

m

sec
(3.16)

All clock signals on AsAP2 input, output, and config Signals have been connected to CC

(Clock Capable) pins. The out clk, in clk, and spi clk have been connected to MRCC (Multi Region

Clock Capable) while the cfg clk is connected to SRCC (Single Region Clock Capable) pin (this was

due to unavailability of MRCC pins on that bank). The CC pins are used for clock signals based on

page 29 of Xilinx, 7 Series FPGAs Clocking Resources [39], User Guide, where it is explained why

all input clock signals are required to be connected to CC pins.

All the out data signals and the out clock signal are connected to HB bank (bank 36). All

the in data signals and the in clock signal are connected to HA bank (bank 35). Finally, all the

AsAP2 programming and configuration signals and their clocks have been connected to bank LA17–

34

Table 3.9: The FMC connector pin locations connecting to the AsAP2 signals

33 (bank 34) of the Virtex 7 board in order to be able to use local clock signal for these signals to

meet the timings for all of these signals (based on Xilinx 7 Series FPGAs Clocking Resources [39]).

Table 3.9 displays the FMC pin connection to AsAP2 chip signals after becoming differential. In this

figure blue represent the input signals, and purple represent the output signals. All the programming

signals are colored yellow, while green is used to represent the SATA connections.

The reason only one right-angled component comes out of the top side of the PCB on

Figure 3.7 is that this side of the board is inaccessible when the board is installed inside the computer

via the PCIe connection in a system interface Picoblade. The Top right, right-angled connector starts

right where the PCB comes out of the designated desktop computer.

Two zero ohm resistors are used to connect the VADJ 1P8Vs voltages to the power input

of VIO HB M2Cs with very wide traces to reduce the voltage drop in these connections.

As shown on Figure 3.8, the GndCom, GndIO , and GndOsc are separate from each other

while they are only connected through a low resistance of substrate in the AsAP2 chip. All the

35

Figure 3.8: The schematic shows the ground connections on the AsAP2 and the fabricated daughter
card

connections coming from GndIO and GndCom go to the same power plane while the GndOsc is

connected to a separate plane on the PCB. There are two zero ohm resistors on the PCB connect

the GndOsc to the GndCom. This has been implemented in this form to reduce the noise coupling

of the oscillator circuit to the rest of the circuit by connecting the two grounds only at one low

resistance point close to the AsAP2 chip. This reduces the current flow through the substrate while

keeping the two grounds connected.

One of the potential big issues in the designed PCB is the issue of the bottled neck ground

return current. Figure 3.9 displays this issue with a rectangle as the current coming from the right

connector pins (displayed with arrows) can’t be easily distributed through the bottle neck on the

left side as is shown on this figure. An improvement to this potential problem has been shown on

Figure 3.8. In this picture, the bottle necking via has been moved and returns current path has

been opened (as shown on figure with a rectangle) the ground plane for the return current (opposite

direction of the arrows).

With this potential issue, the fabricated board has been turned on using the power sup-

plies. Using a bench voltmeter the voltage difference between the two grounds with out the FPGA

connection has been tested, and it almost equal to zero. The exact voltage difference is 0.004 mV.

Similar test is performed on a regular ground pins to a different ground pin on different locations of

the board and voltage difference of 0.006 mV is observed, so the resistance between the two grounds

36

Figure 3.9: The fabricated board with potential issue

is minimal. Considering these supplies are all shorted on the supply side to common ground of the

power strip and the Zero ohm resistor connecting the two different GndCom and GndOsc.

Inductive filters at the power source input to the PCB have been avoided due to the unique

behavior of the AsAP2 chip. Globally Asynchronous Locally Synchronous (GALS) design of AsAP2

chip requires each processor to turn on and off with any desired frequency which result in burst of

current surge from the power supplies in any time and at any order. If these current surges are not

responded due to use of inductors in the inductive filters such as pi filters, current burst can get

slowed which can result in drop in voltage on the processor requesting the current. For this reason

in the design of the PCB inductive filters have been avoided and only decoupling capacitors have

been used.

Lastly, a special consideration is requires in connecting the X2Y capacitor on the PCB.

The via connection of these capacitors on the PCB is that each pad connects to the PCB using two

via connections instead of just one which improves the performance of these capacitors by reducing

the loop inductance of these capacitors. More information about X2Y capacitor connections can be

found in “Get the Most from X2Y Capacitors with Proper Attachment Techniques” [40]. All the

other capacitors have been connected to the PCB with one via close to the pad based on Figure 2–1

on page 22 of “7 Series FPGAs PCB Design and Pin Planning Guide” [41].

37

Figure 3.10: The design without a bottleneck

3.3.5.1 Design Consultant

The following are the recommendation and changes that the consultant has made to the

board.

Getting placement guidelines from the fabrication company is one of the crucial points in

designing a PCB. Another important point is that to SubMiniature Version B (SMB) routing should

be more isolated from other routes and even shielded. This can be accomplished with a top backfill

of the ground with stitching to give the trace routes a proper return path.

Spacing traces or at least trace bundles apart from each other by a 3–5 wide rule is crucial in

signal integrity of the signals. Accordion loops are done to length match, a minimum rule of thumb

is 5-wide rule in each loop and loop-to-loop is recommended. Typically the accordion patterns are

grouped in tighter bundles. In order to length match on the 45-degree angles a trombone serpentine

is preferred by adding a few loops longer along the angle.

Balance/Center placement of capacitors between SMBs to allow for finger or wrench tight-

ening of at least 100 mils Is required for easy part access. All other placement (possibility of a

package-to-package rules set up in the CES clearance) package rules might be desired. Tighter spac-

ing is only possible for a “next gen” assembly house. That is usually quite a bit more expensive. If

at all possible, getting the assembly house spacing standards and setting those up and seeing that

the economical standard spacing is met is very important.

The components at the edge of a Ball Grid Array (BGA) chip would usually be placed in

38

200 mils distance, or they are placed in 100 mils in more relaxed versions. If at all possible sro-to-sro

should be closer to 75 mils, leaving pad to pad at 50mils. Anything less is again considered “next

gen” and commands more expensive processes.

Making sure the first pin for the components are specified with a dot or a small number

on the silk screen next to the pad for small components is really important for future probing the

pins after assembly. Also, labeling all the decoupling capacitors with the kind of Vdd they are

connected to help for debugging the possible issues in the future. In general, all the components

should be clearly labeled on silkscreen. Especially resistors should be labeled with their REFerence

DEScription (REFDES) for debugging purposes.

3.4 Design Tools and Limitations

This board was design using the Mentor Graphics [42] tools. The “DxDesigner 2005” was

the tool used to design the schematic view of the design. Appendix B on page 111 displays this

schematic view. Bill of Materials (BOM) can be generated in this tool as well.

In order to insert new parts “Library Manager” is used. This tool gives different tool

accesses to generate the required part from the schematic view to layout view of a part. “Symbol

Editor” is used to create a symbolic view used in schematic view. The “Padstack Editor” can

produce platted or non-platted holes and pads with different sizes and shape. These generated pads

and holes get used in “Cell Editor” tool in the Library manager to generate the layout view of

the part including the silkscreen, placement, and the assembly of the part. Finally “Part Editor”

connects the cell (layout) view of the design to the symbolic (schematic) view of the part.

Finally, “Expedition PCB 2005” from Mentor Graphics tools was used to generate the

layout view of the whole design. This tool can connect to DxDesigner to bring the connections

and the layout view of the designed parts. In this tool “Constraint Editor” (also called CES) can

be invoked to set the design rules such as minimum trace distances (clearance), differential pair

assignments, trace grouping, and regional rules. The desired trace width size ranges can be set in

this tool for each layer of the layout design. From the Constraint Editor the “Stackup” tool can be

called to set the layer thickness and Dielectric constant (Er) of the layers as well as calculating the

trace width required to achieve desired impedance. In Expedition PCB, the plane boundaries can

be set as well as the part locations. Any additional silkscreen labeling and trace routing is done in

Expedition PCB. Expedition PCB provides an automated routing option, but this normally is not

used since it isn’t as clean as hand routing the traces.

39

Figure 3.11: The top view of the fabricated board (testboard2-v3 — Phase 2) connected to the
FPGA board

The “Forward and Backward Annotation” has special importance in the use of Mentor

Graphics tools. The forward annotation forwards the changes done in DxDesigner to the Expedi-

tion PCB while the backward annotation forwards the changes done in the Expedition PCB back

to the DxDesigner. In case this link gets broken sometimes text modifications in the schematic

documentation or roll back in the design might be required.

Expedition PCB also can run DRC rule check on the design when the DRC rules are

normally manually set using the fabrication company’s “Capability Specs”. In addition to DRC

checker Expedition PCB can generate both “ODB++” and “Gerber” outputs depending on the

fabrication company’s Request. Finally, if the parts are being loaded by the fabrication company

and they require the “Pick and Place for UBX” file to specify the location and the orientation of

the part. The Expedition PCB can export this file in the “Generic AIS” format.

3.5 Final Board and Fabrication

Designed daughter card has been Fabricated and loaded by Green Circuits [34]. The top

view of the design is shown on Figure 3.11. From the top view of the board all the connectors are

visible. Figure 3.12 displays the bottom view of the fabricated board. In this view most of the crucial

components of the board are visible such as the AsAP2 chip in the middle, the FMC connector next

to the AsAP2 chip, and the two SATA connectors on the other side.

40

Figure 3.12: The bottom view of the fabricated board (testboard2-v3 — Phase 2)

All the surface mounted components on the board are loaded using reflow process. The

Gerber files and the BOM file are sent to the Green circuits for the fabrication of the board with

the following notes in a text file:

Board Out l ine . gdo Board Out l ine f o r r e f e r e n c e

EtchLayer1Top . gdo Top S igna l Layer

EtchLayer2 . gdo S igna l 2

EtchLayer3 . gdo S igna l 3

EtchLayer4 . gdo S igna l 4

EtchLayer5 . gdo S igna l 5

EtchLayer6 . gdo S igna l 6

EtchLayer7 . gdo S igna l 7

EtchLayer8 . gdo S igna l 8

EtchLayer9 . gdo S igna l 9

EtchLayer10 . gdo S igna l 10

EtchLayer11 . gdo S igna l 11

EtchLayer12Bottom . gdo Bottom S igna l Layer

GeneratedSi lkscreenTop . gdo Top S i l k s c r e e n

GeneratedSi lkscreenBottom . gdo Bottom S i l k s c r e e n

41

Figure 3.13: The picture shows the FPGA board and the connected daughter cards together

SoldermaskTop . gdo Top s o l d e r mask

SoldermaskBottom . gdo Bottom so l d e r mask

SolderPasteTop . gdo Top paste mask

SolderPasteBottom . gdo Bottom paste mask

D r i l l F i l e s

ThruHoleNonPlated Non p lated d r i l l s

ThruHolePlated Plated d r i l l s

Contact in fo rmat ion :

Name, Phone number , and emai l address

The first column of these notes points the name of the file while the second column described

the file.

Green Circuits also requested for a pick and place file for loading the components in either

text or excel format. The text format was generated and sent to the Green Circuits.

Figure 3.13 displays the final fabricated board loaded on VC 709 FPGA board.

42

Chapter 4

FPGA Verilog Code Design and

Logic

The Xilinx Virtex-7 FPGA VC709 Connectivity Kit [31] featuring the “XC7VX690T -

2FFG1761C” FPGA is used for the AsAP2 setup with optical interconnect. Figure 4.1 displays a

view of this board.

The VC709 FPGA board uses a USB-JTAG interface to load the bitfile of the desired

verilog program. It can also use a Byte Peripheral Interface (BPI), a Parallel NOR Flash memory,

to store the program, so the program can be reloaded to the FPGA board. The BPI can be used

when the USB-JTAG interface of the board is not connected to a computer via a Universal Serial

Bus (USB). This FPGA board contains two 4 GB Double Data Rate 3 (DDR3) memories running

at 1866 Mbps. These memories can be accessed using internally programmed logic in the FPGA.

This board has four Small Form-Factor Pluggable (SFP)/Enhanced Small Form-Factor Pluggable

(SFP+) cages for optical transceivers which is one of the main reasons for selecting this FPGA

board. A Universal Asynchronous Receiver-Transmitter (UART) to USB Bridge is also available on

the VC709 FPGA board for other signaling purposes such sending and receiving data at slow speed.

Another important feature of this FPGA board is the “Peripheral Component Interconnect

- Express” (PCI-E or PCIe) connection on this board that can be used to connect the system interface

Picoblade to the host computer. Chapter 5 on page 56 describes this feature in more detail. The

Xilinx FPGA board has a FMC connector to connect the AsAP2 daughter card to this board.

Originally, Vivado was used to write, synthesis, place and route (PAR), generate bitfile,

and load the FPGA program into the FPGA, but most of the programs have been transferred to

43

Figure 4.1: The Xilinx Virtex-7 FPGA VC709 Connectivity Kit

run on Xilinx ISE software in the final phases of this projects due to the requirement of PCIe code

to run on ISE for high reliability.

One design decision worth mentioning is the Jumper settings on the daughter card that

allows the FPGA board TDI to be connected to the TDO. Based on Figure 4.2 from the “VC709

Evaluation Board for the Virtex-7 FPGA User Guide” [35] when FMC1 HPC PRSNT M2C B (la-

beled as PRMC on the daughter card) is shorted to ground, switch U27 turns off. Since the TDI to

TDO is already shorted on the PCB board, this connection still stays continuous.

4.1 Architecture and Testing Setup

The desired project has many parts that should be implemented on the FPGA board to

get all the interfaces communicating with each other. This document only discusses the parts that

have already been implemented or are in the testing phase. Figure 4.3 displays all the different parts

for this project.

This chapter focuses on the AsAP2 interface side of the FPGA board while Chapter 5

briefly discusses how the PCIe interface has been brought up and used as a part of this project.

44

Figure 4.2: This schematic displays the TDI/TDO signal connections on the VC 709 FPGA board.

Figure 4.3: Schematic view of the internal architecture of the FPGA board.

45

4.2 Programming and Logic of AsAP2 Interface

In this design the FPGA board communicates to the AsAP2 daughter card through a FMC

connector. The list of all the AsAP2 connections into FMC pins on the FPGA board and into the

corresponding Virtex 7 chip pins for the physical constraint file is shown in Table 4.1.

In order to interface with the AsAP2 chip, two items require close attention. The first item

is the programming interface to program AsAP2 and the second item is the input and output data

interface.

4.2.1 AsAP2 Programmer

In order to program AsAP2, a part of the Block Random Access Memory (BRAM) on

the FPGA has been assigned to hold the AsAP2 program and configuration file. Another part

of BRAM is assigned to hold the run commands sent to the AsAP2 chip. Currently the verilog

code to instantiate both blocks of memory has been written and simulated. The programming

memory block has been written with data width of 64 bits and up to 30K address locations (15 bits

for addressing) of program memory (prog mem instance). The run or compute memory has been

instantiated (prog mem instance) with data width of 64 bits and up to 256 Memory locations (8

bits for addressing). There are three possible ways to modify the information on BRAM for this

project, but only 2 have been implemented so far. The implemented methods are through JTAG

(.coe input file mainly used in testing phases) and the PCIe interface mainly used after testing phase

is done. The PCIe interface is only available to the system interface Picoblade in our system design.

The third possible method that hasn’t been implemented is the use of UART to modify the AsAP2

program and run commands on the BRAM.

For testing purposes, the functionality of the AsAP2 interface has been broken into the

following modes and these are set using the switches on the FPGA board. Changing each switch

position to a state can change this functionality to a state machine. The state transitions can be

done in the order and one function at a time.

Switch 0 : Ca l i b r a t i on == 0 , Run Mode == 1

Switch 1 : Run Mode : Programming == 0 , Compute == 1

Ca l i b ra t i on : S t a t i c Ca l i b r a t i on == 0 , Dynamic Ca l i b ra t i on == 1

Switch 2 : Ca l i b r a t i on :

Dynamic Ca l i b ra t i on : Output Ca l i b ra t i on == 0 ,

Input Ca l i b ra t i on == 1

46

Table 4.1: Connections between the FPGA board pins and the AsAP2 pins.

47

Pushing the center bottom on the FPGA board sends different commands to the FPGA based on

the way these switches are set. These modes are defined in the top.v where the main connections

are connected and the main modules are instantiated. A constant delay has been set for the SPI

and config lines based on Table 3.6 on page 31 in spi delay tap const and spi miso delay tap const

defined as follows:

s p i d e l a y t ap c on s t = { sp i mos i (15 taps) , s p i s e l (15 taps) ,

s p i l o a d (15 taps) , c f g c l k (13 taps) , c f g v a l i d (15 taps)}

s p i m i s o d e l a y t ap c on s t = { sp i m i so (15 taps)}

4.2.1.1 Programmer Logic and Programming

AsAP2 programming logic breaks each instruction or configuration line into 4 chunks of

20 bits to program each AsAP2 processor. As described earlier these chunks are defined as upper

address, lower address, upper data, and lower data. First, the 64-bit line is read from BRAM

programming memory, and then it gets broken into the four different sections described before.

The AsAp programming.v file (prog arb instance) contains the programming logic for the

FPGA board side of the AsAP2 programming and is in charge of sending programming and configu-

ration lines to AsAP2 chip. This code sends lines from both run memory and programming memory

to the AsAP2 chip.

The state machine implemented for this logic contains five states: IDLE, MEMREAD,

MEMDEC, SENDDATA, and WAIT.

The IDLE state is the initial state and no action is done in this state until the start signal

get set high (switch 0 in the FPGA is set to Run Mode, and the center push button is pushed).

Then the state changes to MEMREAD. In the MEMREAD state depending on the position of the

switch 1 either lines from programming memory (switch 1 in programming) are read or lines from

the run memory (switch 1 in compute) are read. Figure 4.4 displays this state machine.

After reading a line from either BRAM (program or run memory), the state changes to

MEMDEC to decode the line. As mentioned earlier each instruction or config gets broken into four

chunks. Four different sections are broken according to the following line where dout is the 64 bits

output line from either BRAM and addr data buf holds the four chunk of the line in one 80-bit

location.

addr data buf = {UPPERADDRESS BITS, 15 ’ h0 , dout [6 0 : 5 8] ,

LOWERADDRESS BITS, dout [5 7 : 4 0] , UPPERDATA BITS, RESET BIT ,

48

Figure 4.4: State machine view of the programmers logic .

dout [3 4 : 1 8] , LOWERDATABITS, dout [1 7 : 0] } ;

and the following are constant values:

UPPERADDRESS BITS = 2 ’ b00

LOWERADDRESS BITS = 2 ’ b10

UPPERDATA BITS = 2 ’ b01

LOWERDATABITS = 2 ’ b11

RESET BIT = 1 ’ b0

The next state after decoding is either IDLE where 64 ones has been read, MEMREAD where

64’hBFFFFFFF FFFFFFFF has been read to display a cold reset, WAIT where 64’h7FFFFFFF

FFFFFFFF has been read after a config program has been loaded and should finish running, or

SENDDATA where the 4 chunks of data get sent to the AsAP2 chip.

In the WAIT state, a counter with minimum width of 8 bits counts up until it reaches a

maximum value set by MAX WAIT (default set to 250) running at the SPI clock frequency. This

wait is only due to some config programs run on core before running the main program, so they can

set some memory values before the main program starts. The default value for this wait is set to

49

250 since the same 8-bit counter used in SENDDATA state is used, and the total of 256 values has

been rounded to 250 for simplicity. This state gets invoked after a delay command is read from the

BRAM.

In the SENDDATA state, a counter counts up to 197 while the 4 chunks of data get sent.

The following describes the state of each signal related to the counter value.

The shift en signal gets set when the counter is between the intervals of [2, 22), [42, 62),

[82, 102), [122, 142), [162, 182) where ‘[’ or ‘]’ represent inclusion, but ‘)’ and ‘(’ represent exclusion.

Bits start getting shifted out to spi mosi after two spi clk clock cycles after the shift en gets set to

one.

The cfg clk signal is low when the counter is between the intervals of [3, 23) , [43, 63), [83,

103), [123, 143), [163, 183) while the rest of time this value is set to high.

The spi load signal gets set high only when the counter is at 24, 64, 104, 144, and 184.

The cfg valid signal gets set high when the counter is at 22, 23, 62, 63, 102, 103, 142, 143,

182, and 183.

Finally, spi sel signal gets reset to low when counter is in the decimal sets of [2, 24), [42,

64), [82, 104), [122, 144), and [162,184) and set back high for any other counter value.

The maximum value that the counter counts up to is 197. Each chunk that gets transmitted

to the AsAP2 chip is 20 bits and requires 40 cycles to get transmitted. During the first 20 cycles the

cfg clk signal is low while the data get shifted in. then cfg clk goes back high to latch the data for the

next 20 cycles (The second 20 cycles can be reduced after complete test of correct functionality of the

connection). To send 4 chunks of data it requires 160 cycles, but there is an additional transmitted

chunk that gets discarded just to make the program line get stored in AsAP2 chip, so a total of

200 cycles is required. Since the counter starts from zero, the maximum value is 199 counter values.

For every 4 chunks and the extra 1 chunk, The state machine must go through MEMREAD and

MEMDEC once. Therefore two more cycles have been reduced from 199 counter values resulting in

197 maximum counter values. Finally the values and intervals set for different signals are based on

AsAP2 design. Figure 4.5 displays these signals at different counter values.

4.2.1.2 Simulation

The prog arb is an instance of AsAp programmer module. The prog arb instance has been

simulated for correct operation using three verilog modules from the AsAP2 verilog code so far. The

spi slave.v, cfg unpack.v, and cfg glue.v have been used to check the input and unpack behavioral

50

Figure 4.5: The SPI and config signal behavior at different counter values in the SENDDATA state.

functionality of the code.

In this simulation, all of the stages and the final results of the program were verified.

4.2.2 Input and Output Logic

The “input and output group” logic used in this context are not necessarily the direction

of the signal, instead the term “input and output group” to a collection of signals responsible ore

sending and receiving data. For example, the signals that are called AsAP2 input group contain 16

data signals, one clock, and one valid signal entering the AsAP2 chip, in addition to a request signal

exiting the AsAP2 chip. These signals are all entering or exiting the FPGA FMC connector in the

LVDS standard format, but the length of the signals are not identical in each group. Therefore all

of these signals must be delayed to ensure the data arrive simultaneously at the receiver.

Due to different clock domains between the AsAP2 chip and the FPGA board clock, dual

clock FIFOs are used to synchronize the transferred data between the two regions. These FIFOs

are designed with overflow locations. When the request signal has gone low, data in transit can

occupy these locations. At any time, multiple data values can be transmitted on the same wire. By

the time the transmitter finds out that the request signal has gone low many data values may get

51

transmitted to the receiver, and this may result in data loss without any spare space in the FIFOs,

so enough space is required to store those values.

4.2.2.1 Input Logic and Programming

Input logic group is managed in two different cases:

1. Static Delay Logic with Dynamic Input Ports

The static delay logic (asap input buff instance) is implemented in the input buffers.v file, and

it mostly contains the buffers and the delay block.

The static delay tab values are as follows, they get loaded into the delay block by setting the

switch 0 to calibration mode and switch 1 to static calibration mode then pushing the center

push button.

i n da t a d e l a y t ap c on s t = { i n data [1 5] (2 1 taps) ,

i n data [1 4] (2 0 taps) , i n data [1 3] (1 8 taps) ,

i n data [1 2] (1 8 taps) , i n data [1 1] (1 7 taps) ,

i n data [1 0] (1 6 taps) , i n data [9] (1 5 taps) ,

i n data [8] (1 3 taps) , i n data [7] (1 1 taps) ,

i n data [6] (1 0 taps) , i n data [5] (9 taps) ,

i n data [4] (1 2 taps) , i n data [3] (1 0 taps) ,

i n data [2] (9 taps) , i n data [1] (8 taps) ,

i n data [0] (6 taps)}

i n r e qu e s t d e l a y t ap c on s t ={ i n r e qu e s t (14 taps)}

i n v a l i d d e l a y t a p c o n s t = { i n v a l i d (13 taps)}

2. FIFO Logic

The FIFO (asap in arb instance) is interfaced in input arbiter.v file. The dual clock FIFO

consists of 512 locations, each with a data width of 16 bits.

4.2.2.2 Output Logic and Programming

Output logic group is managed in two different cases:

1. Static Delay Logic with Dynamic Input Ports

2. FIFO logic

52

The static delay logic (asap output buff instance) is implemented in the output buffers.v

file, and it mostly contains the buffers and the delay block.

The static delay tab values are as follow. They get loaded into delay block by setting the

switch 0 to calibration and switch 1 to static calibration then pushing the center push button.

ou t da t a de l ay t ap con s t = { out data [1 5] (1 9 taps) ,

out data [1 4] (1 7 taps) , out data [1 3] (1 8 taps) ,

out data [1 2] (1 6 taps) , out data [1 1] (1 6 taps) ,

out data [1 0] (1 5 taps) , out data [9] (1 8 taps) ,

out data [8] (1 2 taps) , out data [7] (1 3 taps) ,

out data [6] (1 1 taps) , out data [5] (1 1 taps) ,

out data [4] (1 2 taps) , out data [3] (1 1 taps) ,

out data [2] (8 taps) , out data [1] (9 taps) ,

out data [0] (7 taps)}

ou t r e qu e s t d e l a y t ap c on s t = { ou t r eque s t (15 taps)}

ou t v a l i d d e l a y t ap c on s t = { ou t va l i d (13 taps)}

The FIFO (asap out arb instance) is interfaced in the output arbiter.v file. The dual clock FIFO

consists of 512 locations, each with a data width of 16 bits.

4.2.3 Dynamic Delay (Not Verified)

The dynamic delay logic is used to dynamically increase the delay taps on input or output.

This functionality starts when switch 0 is set to calibration, and switch 1 is set to dynamic calibration.

This dynamic delay logic (dynamic delay arb instance) is implemented in the dynamic delay arbiter.v

file.

The input group dynamic taps setting starts when switch 2 is set to input calibration and

the center push button is pushed. The output group dynamic taps setting starts when switch 2 is

set to output calibration and the center push button is pushed.

The logic results the same for both the input and output group using different programs

running on AsAP2 chip.

The dynamic logic block starts after the start command is given. The programming unit

should start sending the run command to AsAP2 afterward using the programming module. Then

this module monitors the outputs of AsAP2 while looking at all data signals and the valid signal

while having the request signal high. As soon as the first high bit arrives this logic starts increasing

53

the delay taps on that signal until all the signals go high or 16 samples are collected after the arrival

of the first high value signal. An example using four signals is provided below.

Example : Sampled data on each output s i g n a l

s i g n a l 1 : 00001110000111 (de lay tap i n c r e a s e o f 5)

s i g n a l 2 : 00000011110000 (de lay tap i n c r e a s e o f 3)

s i g n a l 3 : 00000111100000 (de lay tap i n c r e a s e o f 4)

s i g n a l 4 : 00000000011110 (de lay tap i n c r e a s e o f 0)

In order to have this logic set the taps on the output group of AsAP2, AsAP2 gets a program

to generate a constant output of 0xFFFF. The program has an offset feature to move the output

processor producing the output stream from (12, 0) to (12, 11) as shown on the right side of Figure 2.1

on page 10.

In order to have this logic set the delay taps of the input group, a different program should

be loaded into the AsAP2 chip. This program streams the inputs coming to the AsAP2 chip to the

corresponding output of the AsAP2 chip as a straight pipe through. This pipe through can get offset

to assign different input delay values for different input processors. For example, the pipe can input

on processor (0,6) and pipe the data to processor (12,6) by passing through all the intermediate

processors and then arriving at the FPGA board and the dynamic delay logic.

For a complete output delay tap calculation two different inputs should be fed into the

AsAP2 chip in two different runs. The first run inputs the following stream

0

0

0

0

0

0

0

65535 // a l l 1 ’ s j u s t to match

0

0

0

0

0

54

0

0

This input sets the delay on all the inputs except the valid signal. This is done this way, so the input

of the AsAP2 chip accepts all the combinations of the ones even if they arrive earlier or later than

the valid signal for the actual group of ones. After the first run is done, the second input should be

sent to the AsAP2 input to set the delay on the valid signal, and since the taps roll over after 32

taps the valid signal gets its new value after this run. This run may be repeated if the delays are

not set in the first run. The input to the second run is as follows:

65535 /∗ a 0xFFFF ju s t to match ∗/

0

0

0

0

0

0

0

0

0

0

0

0

0

0

In this case, all the signals arrive after the valid signal arrives, otherwise the valid signal gets delayed

until it rolls over and becomes the shortest delay. It must be noted that the valid signal should roll

over 31 taps for this to work, and that is the main reason this may run multiple times. The first

input delays the valid signal the most, so it rolls over before any other signal.

4.2.4 Temporary Arbitration

The temporary arbitration logic (tmp arb instance) is written temporarily in the verilog

file called temporary arbiter.v only to connect the PCIe to the AsAP2 inputs and outputs. This

55

code must be modified with the real arbitration interconnect. This can be replaced with an all-to-all

crossbar, or any other interconnection design.

4.3 Future Work

The work done on the FPGA verilog code has not been completely tested on the FPGA

board and requires further improvement. The additional interfaces such as SATA, DDR3, SFP, and

the UART must be implemented in addition to the current arbiters. All these modules should be

connected using an interconnect technique with a central control system such as Micro Blaze running

a higher-level program.

56

Chapter 5

PCIe Bring up and Host Data

Interface

One of the important interfaces required for this project is the PCIe interface. The Xilinx

FPGA board provides a simple interface for PCIe on the FPGA side, but for Direct Memory Access

(DMA) on the host system and high-speed data transfer, a more advance design is required.

Xillybus [43] already designed this interface for previous versions of Xilinx FPGA boards,

but it hadn’t been tested for the FPGA boards with the Virtex 7 chip.

5.1 Bring up and Hardware

Xillybus provided the code and test benches while they needed someone to test the code on

a Virtex 7 FPGA board since they didn’t have a Virtex7 FPGA board available for testing purposes.

A computer case large enough to fit the FPGA board had to be found as well. A computer meeting

the requirements was purchased. The Fedora operating system that the Xillybus software was tested

on was installed on the computer in order to eliminate potential software problems. This version

was Fedora 19.x86 64 with 3.13.9 linux kernel version.

Installing the FPGA board in the computer requires close attention to make sure all con-

nections on PCIe are connecting since in some cases this connection does not connect due to a poor

design of the metal brackets on the FPGA board after getting screwed into the computer case. In

order to prevent this issue, either the case screw shouldn’t be tightened completely, or an extension

PCIe cable should be used.

57

Figure 5.1: Xillybus error message when the FPGA board is incorrectly installed

When the Xillybus code is run and the FPGA board is incorrectly installed, the message

shown in Figure 5.1 is displayed.

5.2 Xillybus IP Core

The Xillybus IP core only supports the ISE environment. Figure 5.2 from the xilly-

bus getting started xilinx.pdf [44] document provides a schematic view of this environment. As

shown on this figure, there are two FIFOs available on the FPGA side of this core, one for input to

the FPGA board, and the other for the output from the FPGA board. There are two sets of these

kind of FIFOs, one with 32-bit data width and the other with an 8 bit data width. In this project

implementation the 8-bit FIFO is replaced with a 8 to 16-bit and vice versa data width dual clock

FIFO in order to interface the 16-bit data interface of the AsAP2 chip with the 8-bit interface of

the Xillybus code. The 32-bit FIFO interface used for reprogramming is also replaced with a dual

clock FIFO with a 32 to 128-bit data width and a 128 to 32-bit data width interface in this project

since the memory interface is required to be more than 64 bits while the Xillybus Interface is only

32 bits.

The 32-bit interface flips the order of the bytes transferred between the host and the FPGA

board in the 32-bit packet interface in a way that a 32-bit hex value of 0xDEAD BEEF arrives to

58

Figure 5.2: The schematic view of Xillybus internal design

the other side as 0xEFBE ADDE. This change happens in both transfers from the FPGA board to

the host and the vice versa.

In the event the design doesn’t meet timing based on “Xillybus Getting Started Xilinx”

PDF document, the “placer cost table figure” (seed generator) must be modified until the design

meets timing. This is due to an incorrect initial guess done by ISE as described in this document.

This document also explains that “placer cost table figure” is available in the Process Properties

of MAP option when viewed in Advanced View. The number in this field can change to any other

number that hasn’t been tested previously.

After programming the FPGA board with Xillybus code, the system with the PCIe con-

nection must be restarted to have the Xillybus drivers installed.

5.3 Linux

After loading the Xillybus IP core onto the FPGA board that is installed in the host

computer and restarting the host computer, the drivers are loaded and the PCIe connection can

be detected. The following command can be used to check the PCIe connection (More details are

available in “Getting Started with Xillybus on a Linux Host” [45] PDF files):

$ l s p c i −v

After running this command the list of all the available PCI connection is displayed. A

message similar to the following inside this list shows a connection to the Xilinx FPGA board through

PCIe.

0 2 : 0 0 . 0 Unassigned c l a s s [f f 0 0] : X i l i nx Corporat ion Device ebeb (rev 08)

Subsystem : X i l i nx Corporat ion Device ebeb

Flags : bus master , f a s t devse l , l a t ency 0 , IRQ 47

59

Memory at f3200000 (64−bit , non−p r e f e t chab l e) [s i z e =128]

Cap ab i l i t i e s : <ac c e s s denied>

Kernel d r i v e r in use : x i l l y b u s p c i e

After the connection has been made, the following files get added to the /dev/ directory

of the system:

1. xillybus mem 8 : Reading from and writing to xillybus mem 8 is used to directly map between

the two memories, but is not currently used in this project since other programs have provided

all the required functionality.

2. Xillybus read 32 :The xillybus read 32 file is used to read from the 32 bit Xillybus PCIe FPGA

FIFO

3. Xillybus read 8 : The xillybus read 8 file is used to read from the 8 bit Xillybus PCIe FPGA

FIFO

4. Xillybus write 32 : The xillybus write 32 is used to write to the 32 bit Xillybus PCIe FPGA

FIFO

5. Xillybus write 8 : The xillybus write 8 is used to write to the 8 bit Xillybus PCIe FPGA FIFO

In order to test a simple connection while a loop back program is loaded in the FPGA

board, the following two commands can be used to read what has been typed in one terminal. The

commands should be run in separate terminals

In Terminal 1:

$ cat /dev/ x i l l y b u s r e a d 8

In Terminal 2:

$ cat > /dev/ x i l l y b u s w r i t e 8

When using these commands, the first terminal displays what has been entered into the

second terminal after pressing “Enter” on the keyboard. For more advanced test programs, both,

“Getting started with Xillybus on a Linux host” [45] and, “Xillybus host application programming

guide for Linux” [46] can be found on Xillybus website.

60

Chapter 6

Host Computer Programming

Chain

The system in charge of programming all the FPGA boards as well as sending the data to

the system interface Picoblade is considered as the host computer. This system should be able to

program the FPGA board and generate the required binary data to program the AsAP2 chip. This

system should also send and receive data to and from the AsAP2 to be processed.

The host system requires being big enough to be able to fit the FPGA board connecting to

the host computer through PCIe while the AsAP2 daughter card is connected to the FPGA board

using the FMC connector. This is important since the FPGA board and the AsAP2 daughter card

did not fit in many computer systems. This section requires a previous knowledge about AsAP2

programming, available in the AsAP2 manual.

6.1 Host Design Interface

There are two main design interfaces implemented on the host system.

The first interface describes the host programming and the programs used to convert a

simple assembly code to a binary or FPGA readable format.

The second interface describes the host input and output interfaces to generate the desired

binary data inputs from the human visible format or convert the binary outputs to human visible

format to be evaluated.

Most of the programs written on the host system are in Perl and C programming language

61

while there are parts that haven’t been modified, but considered as a part of the design interface

and are written in Python.

6.2 Host Programming Interface

In the old interface, the assembly code gets processed through a python code named

assem.py and gets converted to ASCII binary format then these outputs are fed to a C program

named aprog to get converted to binary format and get loaded to the FPGA board using aprog.

The new interface can be broken into three different categories of JTAG, PCIe, and UART,

but since the UART has not been implemented this part is not covered in this chapter. The first

method described uses the JTAG to load the AsAP2 programming code into the FPGA BRAM.

The second method uses the PCIe connection to send the AsAP2 program to the BRAM on the

FPGA board. The second method is mostly used after the testing phase of the FPGA program is

done and is only used by the system interface Picoblade.

6.2.1 First Host Programming Interface Method

The first programming method is to generate and send the AsAP2 programming code

using the JTAG. In order to do this the AsAP2 programming code should go through the interface

shown in Figure 6.1. This interface assumes that the code has been written in the pseudo assembly

format used in the simulators that is in .cpp extension format. This program gets converted to

unoptimized assembly using a converter program. A scheduler program can run on this code to add

all the required optimizations to this program. After optimization, reducing the unrequired DMEM

allocations using a program called null remover can further optimize the resulted code by register

renaming. The output of the null remover can be converted back to the simulator format with .cpp

extension to be simulated again, or it can also be given to the assembler to get converted to an

intermediate binary in ASCII format with a .dat extension. Then a program called aprog converts

this code to two files: asap.coe initializes the FPGA program memory, and run.coe initializes the

run memory (hold the run instruction for each processor to start the clock on the processors) on

the FPGA board. Finally these files get used to initialize the FPGA board BRAM memory module

as a part of verilog code to be synthesized, implemented, and converted to a bit stream with .bit

extension to be programmed to the FPGA board.

The next four subsections describe each one of these programs in more details.

62

Figure 6.1: Schematic view of the first host programming interface running on the host system.

6.2.1.1 Programming Converter

The programming converter converts the programs from the simulator format to an un-

scheduled format with .assy extension. It can also convert the programs back from the assembly

format to the simulator format and convert the DMEM variables in a .assy file to original variable

name used in simulator if a conversion table is given. The assembly output of the converter should

be scheduled to ensure correct functionality.

The converter code is written in Perl. The converter can be used using the two methods

described below.

A. The following are the steps used to convert the .cpp format to .assy format

A.1. The following is the format used to invoke the converter:

conve r t e r . p l [−h] [− i] −2a [− s <s o u r c e f i l e >]

[−o <d e s t i n a t i o n f i l e >] [−c <c o n f i g f i l e >]

[−p <processor number >]

[− t <o u t p u t t a b l e f i l e >]

<s o u r c e f i l e > : The f i l e conta in ing C++ source to Brent

s imu la tor code .

<d e s t i n a t i o n f i l e > : The f i l e conta in ing the converted assembly

code .

<c o n f i g f i l e > : The f i l e conta in ing the s imulator ’ s i n i t i a l

b lock .

<processor number> : I t i s the p ro c e s s o r number to be s e t

f o r t h i s f i l e ex : 0 , 0 .

<o u t p u t t a b l e f i l e > : The f i l e conta in ing the conver t i on tab l e .

63

−h : This he lp .

− i : In order to d i sp l ay some i n f o regard ing the program ,

and these i n f o get s to r ed in i n f o l o g .

The Processor number follows the format shown in the next example.

Example: 3,2

There are no spaces between the numbers and the comma. If -p is not given, the default

value is 0,0. The -i tag is used to create a “info_log” to output the number of used

DMEMs in the program

A.2. Check the resulted code and add subtract from the code if required.

A.3. Move the ’Start_Initialization’ and ’End_Initialization’ code to the config file if

the config file doesn’t get specified with -c when running the converter.

A.4. The -t flag specifies the name of the file that saves all the DMEM renaming correspon-

dences.

B. The following are the steps used to convert the .assy format back to .cpp format.

B.1. The following is the format used to invoke the converter:

conve r t e r . p l [−h] [− i] −2c [− s <s o u r c e f i l e >]

[−o <d e s t i n a t i o n f i l e >] [− t < i n p u t t a b l e f i l e >]

<s o u r c e f i l e > : The f i l e conta in ing assembly source f i l e .

<d e s t i n a t i o n f i l e > : The f i l e conta in ing converted s imu la tor

code .

< i n p u t t a b l e f i l e > : The f i l e conta in ing the conver t i on tab l e .

−h : This he lp .

− i : In order to d i sp l ay some i n f o regard ing the

program , and these i n f o get s to r ed in

i n f o l o g .

The input table given using -t must follow the following format:

dmem <dmem address> –> <new variable name>

64

This format is kept if the -t flag with the corresponding output table file was selected

when the assembly code is generated. The DMEMs in comments also turn into the old

variables. this is desired since in simulator there is no concept of DMEM variables.

The conversion from simulator to assembly is possible for the following cases:

1. The assembly/simulator instructions such as rptb, rpt, move, ...

2. All functions/subfunctions become begin <given processor number> ()

3. The end gets inserted automatically before the next function starts.

4. All #defines gets replaced in the code with their corresponding values.

5. All /* */ comments (multi line comments) become // comments (single line comments)

6. All numbers become #numbers ex: 3 —> #3

7. Most C++ instructions become comments in case the assembly code inside them should be

recognized and removed. However, the switch/case instructions should manually be removed

since these constructs aren’t recognized.

8. All output instructions become #output

9. Simple calculations get simplified

Example: 2 ∗ 3 —> 6

10. The start of all hex numbers get converted from 0x to h

11. Negative hex numbers get converted to their corresponding two’s complement hex number in

assembly.

The conversion from assembly to simulator has been verified with simple DMEM replacements. The

following summarizes these conversion capabilities:

1. The converter can remove end and begin lines and uncomment any ’function’ or ’subfunction’

in the code.

2. The converter can reinsert Start_Initialization and End_Initialization from another

file back into the simulator file.

3. The converter calculates the amount of data memory used and outputs this data into the

“info_log” file.

65

4. The converter can convert the converted DMEMs variables back to their original variable

names.

6.2.1.2 Scheduler

There was a scheduler written in Perl with limited functionality for AsAP2 assembly code.

This program wasn’t complete. This code was improved upon and debugged, so it could be added

to the AsAP2 tool chain. Currently this code is still in Perl, but with additional features such as

forwarding.

Since AsAP2 is a pipelined system, all instructions aren’t executed in a single clock cycle.

In order to prevent data and control hazards, No OPeration (NOP) instructions must be explicitly

included in the assembly code. Due to inefficiency of using NOP instructions, AsAP2 architecture

can also use forwarding logic to reduce the number of the NOP instructions in its architecture. The

forwarding has been implemented using forwarding registers referred to as bypass registers (written

in assembly code as regbp[1-3]). The scheduler explicitly includes these bypass registers as source

locations in the assembly code to reduce NOP instructions.

In order to use the scheduler outside the makefile tool chain, the following steps should be

taken:

1. Write a program ignoring all NOPs and regbps. The program can be transferred from the

simulator format to assembly as described before.

2. Run the scheduler with the command below. The instruction src.h and instruction dest.h

should be located in your current directory with sched.pl and the .assy file in order to schedule

the program.

sched . p l [−h] [− t] [−nn] [−nc] [−ni] [−c] [−na] [− s f <s ou r c e s f i l e >]

[−df <d e s t i n a t i o n s f i l e >] [− s <input assembly f i l e >]

[−o <output assembly f i l e >]

<s ou r c e s f i l e > : Arch i t e c tu r e dependent f i l e d e f i n i n g source

operands and pipe s t ag e s f o r i n s t r u c t i o n s .

<d e s t i n a t i o n s f i l e > : Arch i t e c tu r e dependent f i l e d e f i n i n g

d e s t i n a t i on operands and pipe s t ag e s f o r

i n s t r u c t i o n s .

<input assembly f i l e > : The f i l e conta in ing unscheduled code .

66

<output assembly f i l e > : The f i l e conta in ing scheduled code .

−h : Scheduler shows the help and i n s t r u c t i o n f l a g d e f i n i t i o n .

−t : Test mode (f o r debugging) s chedu l e r shows extra t e s t i n g

outputs .

−c : Scheduler d i s p l a y s comments s im i l a r to −t , but i t d i s p l a y s

d i f f e r e n t in fo rmat ion .

−na : With t h i s f l a g , s chedu l e r doesn ’ t c on s i d e r the DMEM

dependenc ies between address g ene ra to r s (ag or agpi) and

address po i n t e r s (aptr) with each other or any DMEM

addre s s e s . The programmer must make sure the re are no

dependencies , and i f the r e are , programmer should manually

add NOPs a f t e r running the s chedu l e r .

−nn : Scheduler doesn ’ t add nu l l to a l l unused DMEM operands .

The nu l l i n s e r t i o n mostly happens a f t e r forward ing i s added

to the code , and the DMEM i s not used in the code again to

reduce the DMEM usage , but t h i s f l a g d i s a b l e s t h i s f e a t u r e

f o r f a s t e r s chedu l ing run time .

−nc : Scheduler doesn ’ t show user comments in the scheduled

output code . These comments are in the body o f the code

wr i t t en by the programmer , and with −nc these comments get

removed from the body o f the output code a f t e r s chedu l ing .

−ni : Scheduler doesn ’ t c r e a t e the warning l o g s . This f l a g

f o r c e s the s chedu l e r to surpas s i t s outputs . This f l a g i s

mostly used f o r t e s t i n g purposes .

The following is an example on how to run the scheduler code.

$ pe r l 5 . 16 sched . p l −s f i n s t r u c t i o n s r c . h −df i n s t r u c t i o n d e s t . h

−s t e s t . assy −o t e s t o u t . assy

Or just simply

$ sched . p l −s t e s t . assy −o t e s t o u t . assy

(I f i n s t r u c t i o n s r c . h and i n s t r u c t i o n d e s t . h are in the same

67

d i r e c t o r y as sched . p l)

Also “sched.pl -h” can be typed for help and usage information.

3. Double check all the NOPs and add or subtract them as desired.

It is worth noting that all the instructions that are not supposed to be modified are inside

#pragma notouch blocks, so the scheduler doesn’t touch them.

Example: The original input is as follows:

begin 0 , 0 (ch ipout ea s t)

#output ea s t

add dmem 1 dmem 2 dmem 3 // nop3

#pragma notouch

add dmem3 dmem 4 dmem 1 // nop3 Hazard

sub dmem 6 dmem 7 dmem 3

add dmem 5 #2 #3

#endpragma

add dmem 6 dmem 3 dmem 1 // nop3

sub dmem 3 dmem 6 dmem 1

end

The output produced by scheduler is as follows:

begin 0 , 0 (ch ipout ea s t)

#output ea s t

add dmem 1 dmem 2 dmem 3 nop3 // nop3

#pragma notouch

add dmem 3 dmem 4 dmem 1 //nop3 Hazard

sub dmem 6 dmem 7 dmem 3

add dmem 5 #2 #3

#endpragma

add dmem 6 dmem 3 dmem 1 nop3 // nop3

sub dmem 3 dmem 6 dmem 1

end

The section between #pragma notouch and #endpragma doesn’t get touched by the sched-

uler. As it is shown in the previous example, there is a Hazard inside the no touch area that hasn’t

68

been fixed, but all the other dependencies outside of the no touch area has been consider. Even the

dependencies from the outside of no touch block to the inside of no touch block are considered. The

notouch section cannot be a part of the rptb block - however, it is okay for an entire rptb block to

be included in a no touch section. It is also okay to branch in or out of a no touch section.

In order to run the scheduler code using the makefile the following command is used:

$ make schedu le TEST=t e s t \ name ARG=”− f l a g 1 − f l a g 2 . . . ”

The ARG is optional, and test name is the name of directory that the test name.assy is located in.

This usage is shown in the following examples:

Example1 : The f o l l ow i n g can be used to get the help output o f the

s chedu l e r :

$ make schedu le ARG=”−h”

Example2 : The f o l l ow i n g can be used to run schedu l e r with −na f l a g on

t e s t 1 . assy i n s i d e t e s t 1 d i r e c t o r y :

$ make schedu le TEST=te s t 1 ARG=”−na”

Each time a file gets scheduled using make, a backup of the original input file gets created

in the same directory with the naming convention as follows:

<file name>.orig#.assy

Where the # represent a number. The make command can store up to 100 backups. In

order to return to previous generated versions of the scheduled file the following command can be

used:

$ make undo schedule TEST=testname VER=vers ion number

The version number can be a number between 0 and 100, and all the future versions after

that version get deleted. The selected version replaces the scheduled version.

The following is a list of data hazards the scheduler can correctly handle, each have been

verified:

DMEM −− DMEM −−−> 3

DCMEM −− DCMEM −−−> 3

DMEM −− APTR −−−> 4

DMEM −− DAG −−−> 4

MAC −− ACC −−−> 1

69

ACC −− OBUF −−−> 1

BR (POST) −−−> 0

BRC −− CONDITIONAL (PRE) −−−> 2

RPT (POST) −−−> 3

RPTB (POST) −−−> 3

OBUF DIR (POST) −−−> 1

MIN/MAX −− DCMEM 24 −−−> 3

MIN/MAX −− BRMS1, 2 −−−> 2

BR(BF) −− PCPTR −−−> 3

Appendix C on page 126 has a complete list of all the fixes to the previous version of the

scheduler.

The list below shows a list of possible future improvements on the scheduler:

1. The scheduler schedules the code based on standard conditional mode. The dependency of

the extreme conditional mode must be implemented. The following displays an example of the

issue when using the extreme mode:

movi mask h f f f f cxa

sub dmem 1 #3 #2 cxs // nop3

add dmem 2 dmem 1 #1 cxt //nop2

sub dmem 2 dmem 1 #1 cx f // nop3

move obuf dmem 2

It must output the following:

movi mask h f f f f cxa

sub dmem 1 #3 #2 nop3 cxs // nop3

add dmem 2 dmem 1 #1 nop2 cxt //nop2

sub dmem 2 dmem 1 #1 nop3 cx f // nop3

move obuf dmem 2

However, the scheduler outputs the following:

movi mask h f f f f cxa

sub dmem 1 #3 #2 nop3 cxs // nop3

add dmem 2 dmem 1 #1 cxt //nop2 <− e r r o r not enough nop in extreme

70

Figure 6.2: Program Performance Effects with Scheduler on different programs

// mode

sub dmem 2 dmem 1 #1 nop3 cx f // nop3

move obuf dmem 2

2. The ibuf and ibufnap ordering is linear, and they don’t switch positions, however the

ibufnaps can switch order between two ibufs. This can be improved by having the first

ibuf switch with the following ibufnaps as long as the first access to the buffer comes as ibuf

and the rest as ibufnap.

3. Optimize across simple blocks by moving blocks around can improve the optimization of the

code.

4. Add the capability of finding the pcptr destination and calculating the dependencies.

5. Add the support for mode/cxa (conditional execution) for an immediate operand calculation

in subc, subch, subcs (when operands are equal), macl, mac, and mach. Also, adding the

support for other values other than immediate operand calculation such as DMEM operands.

6. Add notouch pragma capability to only a part of the rptb block.

71

Figure 6.3: Application improvements after using scheduler on previously unscheduled code.

In order to test the functionality of the scheduler a small Perl program called nop counter.pl

was written to generate the number of NOP instructions per processor, the total instruction count

per processor, the number of nulls inserted per processor, and the total lines for the entire assembly

program. This program can get information in both simulator and assembly format based on the

extension of the file, where .assy is used for assembly and .cpp is used for the simulator input files.

In order to use the nop counter the following command structure should be followed:

nop counter . p l [−wi] [− s <input f i l e >] [−o <output f i l e >]

<input f i l e > : Input f i l e assembly or s imu la tor format .

<output f i l e > : F i l e f o r p r i n t i n g output to .

−wi : This f l a g i s only used f o r f i l e s with the . cpp extens i on . With

t h i s f l a g nop counter counts the number o f NOPs and i n s t r u c t i o n s i n s i d e

72

Figure 6.4: Instruction count for scheduled and unscheduled code on right and percentage of in-
struction improvement on left

the i n i t i a l b lock (i n s t r u c t i o n s between ’ S t a r t I n i t i a l i z a t i o n ’ and

’ End I n i t i a l i z a t i o n ’ code) as we l l as the r e s t o f the code . Without

t h i s f l a g , nop counter doesn ’ t c on s i d e r the in fo rmat ion i n s i d e the

i n i t i a l b lock .

Figure 6.2 displays the different parameter values before and after using the scheduler on some

existing assembly programs. This information is gathered using the nop counter.

Figure 6.3 displays the difference between the scheduled and unscheduled version of different

code.

Finally, Figure 6.4 displays the percentage improvement for the total number of instructions

per program.

6.2.1.3 Assembler

The assembler has not been updated, and the output of this file is kept the same in multiple

.dat files. The output of these files is binary in ASCII format, so that they are human readable.

However, they still must get converted to Xilinx BRAM ASCII initializing format to be programmed

to the FPGA board after getting ordered using the aprog described next.

73

Figure 6.5: Schematic view of the second host programming interface running on the host system

6.2.1.4 AsAP2 programmer (aprog)

The aprog is a C program, and it was written to convert the .dat files outputted from the

assembler to binary format. There have only been some minor changes to this program to produce

the output in coe format (The format used to initialize the FPGA BRAM) instead of binary format.

These changes are such as addition of the procedure of pairlist save coe in pairlist.c file and addition

of the coe file type to filelist.c and main.c file. In order to run this program using the makefile to

generate the coe files the following command is used:

$ make TEST=<t e s t d i r e c to ry name> c o e f i l e

This command first runs a script called makecoe.sh to set the arguments for aprog and then

it runs aprog to generate both the asap.coe and run.coe files.

The run.coe should be loaded in the run memory of the FPGA board, and asap.coe should

be loaded in the program memory of the FPGA board as the initializing data. After the bit files

get generated these data get loaded to the FPGA board using the JTAG connection.

6.2.2 Second Host Programming Interface Method

This interface is described in Figure 6.5 using a flow diagram. This interface is used to

read from a generated .dat file in a specific format and does not contain a higher level programming

capability for human readability or programming since inputs are in binary character format.

The input .dat files for programming contain instructions that are 128 bits long. Each

instruction is stored in hex and has the following format:

[1 2 7 : 127] This b i t s p e c i f i e s whether t h i s i n s t r u c t i o n i s a read or

wr i t e (read == low [zero] / wr i t e == high [one]) .

[1 2 6 : 126] This s p e c i f i e s which memory i s be ing wr i t t en to

(run memory == high [one] /program memory == low [zero]) .

[1 2 5 : 79] These b i t s are always s e t low [zero] .

[7 8 : 64] These are the address b i t s f o r the memories . I t r e qu i r e s

74

a t t en t i on that the run memory can only hold up to 256

i n s t r u c t i o n s whi l e the program memory can hold up to

30K i n s t r u c t i o n s .

[6 3 : 0] These are the data b i t s conta in ing the i n s t r u c t i o n when wr i t i ng

a new i n s t r u c t i o n and ze ro s when read ing an i n s t r u c t i o n

from e i t h e r o f the memories .

Below is an example of code used to read from address 0 to 5 of the run memory:

h4000000000000000 0000000000000000

h4000000000000001 0000000000000000

h4000000000000010 0000000000000000

h4000000000000011 0000000000000000

h4000000000000100 0000000000000000

h4000000000000101 0000000000000000

The “h” character at the beginning of each line specifies these values are hex numbers

without “h” numbers get considered as decimal values.

After the program has been written in the above format, it should get converted to binary

format. The in out converter described in the next section does this conversion.

6.2.2.1 Input and Output Programming Converter

To convert the input program file from ASCII to a binary to be sent to the FPGA board

over PCIe and to convert the BRAM reads from the FPGA board to ASCII, in out converter.pl is

used. This program is written in Perl. The following is how this program can be used:

1. The following command converts the output from the programming and run memory reads

from the FPGA over PCIe to their corresponding 128-bit hex in ASCII representation:

i n ou t c onv e r t e r . p l [−h] [−2d32 −s <input bin f i l e >

−o <output dat f i l e >]

<input bin f i l e > : The f i l e conta in ing . bin source code

<output dat f i l e > : The f i l e conta in ing converted . dat code in 128

b i t chunks

−h : This f l a g shows help and usage o f the program

75

2. The following command converts the files containing the input data or programs in the form

of binary, hex, or decimal characters to their corresponding binary format to be sent through

PCIe to the FPGA board.

i n ou t c onv e r t e r . p l [−h] [−2b −s <input dat f i l e >

−o <output bin f i l e >]

<input dat f i l e > : The input f i l e conta in ing . dat source f i l e .

<output bin f i l e > : The output f i l e conta in ing converted . bin code .

−h : This f l a g shows help and usage o f the program .

3. The following command converts the output from data out explained in Section 6.3.1 to the

corresponding 16 bit hex character representation:

i n ou t c onv e r t e r . p l [−h] [−2d −s <input bin f i l e >

−o <output dat f i l e >]

<input bin f i l e > : The f i l e conta in ing . bin source code to be

conver t e r .

<output dat f i l e > : The f i l e conta in ing converted . dat code in

16 b i t chunks .

−h : This f l a g shows the help and the usage o f the program .

In order to use the makefile to run this code the following commands can be used:

1. The following command can be used to convert the input from hexadecimal values stored in

ASCII format to binary.

$ make TEST=<t e s t d i r e c to ry name> binprog in

2. The following command can be used to convert the output from binary to .dat with hexadecimal

values stored in ASCII format.

$ make TEST=<t e s t d i r e c to ry name> binprogout

6.2.2.2 Stream Run

In order to send the binary program commands to the PCIe an existing program by Xillybus

(The PCIe IP core provider) called streamwrite.c that has slightly been modified can be used to send

the binary program values to the 32 bit PCIe FIFO explained in Chapter 5 on page 56. The following

is the command to run this program:

76

Figure 6.6: Schematic displaying the data interface in and out of the FPGA board using the PCIe
connection

$. / s t reamwrite /dev/ x i l l y b u s w r i t e 3 2 prog in . bin

To receive the binary pogram output from the PCIe, an existing program by Xillybus called

streamread.c can be used. The following is the command used to read from the 32-bit PCIe FIFO

explained more in Chapter 5 on page 56.

$. / streamread /dev/ x i l l y bu s r e ad 3 2 > progout . bin

The streamread program must run before streamwrite to get correct results. Also to make

things easier a makefile command can run these two programs at the same time in the correct order

described below.

1. The following command can be used when the progin.bin has already been generated.

$ make streamrun

2. The following command can be used to convert the .dat progin file to binary format first, and

then run both streamread and streamwrite afterward.

$ make TEST=<t e s t d i r e c to ry name> streamrun

6.3 Host Data Interface

The Data input and output between the FPGA board and the system interface Picoblade

uses the PCIe connection. In order to convert and send the input data and receive and convert the

output data to hexadecimal values stored in ASCII format from the FPGA board, certain steps are

required, which are displayed in Figure 6.6.

In order to send the data to the FPGA board, first the .dat file is converted to a binary

format, then this converted data is sent to the FPGA board. Similarly, the output data from the

PCIe is stored as a binary file, and then it gets converted to a .dat format. The .dat file is in

ASCII format with hexadecimal values.

77

6.3.1 Input and Output Data Converter

For the input and output data converter in out converter.pl (described in Section 6.2.2.1)

is used. The -2d flag is used to convert to a .dat file and the -2b flag is used to convert to a .bin

file.

A makefile command can also be used to make things easier to type (shorter commands).

The following are the makefile commands used to convert between data .bin and .dat files:

1. The following command is used to convert the input data from ASCII to binary:

$ make TEST=<t e s t d i r e c to ry name> bin input

2. The following command is used to convert the output data from binary to .dat in ASCII.

$ make TEST=<t e s t d i r e c to ry name> binoutput

6.3.2 FIFO Run

In order to send and receive the binary data through PCIe to and from the 8 bit FIFO on

the FPGA, a multi-threaded program called “fifo” by Xillybus but modified was used. This program

can be started using the following command:

$. / f i f o <memory a l l o c a t i o n> input . bin > output . bin

A makefile was created and the following commands can be used to run the fifo program

with the memory allocation of 128 MB of memory.

1. The following command can be used if the input.bin has already been generated:

$ make f i f o r u n

2. The following command can first be used to convert the .dat input file to binary format, and

then the fifo program can be run afterwards:

$ make TEST=<t e s t d i r e c to ry name> f i f o r u n

To increase the maximum locked memory size allocated for PCIe DMA to a higher value

than 512 MB, edit the /etc/security/ directory/limit.conf file. The maximum soft limit of the locked

memory size can be changed using the command below. This soft limit can only be increased up to

the hard limit explained previously which is currently at 512 MB. These limits are only for allocation

purposes only.

78

$ u l im i t −Sl <de s i r ed value l e s s than the hard l im i t in bytes>

6.4 Future Work

The second programming method was implemented using only basic hex values in ASCII

format. It is possible to improve this programming method by allowing a more convenient input

format, such as AsAP2 Assembly with some extra commands to describe whether a write or a read

to either BRAMs are being requested.

79

Chapter 7

Battery Powered Supply for

AsAP2

Research was carried out to determine whether an on or off-chip DC-to-DC converter could

be combined with a battery source to provide sufficient power for Integrated Circuits [47]. Methods

for providing various voltages using bulk and boost converters were also researched [48]. Chips have

been designed to use trench capacitors [49] to increase the efficiency while others use interleaved

methods [50] to reduce the area of the DC-to-DC converters while increasing the efficiency. There

has been research for hybrid methods to use a combination of linear and switching convertors [51]

to reduce the area and increase the efficiency on the DC-to-DC converters. All these have shown

that the use of a DC-to-DC converter on die is not possible since the AsAP2 chip is 32.75 mm2 on

65 nm technology [10], and a high efficiency converter is about 0.0042 A/mm2 [49]. This converter

on a 65 nm technology requires an area of 235.10 mm2/A, or 1410.54 mm2for AsAP2 running at full

speed and dissipating 6 A that is 43× bigger than AsAP2 chip. A battery-powered system to power

up the AsAP2 board has been implemented to demonstrate the portability of the design.

This chapter describes a completed project to show the future capabilities of this design.

Prior to this project, the original AsAP2 daughter card and the FPGA board were running on five

different power supply devices, resulting in a large and immobile system. The AsAP2 chip is a low

power chip that can switch to lower voltage levels at a wide rage of clock frequencies, so it can run

using simple batteries.

An off-chip DC-to-DC converter was considered to convert and regulate the output of two

AA or AAA batteries while AsAP2 chip runs at 1 V and 200 MHz to demonstrate low power

80

Figure 7.1: Schematic view of the battery powered demo.

dissipation of the AsAP2 chip.

7.1 Schematics and Components

The schematic view of the voltage converter design can be viewed on Figure 7.1. The

requirement for this design is to produce a 1 V output using minimal number of AA or AAA

batteries. In order to achieve this goal a buck converter was used to convert a 3 V (two 1.5 V

batteries in series) input voltage to a 1 V output voltage. The goal is to provide enough current to

all the power inputs for the AsAP2 chip except for the VDDIO that is sourced by a power supply.

For this purpose Austin Microlynx II SIP [52] power module buck converter was used for power

conversion from 2.4 V – 3 V to a 1 V output while supporting a current up to 6 A. The main reason

for having a range input is that the converter operates at 2.4 V to 5.5 V, but since two AA or AAA

batteries in series generate can output a maximum of 3 V, and this voltage drops over time, the

input range gets limited to 2.4 V to 3 V.

The Austin Microlynx II SIP converter has the following 6 pins:

81

1. ON/OFF: This pin is used with negative logic to turn the DC-to-DC converter on and off.

When this pin is connected to ground (Low), the DC-to-DC converter turns on, and when this

pin is connected to VIN (High), the DC-to-DC converter turns off. In order to implement this,

a 5 KΩ pull up resistor (R1 on Figure 7.1) connects this pin to VIN while a physical switch

pulls this node to ground to turn the device on.

2. VIN: This pin is used to provide the input to the DC-to-DC converter. This pin is connected

to the positive side of the AA or AAA batteries in series (3 V input source). For the purpose

of input decoupling, two 150 µF (C3 and C4 on the schematic) and two 47 µF (C5 and C6 on

the schematic) capacitors are used connecting VIN to ground.

3. SEQUENCE: This pin is used for the case that the DC-to-DC converter should turn on while

following the ramp of another device. This feature is not being used for this demo, so it has

been connected to VIN .

4. GND: This pin gets connected to ground.

5. TRIM: The output voltage gets set based on the value of the resistor connecting this pin to

ground. The output voltage value and the ground-connecting resistor follow Equation 7.1.

Rtrim =

[

21070

vo− 0.7525
− 5110

]

Ω (7.1)

The required resistance for 1 V output is 80 KΩ, so two 40 KΩ resistors are used (R1 and R2

as is shown on Figure 7.1).

6. VO: This pin gets connected to the output decoupling capacitors and the AsAP2 input power

pins. The output decoupling capacitors used are two 150 µF (C1 and C8 on schematic), one

10 µF (C2 on schematic), and one 1 µF (C7 on schematic) capacitor.

Figure 7.2 displays the result after soldering the parts for both the AA and AAA designs.

The DC-to-DC converter turns off when the input voltage is below 2.4 V that limits the

run time of this design the values discussed next.

7.2 Prediction and Results

Before connecting the designed circuit to the AsAP2 daughter board, a simple calculation

was done to calculate the battery run time of the design at 1 V output when AsAP2 chip is running

82

Figure 7.2: AA battery powered DC-DC converter (left) and AAA battery powered DC-DC converter
(right)

at 200 MHz. For this purpose some current measurements where done to measure the current usage

of the AsAP2 chip at 1 V and 200 MHz clock frequency. The following current measurement values

are based on the measurement collected while running a sorting program on the AsAP2 chip when

all supplies are running at 1 V except for VDDIO running at 2.5 V:

VDDIO = 2.5V, I = 0.395A

VDDON = 1V, I = 0.025A

VDDOSC = 1V, I = 0.008A

VDDH = 1V, I = 0.115A

VDDL = 1V, I = 0.000A

In this measurement the batteries only provide energy for VDDON , VDDOSC , and VDDH ,

so the total current required is 0.148A.

According to the AA [53] and AAA [54] Energizer batteries datasheet, A AAA battery at

21 degree Celsius drops from 1.5 V to 1.2 V in 1 hour, assuming it is sourcing a constant current of

250 mA. Again, according to the AAA datasheet the battery drops from 1.5 V to 1.2 V in 6 hours,

assuming it is sourcing 100 mA of current. Based on this information, it can be inferred that a

AAA battery sourcing 150mA takes between 1 to 6 hours to drop from 1.5 V to 1.2 V. Additionally,

it can be concluded that two AAA batteries connected in series sourcing 150 mA takes between

1 to 6 hours to drop from 3 V to 2.4 V. According to the datasheet, a AA battery at 21 degree

Celsius drops from 1.5 V to 1.2 V in 3 hour, assuming it is sourcing a constant current of 250 mA.

Again, according to the AA datasheet the battery drops from 1.5 V to 1.2 V in 15 hours, assuming

83

it is sourcing 100 mA of current. Based on this information, it can be inferred that a AA battery

sourcing 150mA takes between 3 to 15 hours to drop from 1.5 V to 1.2 V. Additionally, it can be

concluded that two AA batteries connected in series sourcing 150 mA takes between 3 to 15 hours

to drop from 3 V to 2.4 V.

The results calculated for a AAA battery were confirmed by connecting the battery powered

circuit to the power inputs of AsAP2 and running the same sorting algorithm used for current

measurements at 200 MHz clock frequency for more than one hour at a 1 V output voltage. This

measurement confirmed the lower bound of the service time for a AAA battery demo to be between

1 and 6 hours.

84

Chapter 8

Conclusion

These documents covered certain aspects of the AsAP2 optical interconnect interface by

mostly focusing on the AsAP2 programming and interconnects. This document first describes the

complete architecture. Then it focuses on the AsAP2 chip interface. It describes how a new daughter

card was designed, and how the FPGA interfaces all the components with each other. Then it

describes the host connection and programming interfaces. The PCIe connection and a simple

battery powered demo are explained last.

The design has not been finalized since the daughter card has not fully been tested for func-

tionality, and also the verilog code for programming and AsAP2 inputs and outputs have not been

completely tested. The second method of programming still requires more work as well. However,

many steps in this project have been finalized and completed such as the design of the daughter

card and the PCIe interface.

8.1 Future Work

The steps required to finish this project are to implement all of the other interfaces such as

optical interconnect, DDR3 interface, SATA interface, UART interface, and a central interconnect

using a Micro Blaze in addition to testing and verifying the current stage of the completed work.

In the further future this project can be converted to a design that doesn’t require a power

hungry FPGA board. The setup could be performed using a daughter card connected to a Solid

State Drive (SSD) while everything is running on batteries at very low power as shown in Figure 8.1.

This design can have the DRAM memories, the optical modules, and the administrator unit all on

the same PCB connecting to other PCBs in an optical network.

85

Figure 8.1: The future view of the designed project

86

Appendix A

Daughter Card Signal Layers

Gerber Files

The list of Gerber views are as follow:

• BoardOutline.gdo Board outline for reference

• DrillDrawingThrough.gdo Drill drawing

• DrillDrawingThrough holes Through hole drill drawing

• EtchLayer1Top.gdo Top signal layer

• EtchLayer2.gdo Signal 2

• EtchLayer3.gdo Signal 3

• EtchLayer4.gdo Signal 4

• EtchLayer5.gdo Signal 5

• EtchLayer6.gdo Signal 6

• EtchLayer7.gdo Signal 7

• EtchLayer8.gdo Signal 8

• EtchLayer9.gdo Signal 9

• EtchLayer10.gdo Signal 10

87

• EtchLayer11.gdo Signal 11

• EtchLayer12Bottom.gdo Bottom signal layer

• GeneratedSilkscreenBottom.gdo Bottom silkscreen

• GeneratedSilkscreenTop.gdo Top silkscreen

• SoldermaskBottom.gdo Bottom soldermask

• SoldermaskTop.gdo Top soldermask

• SolderPasteBottom.gdo Bottom paste mask

• SolderPasteTop.gdo Top paste mask

• ThruHoleNonPlated Non plated drills

• ThruHolePlated Plated drills

88

Figure A.1: Board outline for reference

89

Figure A.2: Drill drawing

90

Figure A.3: Through hole drill drawing

91

Figure A.4: Top signal layer

92

Figure A.5: Signal 2

93

Figure A.6: Signal 3

94

Figure A.7: Signal 4

95

Figure A.8: Signal 5

96

Figure A.9: Signal 6

97

Figure A.10: Signal 7

98

Figure A.11: Signal 8

99

Figure A.12: Signal 9

100

Figure A.13: Signal 10

101

Figure A.14: Signal 11

102

Figure A.15: Bottom signal layer

103

Figure A.16: Bottom silkscreen

104

Figure A.17: Top silkscreen

105

Figure A.18: Bottom soldermask

106

Figure A.19: Top soldermask

107

Figure A.20: Bottom paste mask

108

Figure A.21: Top paste mask

109

Figure A.22: Non plated drills

110

Figure A.23: Plated drills

111

Appendix B

Schematic View of the PCBoard

Desgin

112

Figure B.1: Schematic design sheet index

113

Figure B.2: AsAP2 bank 0 (GND)

114

Figure B.3: AsAP2 bank 1 (I/O), terminations, external clock

115

Figure B.4: AsAP2 bank 1 (I/O) continued

116

Figure B.5: AsAP2 bank 2 (config), terminations, testout header

117

Figure B.6: AsAP2 bank 2 (config) continued

118

Figure B.7: AsAP2 bank 3 (VDDH), decoupling capacitors

119

Figure B.8: [AsAP2 bank 4 (VDDL), decoupling capacitors

120

Figure B.9: AsAP2 bank 5 (VDDON), decoupling capacitors

121

Figure B.10: AsAP2 bank 6 (VDDIO), decoupling capacitors

122

Figure B.11: AsAP2 bank 7 (VDDOSC), decoupling capacitors

123

Figure B.12: AsAP2 bank 8 (analog)

124

Figure B.13: Power inputs

125

Figure B.14: FMC connector, SATA connector

126

Appendix C

Scheduler Code Changes and

Improvements

1. The rptb/rpt inline NOP3 is fixed.

2. The rptb, block size is fixed.

3. The rpt/rptb makes separate basic blocks to fix and prevent the entrance of outside of

rpt/rptb instruction into the rpt/rptb block.

4. The no comment capability is added.

5. Some issues with spaces in DMEM/DCMEM addresses are fixed.

Example: dmem5 —-gets converted to—-> dmem 5

6. The issue with spaces in begin is fixed.

Example: begin 0 , 0 or begin 0,0 are recognizable now.

7. The rptb, block size increase or decrease due to insertion of NOPs is added.

8. The Read After Read (RAR) dependency for ibuf and ibufnap instruction is added.

9. The rpt/rptb dependency to the instruction after rpt/rptb with a new line of NOP is fixed.

Example:

rpt 5

add dmem 2 dmem 3 dmem 4

sub dmem 5 dmem 2 dmem 2

127

becomes :

rpt 5 nop3

add dmem 2 dmem 3 dmem 4

nop nop2 // NOP in s e r t e d to r e s o l v e dependency

sub dmem 5 dmem 2 dmem 2

10. The issue with pcptr in branch labels is fixed.

11. The issue with label spacing between two instructions and their correct calculated dependencies

is fixed.

12. The brms1 mm.2 and brms2 mm.2 in instruction src.h is changed to brms1 mm.3 and brms2 mm.3

since they put extra NOP for min and max before brms1 and brms2.

13. The DCMEM 18, NOP count to an instruction with obuf is fixed.

14. The NOP count between min/max and brms1/2 is fixed to the correct value.

15. The capability of having labels starting with numbers is added.

16. The issue with not considering the rpt/rptb delay from instruction before rpt/rptb block to

instruction inside rpt/rptb block is fixed.

17. The issue of in between block dependency and the dependencies with the after first instruction

of the second block is fixed.

18. The notouch part is fixed, so it can be printed to the output. However, it still doesn’t support

branches into notouch section. The notouch can’t be inside a rptb block.

19. The three NOP delays after a branch with bf and a read from pcptr are fixed.

20. The support of cx_mode is increased to more than just move immediate (movi). Now it supports

more immediate instructions such as some immediate add and sub instructions, and also all

immediate move and logical expressions. Also immediate mult and macc has been added

to the supported list. Also instead of terminating the program scheduler prints a comment

mentioning that it assumes extreme mode in the unsupported case.

21. The inline NOP removal in notouch section is fixed.

128

22. The NOP instruction removal from the code is added since existing NOP instructions caused

issues after the label.

23. The bug of not being able to have NOP instruction in notouch block is fixed.

24. The issue of not being able to have rpt/rptb in notouch section is fixed. A complete rpt or

rptb block in notouch section can be added (notouch section still can’t exist as a part of a

rptb block)

25. The dependencies and NOPs from previous block to a notouch block is fixed according to the

NOPs given in the notouch code.

26. The capability of having a branch in notouch block is added.

27. The issue of having a notouch block at the end of a processor before the end is fixed.

28. The ibuf and ibufnap dependencies is improved and optimized from ibuf before ibufnaps

to other ibufnaps and from ibufnaps to the next ibuf.

29. The issue of requiring a space between the rptb and the comments following this instruction

is now fixed. The following example is possible on scheduler.

Example:

rptb 3 #3//can have comments l i k e t h i s .

30. The scheduler can check the 10th bit of a mask value even when the value is represented in

hexadecimal or binary in addition to the decimal numbers.

31. A flag to change the dependencies between ag/aptr and DMEM on or off using -na flag is added.

32. The hexadecimal and binary numbers can be used in rptb as immediate block size values in

addition to decimal values.

33. The capability of having DMEM/DCMEM as a rptb counter value is added.

34. The use of regbp1 for DMEM & DCMEM is added

35. The use of regbp2 for DMEM & DCMEM is added

36. The bug with DCMEM dependencies between all DCMEMs with the same ag is fixed. The scheduler

would have inserted NOP3 between DCMEM 2 and DCMEM 3, but now it is fixed for within basic

blocks and across basic blocks.

129

37. The capability of detecting existing regbp1 & regbp2 and make the right decisions accordingly

is added.

38. The NOP dependencies between changing pcptr value and br pcptr is fixed. The following

example shows this condition.

Example:

move pcptr dmem 0 // r e qu i r e s 3 nops

br pcptr

39. The regbp3 capability for min/max is added

40. The ability of changing the first destination to null when both instructions in regbp1 equal

or the first and the 3rd instructin dest in regbp2 equal is added.

41. The issue of NOPs dependencies across 2 blocks is fixed.

42. The capability of putting null if the destination of the first instruction of regbp 1,2 is not

used in the future is added.

43. The #output dependency checker is added.

44. A recognition and removal of multi line (/* */) comments and converting them to single line

(//) comments is added.

45. The capability of turning the user comment on and off using -nc flag is added.

46. The cases of regbp and conditional instructions such as cxt and cxf are fixed.

47. The issue of big rptb with many NOP instructions in them is fixed.

48. The issue of labels without any branch into them is fixed.

49. The regbp1 recognition across blocks is added.

50. The issue of extra NOP between cxt and cxf instructions is fixed.

51. The regbp2, 3 recognitions across blocks is added.

52. A warning log file to generation is added to the scheduler.

53. The issues with multiple // in comments is fixed.

130

Glossary

aprog A program written in C and part of AsAP2 programming chain that converts the ASCII

machine language files to binary or BRAM innitialization format (COE) as well as grouping

all the different files to two specific files called asap and run. Page(s): 13, 61, 72, 73

AsAP Asynchronous Array of simple Processors — A parallel DSP processor consisting of a 2-

dimensional mesh array of simple processors operating in independent clock domains. Page(s):

1

AsAP2 The second generation of AsAP chips which also includes a few specific accelerators (FFT,

Viterbi, Motion Estimation) and shared memory modules. It has a reconfigurable source

synchronous network supporting long-distance interconnects for processors. Per-core DVFS is

also supported for dynamic power savings. Page(s): ii, 1–7, 16, 17, 19, 21, 23, 25, 27, 29, 30,

33–36, 39, 42, 43, 45–50, 52–54, 57, 60, 61, 65, 78–84

asap.coe This is the file outputted from the aprog program used to initialize the FPGA board

BRAM. This initialization holds the AsAP2 program to be programmed into the AsAP2 chip

by the FPGA board. Page(s): 61, 73

AsAp programmer This is verilog module that is used to send the program packets or run packet

to AsAP2 chip using a serial connection. Page(s): 49

AsAp programming.v This is verilog module that is used to send the program packets or run

packet to AsAP2 chip using a serial connection. Page(s): 47

assem.py AsAP2 assember written in python to convert the input assembly to AsAP2 ASCII

machine code. Page(s): 61

buffer A driver or a receiver that is used to redue the effects of noise on the signal by regenerate

the signal. Page(s): 51, 52, 70

131

cfg glue.v The code containing parts of the AsAP2 verilog code that sets the configuration values

in AsAP2 chip. Page(s): 49

cfg unpack.v The code containing parts of the AsAP2 verilog code that unpacks the address and

data infromation from their packets. Page(s): 13, 49

computational This is the Picoblade that is not connected to the host computer via PCIe to

interfaces the system with the outside of the system. Page(s): 3–5

dynamic delay arbiter.v This is verilog module that is used to automatically change the delay

value on the input or output signals after the FPGA board is turned on to length match these

signals. Page(s): 52

filelist.c This file is a part of aprog program defining functions acting on different input files.

Page(s): 73

GALS Globally Asynchronous Locally Synchronous. A design methodology in which major design

blocks are synchronous, but interface to other blocks asynchronously. Page(s): 1, 36

in out converter This program is used to convert between the ASCII values and binary values.

Page(s): 74, 77

input arbiter.v This is verilog module that is used to hold the dual clock FIFO and its interface

for the input signals to the AsAP2 chip. Page(s): 51

input.bin This file contains the binary input values that are being sent to the input of AsAP2 chip.

Page(s): 77

input buffers.v This is verilog module that is used to have all the buffers and delay blocks related

to the inputs to the AsAP2 chip signals. Page(s): 51

Macroblade Highest level of hierarchy in our designed optical networks for enterpise computing

that has many Miniblades. Page(s): 2, 3

main.c This file is the top level of the aprog program. Page(s): 73

makecoe.sh This is a script file that arranges the parameters to the aprog to generate the asap.coe

file. Page(s): 73

132

Microblade Lowest hierarchy level of the design below Miniblades that contains many Picoblades.

Page(s): 2, 3

Miniblade The next level of hierarchy below Macoblade that includes many Microblades. Page(s):

2–4

nop counter This program is part of the optimization chain that is used to output some statistics

about the assembly or assembler input file. Page(s): 71, 72

null remover Part of the AsAP2 tool chain that optimizes the AsAP2 assembly code by register

renaming and extra DMEM removal for the AsAP2 simulator. Page(s): 61

output arbiter.v This is verilog module that is used to hold the dual clock FIFO and its interface

for the output signals from the AsAP2 chip. Page(s): 52

output buffers.v This is verilog module that is used to have all the buffers and delay blocks related

to the outputs from the AsAP2 chip signals. Page(s): 52

pairlist.c This file is a part of aprog program defining functions acting on the value pairs. Page(s):

73

parse.c A file written in C as a part of aprog that parses the the input files for the aprog program.

Page(s): 13

Picoblade The unit size of the optical networks that contains an AsAP2 chip, optical modules,

and Memory modules. Page(s): 2–5, 7, 34, 42, 45, 60, 61, 76

progin This is a binary file holding the AsAP2 programming and run instruction to be accessing

the BRAM on the FPGA board. Page(s): 76

run.coe This is the file outputted from the aprog program used to initialize the FPGA board

BRAM. This initialization holds the AsAP2 run command to be sent to the AsAP2 chip by

the FPGA board to start the program on AsAP2. Page(s): 61, 73

spi slave.v The code containing parts of the AsAP2 verilog code that is used to recieve the serial

programming information and convert them to parallel data. Page(s): 12, 13, 49

streamread This is a C program used to receive 32 or 8 bit binary outputs from the FPGA board

to the Host system using the PCIe connection. Page(s): 76

133

streamwrite This is a C program used to send 32 or 8 bit binary inputs to the FPGA board using

the PCIe connection. Page(s): 75, 76

system interface This is the Picoblade that is connected to the host computer via PCIe to inter-

faces the system with the outside of the system. Page(s): 3–5, 7, 34, 42, 45, 60, 61, 76

TDI Test Data In — This is a JTAG signal goes to the FPGA boad containing the serial bit stream.

Page(s): 27, 28, 43, 44

TDO Test Data Out — This is a JTAG signal returning from the FPGA board that can be used

for chaining purposes. Page(s): 27, 28, 43, 44

temporary arbiter.v This is verilog module that is used to temporarily connect the PCIe to the

AsAP2 input and output data before adding other modules to the AsAP2 interface. Page(s):

54

testboard1 The original daughter card designed by the previous VCL students that was used for

testing the functionality of AsAP2 chip. Page(s): 19–21

testboard2 The new designed daughter card that was fabricated after three revisions specified by

v1, v2, and v3. Page(s): 17–19, 22–24, 27, 29, 39, 40

top.v The highest level of hierarchy of the verilog file programming the FPGA boad. Page(s): 47

xillybus read 32 The file used to read from the 32 bit Xillybus PCIe FPGA FIFO. Page(s): 59

xillybus read 8 The file used to read from the 8 bit Xillybus PCIe FPGA FIFO. Page(s): 59

xillybus write 32 The file used to write to the 32 bit Xillybus PCIe FPGA FIFO. Page(s): 59

xillybus write 8 The file used to write to the 8 bit Xillybus PCIe FPGA FIFO. Page(s): 59

134

Bibliography

[1] Bevan Baas, Zhiyi Yu, Michael Meeuwsen, Omar Sattari, Ryan Apperson, Eric Work, Jeremy
Webb, Michael Lai, Daniel Gurman, Chi Chen, Jason Cheung, and Tinoosh Mohsenin. Hard-
ware and applications of AsAP: An asynchronous array of simple processors. In IEEE HotChips
Symposium on High-Performance Chips, August 2006.

[2] Aaron Stillmaker, Lucas Stillmaker, and Bevan Baas. Fine-grained energy-efficient sorting on
a many-core processor array. In Parallel and Distributed Systems (ICPADS), 2012 IEEE 18th
International Conference on, pages 652 –659, dec. 2012.

[3] Z. Yu, M. Meeuwsen, R. Apperson, O. Sattari, M. Lai, J. Webb, E. Work, T. Mohsenin,
M. Singh, and B. Baas. An asynchronous array of simple processors for DSP applications. In
IEEE International Solid-State Circuits Conference (ISSCC), volume 49, pages 428–429, 663,
February 2006.

[4] Z. Yu and B. M. Baas. Implementing tile-based chip multiprocessors with GALS clocking styles.
In IEEE International Conference of Computer Design (ICCD), October 2006.

[5] Z. Yu and B. M. Baas. Low-area interconnect architecture for chip multiprocessors. In IEEE
International Symposium on Circuits and Systems (ISCAS), pages 2857–2860, May 2008.

[6] Bevan Baas, Zhiyi Yu, Michael Meeuwsen, Omar Sattari, Ryan Apperson, Eric Work, Jeremy
Webb, Michael Lai, Tinoosh Mohsenin, Dean Truong, and Jason Cheung. AsAP: A fine-grain
multi-core platform for DSP applications. IEEE Micro, 27(2):34–45, March 2007.

[7] Zhiyi Yu, Michael Meeuwsen, Ryan Apperson, Omar Sattari, Michael Lai, Jeremy Webb, Eric
Work, Dean Truong, Tinoosh Mohsenin, and Bevan Baas. AsAP: An asynchronous array of
simple processors. IEEE Journal of Solid-State Circuits (JSSC), 43(3):695–705, March 2008.

[8] Zhiyi Yu, Michael Meeuwsen, Ryan Apperson, Omar Sattari, Michael Lai, Jeremy Webb, Eric
Work, Tinoosh Mohsenin, and Bevan Baas. Architecture and evaluation of an asynchronous
array of simple processors. Journal of VLSI Signal Processing Systems, 53(3):243–259, March
2008.

[9] A.T. Tran, D.N. Truong, and B.M. Baas. A GALS many-core heterogeneous DSP platform
with source-synchronous on-chip interconnection network. In Networks-on-Chip, 2009. NoCS
2009. 3rd ACM/IEEE International Symposium on, pages 214–223, May. 2009.

[10] D. N. Truong, W. H. Cheng, T. Mohsenin, Z. Yu, A. T. Jacobson, G. Landge, M. J. Meeuwsen,
A. T. Tran, Z. Xiao, E. W. Work, J. W. Webb, P. Mejia, and B. M. Baas. A 167-processor com-
putational platform in 65 nm CMOS. IEEE Journal of Solid-State Circuits (JSSC), 44(4):1130–
1144, April 2009.

[11] Z. Yu and B. M. Baas. A low-area multi-link interconnect architecture for GALS chip multipro-
cessors. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 18(5):750–762,
May 2010.

135

[12] A. T. Tran, D. N. Truong, and B. M. Baas. A reconfigurable source-synchronous on-chip
network for GALS many-core platforms. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 29(6):897–910, Jun. 2010.

[13] A. T. Tran and B. M. Baas. RoShaQ: High-performance on-chip router with shared queues. In
IEEE International Conference on Computer Design (ICCD), pages 232–238, October 2011.

[14] Z. Yu and B. Baas. Performance and power analysis of globally asynchronous locally syn-
chronous multi-processor systems. In IEEE Computer Society Annual Symposium on VLSI,
March 2006.

[15] D. Truong, W. Cheng, T. Mohsenin, Z. Yu, T. Jacobson, G. Landge, M. Meeuwsen, C. Watnik,
P. Mejia, A. Tran, J. Webb, E. Work, Z. Xiao, and B. Baas. A 167-processor 65 nm com-
putational platform with per-processor dynamic supply voltage and dynamic clock frequency
scaling. In Symposium on VLSI Circuits, pages 22–23, June 2008.

[16] A.T. Tran, D.N. Truong, and B.M. Baas. A low-cost high-speed source-synchronous intercon-
nection technique for GALS chip multiprocessors. In Circuits and Systems, 2009. ISCAS 2009.
IEEE International Symposium on, pages 996–999, May. 2009.

[17] Z. Yu and B. M. Baas. High performance, energy efficiency, and scalability with GALS chip
multiprocessors. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 17(1):66–
79, January 2009.

[18] Aaron Stillmaker, Lucas Stillmaker, Brent Bohnenstiehl, and Bevan Baas. Energy-efficient
sorting on a many-core platform. In Technology and Talent for the 21st Century (TECHCON
2013), sep. 2013.

[19] Bin Liu and Bevan M. Baas. A high-performance area-efficient AES cipher on a many-core
platform. In IEEE Asilomar Conference on Signals, Systems and Computers, November 2011.

[20] D. Truong, W. Cheng, T. Mohsenin, Z. Yu, T. Jacobson, G. Landge, M. Meeuwsen, C. Watnik,
P. Mejia, A. Tran, J. Webb, E. Work, Z. Xiao, and B. Baas. A 167-processor computational array
for highly-efficient DSP and embedded application processing. In IEEE HotChips Symposium
on High-Performance Chips, August 2008.

[21] Z. Xiao and B. Baas. A 1080p H.264/AVC baseline residual encoder for a fine-grained many-
core system. IEEE Transactions of Circuits and Systems for Video Technology, 21(7):890–902,
July 2011.

[22] Z. Xiao and B. M. Baas. A high-performance parallel CAVLC encoder on a fine-grained many-
core system. In IEEE International Conference of Computer Design (ICCD), October 2008.

[23] D. N. Truong and B. M. Baas. Massively parallel processor array for mid-/back-end ultrasound
signal processing. In 2010 IEEE Biomedical Circuits and Systems Conference (BioCAS), pages
274–277, November 2010.

[24] Anh Tran, Dean Truong, and Bevan Baas. A complete full-rate 802.11a baseband reciever
implemented on an array of programmable processors. In Asilomar Conference on Signals,
Systems and Computers, October 2008.

[25] A.T. Jacobson, D.N. Truong, and B.M. Baas. The design of a reconfigurable continuous-flow
mixed-radix FFT processor. In Circuits and Systems, 2009. ISCAS 2009. IEEE International
Symposium on, pages 1133–1136, May. 2009.

[26] W. H. Cheng and B. M. Baas. Dynamic voltage and frequency scaling circuits with two supply
voltages. In IEEE International Symposium on Circuits and Systems (ISCAS), pages 1236–
1239, May 2008.

136

[27] Z. Xiao, S. Le, and B. M. Baas. A fine-grained parallel implementation of a h.264/avc encoder
on a 167-processor computational platform. In IEEE Asilomar Conference on Signals, Systems
and Computers, November 2011.

[28] Bin Liu and Bevan M. Baas. Parallel AES encryption engines for many-core processor arrays.
Computers, IEEE Transactions on, 62(3):536–547, march 2013.

[29] R. W. Apperson, Z. Yu, M. J. Meeuwsen, T. Mohsenin, and B. M. Baas. A scalable dual-clock
FIFO for data transfers between arbitrary and haltable clock domains. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 15(10):1125–1134, October 2007.

[30] R. Proietti, Z. Cao, Y. Li, and S. J. Yoo. Scalable and distributed optical interconnect archi-
tecture based on awgr for hpc and data centers. In Optical Fiber Communication Conference
(pp. Th2A-59). Optical Society of America, March 2014.

[31] Xillybus Ltd. Xilinx Virtex-7 FPGA VC709 Connectivity Kit.

[32] Vlsi computation lab. http://www.ece.ucdavis.edu/vcl/.

[33] David A. Patterson and ohn L. Hennessy. Computer Organization and Design. Morgan Kauf-
mann Publishers, 30 Corporate Drive, Suite 400, Burlington, MA 01803, 3rd edition, 2007.

[34] Green circuits inc. http://greencircuits.net/.

[35] Xilinx. VC709 Evaluation Board for the Virtex-7 FPGA User Guide, v1.3 edition, April 2014.

[36] Xilinx. VC709 EVALUATION PLATFORM HW-V7-VC709 (XC7VX690T-FFG1761, Septem-
ber 2012.

[37] Texas Instruments. 1.8-V High-Speed Differential Line Receiver, July 2011.

[38] Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic. Digital Intergrated Circuits – A
Design Perspective. Prentice-Hall, New Jersey, NJ, second edition, 2003.

[39] Xilinx. 7 Series FPGAs Clocking Resources - User Guide, v1.9 edition, April 2014.

[40] X2Y Attenuators, LLC. Get the Most from X2Y Capacitors with Proper Attachment Techniques,
v1 edition, february 2006. 3008.

[41] Xilinx. 7 Series FPGAs PCB Design and Pin Planning Guide, v1.8 edition, September 2013.

[42] Mentor graphics. http://www.mentor.com.

[43] Xillybus ip cores and design services. http://xillybus.com/.

[44] Xillybus Ltd. Getting started with the FPGA demo bundle for Xilinx, version 2.3 edition.

[45] Xillybus Ltd. Getting started with Xillybus on a Linux host, version 2.1 edition.

[46] Xillybus Ltd. Xillybus host application programming guide for Linux, version 2.0 edition.

[47] Hanh-Phuc Le, John Crossley, Seth R. Sanders, and Elad Alon. A sub-ns response fully inte-
grated battery-connected switched-capacitor voltage regulator delivering 0.19W/mm2 at 73%
efficiency. In 2013 IEEE International Solid-State Circuits Conference Digest of Technical Pa-
pers, pages 372–373. IEEE, February 2013.

[48] M.S. Makowski and D. Maksimovic. Performance limits of switched-capacitor DC-DC convert-
ers. In Proceedings of PESC ’95 - Power Electronics Specialist Conference, volume 2, pages
1215–1221. IEEE, 1995.

http://xillybus.com/
http://www.ece.ucdavis.edu/vcl/
http://greencircuits.net/
http://www.mentor.com

137

[49] Leland Chang, Robert K. Montoye, Brian L. Ji, Alan J. Weger, Kevin G. Stawiasz, and
Robert H. Dennard. A fully-integrated switched-capacitor 2?1 voltage converter with regu-
lation capability and 90% efficiency at 2.3A/mm¡sup¿2¡/sup¿. In 2010 Symposium on VLSI
Circuits, pages 55–56. IEEE, June 2010.

[50] Hanh-Phuc Le, Michael Seeman, Seth R. Sanders, Visvesh Sathe, Samuel Naffziger, and Elad
Alon. A 32nm fully integrated reconfigurable switched-capacitor DC-DC converter delivering
0.55W/mm¡sup¿2¡/sup¿ at 81% efficiency. In 2010 IEEE International Solid-State Circuits
Conference - (ISSCC), pages 210–211. IEEE, February 2010.

[51] Selcuk Kose, Eby G. Friedman, Simon Tarn, Sally Pinzon, and Bruce McDermott. An area
efficient on-chip hybrid voltage regulator. In Thirteenth International Symposium on Quality
Electronic Design (ISQED), pages 398–403. IEEE, March 2012.

[52] GE Critical Power. Austin Microlynx II DC-DC Converter.

[53] Energizer Holdings, Inc. Energizer E91 AA Datasheet.

[54] Energizer Holdings, Inc. Energizer E92 AAA Datasheet.

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	AsAP2 Interface Considerations
	Design of the Large Enterprise System
	Logical Design of a Picoblade

	Previous Work
	Project Contributions
	Organization

	AsAP2 Chip Interfaces
	Input and Output Data Interface
	Input Data Interface
	Output Data Interface

	Programming Interface
	Physical Interface
	Serial Programming Interface
	Configuration Interface

	Instruction Format

	Test Signals Interface
	Power Delivery
	Input Source Voltages
	Ground

	Other Signals

	Daughter Card Design
	Design Goals
	Daughter Card Design at a Glance
	Daughter Card Evolution and Redesign Factors
	Testboard1
	Testboard2-v1
	Testboard2-v2
	Testboard2-v3
	Phase One
	Phase Two

	Other Design Considerations and Factors
	Design Consultant

	Design Tools and Limitations
	Final Board and Fabrication

	FPGA Verilog Code Design and Logic
	Architecture and Testing Setup
	Programming and Logic of AsAP2 Interface
	AsAP2 Programmer
	Programmer Logic and Programming
	Simulation

	Input and Output Logic
	Input Logic and Programming
	Output Logic and Programming

	Dynamic Delay (Not Verified)
	Temporary Arbitration

	Future Work

	PCIe Bring up and Host Data Interface
	Bring up and Hardware
	Xillybus IP Core
	Linux

	Host Computer Programming Chain
	Host Design Interface
	Host Programming Interface
	First Host Programming Interface Method
	Programming Converter
	Scheduler
	Assembler
	AsAP2 programmer (aprog)

	Second Host Programming Interface Method
	Input and Output Programming Converter
	Stream Run

	Host Data Interface
	Input and Output Data Converter
	FIFO Run

	Future Work

	Battery Powered Supply for AsAP2
	Schematics and Components
	Prediction and Results

	Conclusion
	Future Work

	Daughter Card Signal Layers Gerber Files
	Schematic View of the PCBoard Desgin
	Scheduler Code Changes and Improvements
	Glossary
	Bibliography

