
Algorithms and Architectures for Efficient Low Density
Parity Check (LDPC) Decoder Hardware

By

TINOOSH MOHSENIN
B.S. (Sharif University of Technology) 1999

M.S. (Rice University) 2004

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

ELECTRICAL and COMPUTER ENGINEERING

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Bevan M. Baas, Chair

Shu Lin

Venkatesh Akella

Rajeevan Amirtharajah

Committee in charge

2010

– i –

c© Copyright by Tinoosh Mohsenin 2010
All Rights Reserved

– ii –

Abstract

Many emerging and future communication applications require a significant amount

of high throughput data processing and operate with decreasing power budgets. This need

for greater energy efficiency and improved performance of electronic devices demands a joint

optimization of algorithms, architectures, and implementations.

Low Density Parity Check (LDPC) decoding has received significant attention due

to its superior error correction performance, and has been adopted by recent communication

standards such as 10GBASE-T 10 Gigabit Ethernet. Currently high performance LDPC

decoders are designed to be dedicated blocks within a System-on-Chip (SoC) and require

many processing nodes. These nodes require a large set of interconnect circuitry whose

delay and power are wire-dominated circuits. Therefore, low clock rates and increased area

are a common result of the codes’ inherent irregular and global communication patterns.

As the delay and energy costs caused by wires are likely to increase in future fabrication

technologies new solutions dealing with future VLSI challenges must be considered.

Three novel message-passing decoding algorithms, Split-Row, Multi-Split and Split-

Row Threshold are introduced, which significantly reduce processor logical complexity and

local and global interconnections. One conventional and four Split-Row Threshold LDPC

decoders compatible with the 10GBASE-T standard are implemented in 65 nm CMOS

and presented along with their tradeoffs in error correction performance, wire interconnect

complexity, decoder area, power dissipation, and speed. For additional power saving, an

adaptive wordwidth decoding algorithm is proposed which switches between a 6-bit Normal

Mode and a reduced 3-bit Low Power Mode depending on the SNR and decoding iteration.

A 16-way Split-Row Threshold with adaptive wordwidth implementation achieves

improvements in area, throughput and energy efficiency of 3.9x, 2.6x, and 3.6x respec-

tively, compared to a MinSum Normalized implementation, with an SNR loss of 0.25 dB

at BER = 10−7. The decoder occupies a die area of 5.10 mm2, operates up to 185 MHz

at 1.3 V, and attains an average throughput of 85.7 Gbps with early-termination. Low

power operation at 0.6 V gives a worst case throughput of 9.3 Gbps–above the 6.4 Gbps

10GBASE-T requirement, and an average power of 31 mW.

– iii –

To my lovely husband and my parents for their love and support

– iv –

Acknowledgments

The road to finish my PhD has been enriching, fun and challenging. Getting here

would have not been possible without the support that I have received from many. The list

is too long to recall every single name to put down on paper as I am writing these lines. I

would like to take this chance though to thank certain individuals who have been influential

specifically on the process of completion of this dissertation.

First and foremost, my sincere gratitude goes to my advisor and mentor, Profes-

sor Bevan Baas for his valuable guidance and advice throughout my PhD study. Besides

knowledge, he provided me the confidence I always needed to persist throughout the hardest

times. Like a father, his kindness and support have greatly inspired me and shall substan-

tially influence the rest of my career. I am grateful to Professor Shu Lin for introducing me

to the subject of this work, helping me with the theory, for being supportive and critical

to my work and elevating this research to the next level. I would like to thank Professor

Venkatesh Akella for his constant support and advice throughout my PhD study and spe-

cially for the past few months of finishing my work. Many thanks to Professor Rajeevan

Amirtharajah for his enormous support and advice during my faculty interview preparation

and for reviewing my dissertation. Also thanks to Dr. Soheil Ghiasi for his advice during

my faculty interview preparation and for evaluating my research proposal.

I would like to thank Intel Corporation, Intellasys Corporation, National Science

Foundation (grant No. 0430090 and CAREER Award 0546907), UC MICRO, ST Microelec-

tronics, SRC, and UC Davis Faculty Research Grant, for their generous financial donations

to our research. Also, thanks to Jean-Pierre Schoellkopf for giving me permission to use ST

Microelectronics libraries and Pascal Urard for his valuable advices on my work.

Particularly, I would like to thank my great friend Dean for his endless support,

his sleepless nights working on papers with me and for being so patient with me during past

few years. I could not finish this path without him. I would like to express my appreciation

to my friends Qin and Lan for their significant help with LDPC code constructions and

teaching me coding theory. Many thanks to Houshmand for being such a great friend and

his hard work and support during past few months to finish our last journal paper.

– v –

My special thanks goes to my dearest friends Elham, Ladan, Farinaz and Sepideh

for their constant support, advice and encouragement which helped me keep going during

difficult times. I also would like to thank my other friends who have turned my experience in

Davis to a memorable one. They include but are not limited to: Kaveh, Mehdi, Mahnoosh,

Shadi, Neda, Sharegheh, Ladan, Arash, Pouya, Faramarz, Navid, Mina, Marjan, Matin,

Mohammad, Sumei, Liping, Jovana, Milena, Zhibin, Xiaoheng, Jon, Trevin, Aaron, Lucas,

Bin, Anh, Travis, Justin, Stanley, Stevan, Frank, Maggie and Jenny.

I would like to express my deep appreciation to my beloved husband, Arash to

whom this dissertation is dedicated. I cannot overstate the importance of such a supportive

family to my academic career. Ultimately I owe many thanks to my parents and my sister

Farnoosh whose endless supports and sacrifices have been the source of my courage and

persistence all the time.

– vi –

Contents

Abstract iii

Acknowledgments v

List of Figures ix

List of Tables xiii

1 Introduction 1
1.1 Challenges and Related Work . 2
1.2 Contributions . 4
1.3 Organization . 6

2 Background 7
2.1 LDPC Codes and Message Passing Decoding Algorithm 7

2.1.1 Sum Product Algorithm (SPA) . 9
2.1.2 MinSum Algorithm (MS) . 11

2.2 LDPC Decoder Architectures . 12
2.2.1 Full-parallel Decoders . 12
2.2.2 Serial and Partial-parallel Decoders 13

2.3 Current Research on LDPC Decoders . 15
2.3.1 Structured LDPC Codes . 15
2.3.2 Error Floor Reduction . 15
2.3.3 Reconfigurable Decoder Design . 16
2.3.4 Routing Congestion Reduction . 17

3 Split-Row Decoding Method 19
3.1 Proposed Split-Row Decoding Method . 19

3.1.1 SPA Split . 21
3.1.2 MinSum Split . 22

3.2 Multi-Split Decoding Method . 23
3.3 Correction Factor and Bit Error Performance Results 25

3.3.1 Split-Row Correction Factors . 25
3.3.2 Error Performance Results . 28

3.4 Full-Parallel MinSum Multi-Split Decoders 29
3.5 Decoder Implementation Example and Results 31

3.5.1 Effects of Fixed-point Number Representation 33
3.5.2 Area, Throughput and Power Comparison 37

– vii –

3.5.3 Wire Statistics . 38
3.5.4 Analysis of Maximum and Average Numbers of Decoding Iterations 40

3.6 Summary . 42

4 Split-Row Threshold Decoding Method 44
4.1 Routing Congestion Reduction with Split-Row 44
4.2 Split-Row Threshold Decoding Method . 46

4.2.1 Split-Row Error-performance . 46
4.2.2 Split-Row Threshold Algorithm . 49
4.2.3 Bit Error Simulation Results . 51

4.3 Split-Row Threshold Decoding Architecture 53
4.3.1 Check Node Processor . 53
4.3.2 Variable Node Processor . 55
4.3.3 Full-parallel Decoder Implementation 55

4.4 Design of Five CMOS Decoders . 56
4.4.1 Design Flow and Implementation . 58
4.4.2 Delay Analysis . 59
4.4.3 Area Analysis . 63
4.4.4 Power and Energy Analysis . 64
4.4.5 Summary and Further Comparisons 65
4.4.6 Comparison with Other Implementations 68

4.5 Summary . 68

5 Adaptive Wordwidth Decoder 70
5.1 Power Reduction Methods . 70

5.1.1 Early Termination . 70
5.1.2 Voltage Scaling . 71
5.1.3 Switching Activity Reduction . 71

5.2 Adaptive wordwidth Decoder Algorithm . 72
5.2.1 Preliminary Investigations . 73
5.2.2 Power Reduction Algorithm . 77

5.3 Architecture Design . 82
5.3.1 Check Node Processor . 82
5.3.2 Variable Node Processor . 87

5.4 Design of CMOS Decoders . 88
5.4.1 Design Steps . 88
5.4.2 Synthesis Results . 90
5.4.3 Back-end Implementations . 91
5.4.4 Results and Analysis . 92
5.4.5 SNR Adaptive Design . 94
5.4.6 Comparison with Others . 96

5.5 Summary . 98

6 Conclusion and Future Directions 99
6.1 Conclusion . 99
6.2 Future Work . 100

Bibliography 103

– viii –

List of Figures

1.1 Throughput of reported full-parallel and partial-parallel LDPC decoder ASIC
implementations versus year . 3

2.1 Parity check matrix (upper) and Tanner graph (lower) representation of a 12
column (N), 6 row (M), column weight 2 (Wc), row weight 4 (Wr), LDPC
code with information length 7 (K). 8

2.2 Flow diagram of an iterative message-passing decoding algorithm. 9
2.3 Throughput, energy dissipation per bit, silicon area and number of edges

(check node and variable node connections in Tanner graph) of reported
LDPC decoder ASIC implementations versus CMOS technology. For through-
put and energy plots the implementations with early termination scheme are
excluded. Also for the area plot, full-parallel implementations with reduced
routing schemes such as Split-Row [50], Split-Row Threshold [54] and bit-
serial [17] methods are excluded for a fair comparison. The idealized contour
in the throughput plot is obtained through linear scaling with technology (S);
in the energy plot it is obtained through linear scaling with technology and
quadratic scaling with voltage (V); and in the area plot it is obtained through
quadratic scaling with technology. 14

2.4 Parity check matrix of a quasi-cyclic code consisting of b × b columns and
m× b rows, with n× b permuted identity submatrices. 16

2.5 A generic reconfigurable decoder architecture 17

3.1 The parity check matrix example highlighting the first check node processing
(row processing) step using (a) standard decoding (SPA or MinSum) and (b)
Split-Row decoding. The check node C1 and its connected variable nodes are
shown for each method. 20

3.2 Block diagram of the proposed Split-Row decoder 20
3.3 The parity check matrix of a (Wc,Wr) (N,K) permutation-based LDPC code

highlighting the first check node processing operation with Spn-way splitting
(Multi-Split) method. 23

3.4 Multi-Split decoder with Spn-way splitting method, highlighting inter-partition
sign wires and the simplified logic for implementation of the sign bit in each
check node processor. 24

– ix –

3.5 Determination of correction factor (Sfactor) for a (6,32) (2048,1723) RS-
based LDPC code using (a) MinSum Split-2 and (b) MinSum Split-4 de-
coders. The optimal correction factor variations with the SNR values are
very small with the average value of 0.3 for Split-2 and 0.19 of Split-4. . . . 25

3.6 BER performance of the (6,32) (2048,1723) code using the Multi-Split method
in SPA and MinSum decoders with optimal correction factors. 27

3.7 Error performance comparison with different decoding algorithms for a (4,32)
(8176,7156) QC-LDPC code . 28

3.8 BER performance of a (6,72) (5256,4823) QC-LDPC code using various Min-
Sum decoders with different levels of splitting and near-optimal correction
factors. 29

3.9 Top level block diagram of a full-parallel decoder corresponding to an M×N
parity check matrix, using Split-Row with Spn partitions. The inter-partition
Sign signals are highlighted. J = N/Spn, where N is the code length. . . . 30

3.10 Check node processor block diagram of MinSum Multi-Split for partition
Spk, with sign logic on top and magnitude calculation of α at the bottom. . 31

3.11 Variable node processing unit block diagram 32
3.12 Mapping a full-parallel decoder with (a) MinSum normalized (b) Split-2 and

(c) Split-4 decoding methods for the (6,32) (2048,1723) code 34
3.13 Final layout of (a) MinSum normalized, (b) MinSum Split-2 and (c) MinSum

Split-4 decoder chips, shown approximately to scale 35
3.14 BER performance of a (6,32) (2048,1723) LDPC code with floating-point

and fixed-point 5-bit 4.1 implementations of MinSum normalized, MinSum
Split-2 and MinSum Split-4 with optimal correction factors 35

3.15 Wire length distribution for (a) MinSum normalized, (b) MinSum Split-2
and (c) MinSum Split-4 decoders . 39

3.16 Error performance of the MinSum normalized, MinSum Split-2 and MinSum
Split-4 decoders for (2048,1723) code with various maximum number of iter-
ations (Imax). The average number of decoding iterations is shown at every
simulation point. 40

3.17 (a) Average decoding throughput and (b) average energy dissipation per bit
in MinSum normalized, MinSum Split-2 and MinSum Split-4 decoders as a
function of SNR and the average decoding iteration for different maximum
numbers of iterations (Imax). 41

4.1 Physical indicators of interconnection complexity over five Spn-decoders (Spn =
1, 2, 4, 8, 16) normalized to the the case where Spn = 1 (i.e. MinSum). A
5-bit datapath (1-bit sign, 4-bit magnitude) is used for all five decoder im-
plementations. 45

4.2 Channel data (λ), H matrix, the initialization matrix and the check node
output (α) values after the first iteration using MinSum Normalized, MinSum
Split-Row and Split-Row Threshold algorithm. The Split-Row entries in
(e) with the largest deviation from MinSum Normalized are circled and are
largely corrected with Split-Row Threshold method in (f). Correction factors
are set to be one here. 47

– x –

4.3 The impact of choosing threshold value (T) on the error performance and
BER comparisons for a (6,32)(2048,1723) LDPC code using Sum Product al-
gorithm (SPA), MinSum Normalized, MinSum Split-Row(original) and Split-
Row Threshold with different levels of partitioning, and with optimal thresh-
old and correction factor values . 52

4.4 The block diagram of magnitude and sign update in check node processor
of partition Sp(k) in Split-Row Threshold decoder. The Threshold Logic is
shown within the dashed line. The 4:2 comparator block is shown in the right. 54

4.5 The block diagram of variable node update architecture for MinSum Nor-
malized and Split-Row Threshold decoders. 56

4.6 Top level block diagram of a full-parallel decoder corresponding to a M ×N
parity check matrix, using Split-Row Threshold with Spn partitions. The
inter-partition Sign and Threshold en signals are highlighted. J = N/Spn,
where N is the code length. 57

4.7 (a) The pipeline and (b) the timing diagram for one partition of Split-Row
Threshold decoder. In each partition, the check and variable node messages
are updated in one cycle after receiving the Sign and Threshold en signals
from the nearest neighboring partitions. 57

4.8 Layout of MinSum Normalized and Split-Row Threshold decoder implemen-
tations shown approximately to scale for the same code and design flow . . 57

4.9 The check to variable processor critical path Path1, and the inter-partition
Threshold en critical path Path2 for the Split-Row Threshold decoding method
with Spn partitions. 58

4.10 The components in the reg2out delay path for Threshold en propagation
signal in Split-Row Threshold decoding. 60

4.11 The components in the in2reg delay path for Threshold en propagation
signal in Split-Row Threshold decoding. 60

4.12 Post-route delay breakdown of major components in the critical paths of five
decoders using MinSum Normalized and Split-Row Threshold methods. . . 62

4.13 Area breakdown for five decoders using MinSum Normalized and Split-Row
Threshold methods. The interconnect and wire buffers are added after layout
which take a large portion of MinSum Normalized and Split-2 Threshold
decoders. 62

4.14 Capacitance and maximum clock frequency versus the number of partitioning
Spn. 65

4.15 Average convergence iteration and energy dissipation versus a large number
of SNR values for five decoders using MinSum Normalized and Split-Row
Threshold methods. 66

5.1 Single cycle message passing datapath with variable node processor (Wc = 6)
in partial detail. 72

5.2 An overlay of check node output (α) distributions using MinSum Normalized
over many iterations, at SNR = 4.4 dB, where Sfactor = 0.5. 75

5.3 The pdf of variable node outputs to be less than a predefined threshold
(D = T = 0.25), for a large range of SNR values at iterations 1 through 3.
Data are obtained for (6,32) (2048,1723) 10GBASE-T code using Split-Row
Threshold decoding for 1000 blocks, and applying Eq. 5.4. 75

– xi –

5.4 Check node output (α) distribution in the first three iteration of Split-Row
Threshold decoder for (2048,1723) LDPC code at SNR = 4.4 dB, where
T = S = 0.25. 76

5.5 Variable node output (β) distributions for Split-Row Threshold and Method 1
at iteration 4 with SNR = 4.2 dB. 81

5.6 Bit error performance of the 2048 bit 10GBASE-T code using Split-Row
Threshold (only Normal Mode, i.e. Low Power Iteration = 0), and Split-
Row Low Power Threshold with Method 1, 2, and 3 when Low Power Iteration
varies from 3 to 6. 82

5.7 Architecture diagram of the full parallel Split-Row Low Power Threshold
10GBASE-T decoder. 83

5.8 Check node processor design for Split-Row Low Power Threshold decoder.
In α Adjust block (shaded box), αk (k = 1 or 2) is shown as a 6 bit binary
Sb4b3b2b1b0 and αadjust is computed according to low power Methods 1, 2,
and 3. 84

5.9 Variable node processor design for Split-Row Low Power Threshold decoder. 85
5.10 Bit error performance of (6,32) (2048,1723) 10GBASE-T LDPC code using

Split-Row Threshold decoding in floating point and fixed point with different
wordwidth quantizations. 88

5.11 Check node output (α) distribution using Split-Row Threshold decoder for
(2048,1723) LDPC code, which are binned into discrete values set by a 6-bit
(1.5 format) quantization. The 3-bit subset can cover all values within the
Threshold Region. Data are for SNR = 4.4 dB and iteration = 3, where
T = Sfactor = 0.25. 89

5.12 Post layout view of the proposed low power decoder with Method 2. 91
5.13 Power breakdown for Method 2: Normal Mode only, Low Power Mode Mode

only, and adaptive mode (6 iterations with Low Power Mode and 9 iterations
with Normal Mode). 93

5.14 Energy per bit versus SNR for different low power decoder designs and differ-
ent Low Power Iteration, compared with a design only running in Normal
Mode. 94

5.15 Bit error rate versus energy per bit dissipation of two decoders for differ-
ent adaptive decoder settings to meet the 10GBASE-T standard throughput
(dependent on the worst case Imax and maximum frequency at 0.87 V). . . 95

– xii –

List of Tables

3.1 Average optimal correction factor Sfactor for different constructed regular
codes. The asterisk (“*”) indicates that the row weight of the code is not
evenly divisible by that level of splitting. The dash (“-”) indicates that the
row weight for that level of splitting is very small and error performance loss
is therefore significant (≥0.7 dB). 26

3.2 Summary of the key parameters of the implemented (6,32) (2048,1723) 10GBASE-
T LDPC code . 32

3.3 Comparison of the three full-parallel decoders implemented in 65 nm CMOS
for a (6,32) (2048,1723) code. All area values are for final placed and routed
layout. Maximum number of iterations Imax = 15. 36

4.1 Average optimal Threshold value (T) for the Split-Row Threshold decoder
with different levels of partitioning, for a (6,32) (2048,1723) LDPC code. . . 53

4.2 Threshold en delay path components for the Split-Row Threshold decoders. 62
4.3 Comparison of full-parallel decoders in 65 nm, 1.3 V CMOS, for a (6,32)

(2048,1723) code implemented using MinSum Normalized and Split-Row
Threshold with different levels of splitting. Maximum number of iterations
is Imax =11.
† The BER and SNR values are for 5-bit fixed-point implementations. . . . 67

4.4 Comparison of the Split-16 Threshold decoder with published LDPC decoder
implementations for the 10GBASE-T code.
† ET stands for “early termination”. * Throughput is computed based on
the maximum latency reported in the paper. 67

5.1 The percentage that |α| ≤ (Sfactor × T) condition is met in 1000 sets of
input data for two SNR values: 3.6 dB and 4.4 dB. For SNR=4.4 dB, most
block converge at iterations > 5 . 77

5.2 Comparison of hardware increase in check processor and variable processor
with synthesis area for the three low power “Methods”. (For Original none
of these methods are applied.) . 87

5.3 Comparison of three proposed full-parallel decoders with the proposed low
power Methods 1, 2, and 3 implemented in 65 nm, 1.3 V CMOS, for a
(6,32) (2048,1723) LDPC code. Maximum number of iterations is Imax =
15. Power numbers are for Low Power Iteration = 6. Normal Mode:
Method 1 with Low Power Iteration = 0 92

– xiii –

5.4 A comparison of the proposed adaptive decoder using the wordwidth adaptive
Method 2 decoder with recently published LDPC decoder implementations.
*Throughput is computed based on the maximum latency reported. 97

– xiv –

1

Chapter 1

Introduction

Communication systems are becoming a standard requirement of every computing

platform from wireless sensors, mobile telephony, and server class computers. Local and

cellular wireless communication throughputs are expected to increase to hundreds of Mbps

and even beyond 1 Gbps [15, 38, 51]. With this increased growth for bandwidth comes

larger system integration complexity and higher energy consumption per packet. Low power

design is therefore a major design criterion alongside the standards’ throughput requirement

as both will determine the quality of service and cost.

Error correction plays a major role in communication and storage systems to in-

crease the transmission reliability and achieve a better error correction performance with

less signal power. Low Density Parity Check (LDPC) code was first developed in 1962 [25]

as an error correction code that allowed communication over noisy channels possible near

the Shannon limit. With advancements in VLSI, LDPC codes have recently received a lot

of attention because of their superior error correction performance when decoded iteratively

using a message passing algorithm [45]. As the result, they have been adopted as the forward

error correction method for many recent standards such as digital video broadcasting via

satellite (DVB-S2) [5], the WiMAX standard for microwave communications (802.16e) [3],

the G.hn/G.9960 standard for wired home networking [2], and the 10GBASE-T standard

for 10 Gigabit Ethernet (802.3an) [4].

CHAPTER 1. INTRODUCTION 2

1.1 Challenges and Related Work

So far the emerging 10GBASE-T standard has not been adopted as quickly as

predicted into the data center infrastructures because of the power constraints [76]. The

power consumption of the 10GBASE-T PHY layer (more specifically the receiver, whose

implementation is left open by the 802.3an standard [4]) has become difficult to reduce [60].

Of particular concerns is the LDPC decoder, which must have high throughputs in order

for the system to achieve the necessary 10Gb Ethernet bandwidth. For recently fabricated

software defined radio system-on-chips (SoC), the LDPC decoders dissipate 14% to 23% of

the total average power (PHY+MAC) [15, 38]. Interestingly, the only comparable block on

the SoCs with similar power dissipation numbers are the control processors, which consume

18% to 31% of the total chip power. As a result, LDPC decoders are likely to be a major

part of a baseband processor’s power consumption as communication standards increase

their throughput requirements and error correction code complexity (for increased coding

gain, spectral efficiency, etc.).

While there has been much research on LDPC decoders and their VLSI imple-

mentations, designing a high throughput decoder with low power and small silicon area

is still a challenge. LDPC decoder design choices are most often considered at the archi-

tecture level and are categorized into two domains: “full-parallel” and “partial-parallel”.

Full-parallel is a direct implementation of the message-passing algorithm with every com-

putational unit and interconnection between them realized in hardware. Partial-parallel

decoders use pipelining, large memory resources and shared computational blocks to deal

with the inherent communication complexity and massive bandwidth.

Since the number of operations achievable per cycle is larger with full-parallel de-

coders, their energy efficiencies and throughput are theoretically the best [18, 51]. Figure 1.1

shows the throughput of reported ASIC designs (measured or post-layout implementations)

versus year for full-parallel and partial-parallel decoders. The tick marks along the right side

of the plot indicate the maximum throughput requirement for five popular standards. All

decoders for DVB-S2, 802.16e and 802.11n standards which require reconfigurable hardware

to support different code lengths and code rates are partial-parallel. As shown in the plot,

CHAPTER 1. INTRODUCTION 3

2000 2002 2004 2006 2008 2010
10

1

10
2

10
3

10
4

10
5

Year

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Partial-parallel Decoder

Full-parallel Decoder

10GBASE-T

802.16e

DVB-S2

802.11n

802.11a/g

Figure 1.1: Throughput of reported full-parallel and partial-parallel LDPC decoder ASIC
implementations versus year

although there are not many reported full-parallel decoder implementations, their through-

put is in general higher than that of the partial-parallel decoders. Full-parallel decoders

which require many processing nodes typically suffer from large wire-dominated circuits

operating at low clock rates due to large critical path delays caused by the codes’ inherently

irregular and global communication patterns.

Global wires, which make up the long interconnections between distant circuit

blocks are increasingly common in system-on-chip designs, and are the predominant source

of circuit delay. The common solution to deal with global wire delay is to partition the

wire into segments and place repeaters (i.e. buffers) between each segment to decrease

the overall delay [61]. This delay optimization will require even more additional buffers

as CMOS continues to scale, which consumes more power and causes routing congestion

because of the added vias between buffer pins and wire segments [65]. Unlike transistors and

local wires, global wires have not reaped the benefits of scaling. The ideal scaling of both

wire types results in no RC delay reduction in local wiring while global wiring receives a 50%

RC delay increase per year [61]. While feature size scales by 0.7, global wire capacitance,

resistivity, and RC delay scale by 0.9, 1.1, and 2.4, respectively, and the contribution of

global wire capacitance to dynamic power consumption will be expected to have a 1.1 times

CHAPTER 1. INTRODUCTION 4

Watt per GHz-cm2 increase for every generation [31, 65]. 1 Using repeaters also has the

unfortunate drawbacks of added power consumption, and added vias between metal layers

to and from the buffer and wire segments, which makes the routing problem harder [64].

There have been recent studies to reduce routing congestion and wire delay of the

full-parallel decoder implementations through bit-serial communication [18], wire partition-

ing [59], and floorplan optimization [7, 82]. Bit-serial and wire partitioning use microarchi-

tectural techniques, while floorplan optimization use physical layout back-end techniques.

In the bit-serial method [18], messages are transmitted serially in multiple cycles. Although

the proposed work results in higher clock frequency, the number of clock cycles required to

transmit messages is increased, which overall results in low decoding throughput and energy

efficiency.Wire partitioning offers an improvement in reducing differences in communication

path delays by pipelining wires, however the clock tree and additional registers increase

overall power. For example, in a one frame-per-iteration design, throughput was improved

by only 1.3× however, clock power was increased by a factor of 1.8×, which resulted in

worse power and negligible (∼1pJ/bit) or no energy improvements [59]. In floorplan opti-

mization a grouping strategy is used to localize irregular wires and regularize global wires.

While this method might be applicable for code sizes < 2 Kbits, it requires large backend

effort and floorplan design time and also depends on the code structure. Both microar-

chitecture and floorplan techniques require careful implementation in order to reach the

optimal efficiency. In contrast, algorithm techniques trade off error correction performance

for improved throughput and power.

1.2 Contributions

1. This work contributes to the solution of interconnect complexity of LDPC decoders

by introducing nonstandard decoding algorithms based on SPA and MinSum called

“Split-Row” [49], “Multi-Split” [50] and “Split-Row Threshold” [56, 53], which reduce

data dependency and inter-processor message passing. The Split-Row and Multi-Split

achieve this through partitioning the links needed in the message-passing algorithm,

1Inter-buffer distances decrease by a factor of s
√
s, where s is the scaling factor for the transistor. Thus

the distance between buffers is shrinking by 0.586 for every generation (s = 0.7).

CHAPTER 1. INTRODUCTION 5

and localize communication. A minimal amount of information is transferred amongst

partitions to ensure computational accuracy while reducing global communication.

The Split-Row Threshold algorithm largely gains back the loss in error performance

of Split-Row by adding an additional form of information based on a comparison with a

threshold value (T). Based on this comparison a “threshold enable” bit is sent between

partitions. With Split-Row Threshold higher levels of partitioning are possible with

a modest SNR loss of 0.05-0.3 dB, when compared to MinSum Normalized.

2. This work investigates the impact of LDPC code matrix properties (e.g. code length

and check node degree), and Split-Row-type algorithm characteristics such as the level

of partitioning, correction factor value, threshold value and fixed-point representation

on the error correction performance [52, 55]. Theories were verified using empirical

simulations on approximately 120 networked computers.

3. This work contributes to the solution of the physical layout implementation of full-

parallel LDPC decoders [55]. A block partitioning method is used for the layout

implementation that naturally comes from Split-Row algorithm. Each block is inde-

pendently implemented whose internal wires are all relatively short. The blocks are

interconnected by a small number of wires. This results in denser, faster and more

energy efficient circuits. In addition, it effectively reduces back-end engineering time

and effort for full-parallel architectures with large codes (e.g. 2 Kbits to 64 Kbits) and

high check node degrees. The benefits of the algorithms and the levels of partitioning

on silicon area, clock speed and power are investigated with the results of several

place-and-routed standard-cell decoder designs. All decoders were designed using a

standard cell flow up to the layout-level just before GDS extraction.

4. This work proposes an adaptive wordwidth algorithm to achieve additional power sav-

ings by minimizing unnecessary bit toggling of decoding messages while maximizing

bit error performance. The new algorithm takes advantage of data input patterns dur-

ing the decoding process using Split-Row Threshold. The adaptive micro-architecture

is implemented as a small add-on to each processing element with minimal area cost.

Depending on the SNR and decoding iteration, different low power settings are deter-

CHAPTER 1. INTRODUCTION 6

mined to find the best trade off between bit error performance and energy consumption

of the decoder chip.

1.3 Organization

The dissertation is organized as follows: Chapter 2 gives an overview of LDPC

codes, message passing algorithm, and decoder architectures. The (6,32)-regular (2048,1723)

RS-LDPC code [19], which is adopted by 10GBASE-T standard [4] is used as an example

for architecture comparisons. Chapter 3 introduces Split-Row and Multi-Split decoding

methods, along with an optimal value of correction factor and bit error performance com-

parisons for different codes. It also describes the hardware implementation of Multi-Split

decoder for the 10GBASE-T LDPC code. Chapter 4 studies the Split-Row ability to re-

duce routing congestion in layout. Then it introduces a low hardware cost modification to

Split-Row called Split-Row Threshold that improves error performance while maintaining

the former’s routing reduction benefits. It investigates the optimum value of threshold (T)

and the bit error performance of 10GBASE-T LDPC code using Split-Row Threshold with

multiple partitioning. It also presents detailed analysis of post-layout results of full-parallel

10GBASE-T LDPC decoders that implement Split-Row Threshold. Chapter 5 introduces

an adaptive wordwidth power reduction method which reduces bit toggling of messages

based on the SNR and decoding iteration. Three different implementation methods along

with their bit error performance results and details of their architecture are presented. The

best trade off between bit error performance and energy consumption of the decoder chip is

found for the post-layout implementations of 10GBASE-T LDPC decoders that implement

the algorithm.

7

Chapter 2

Background

2.1 LDPC Codes and Message Passing Decoding Algorithm

LDPC codes are defined by an M × N binary matrix called the parity check

matrix H. The number of columns, N , defines the code length. The number of rows in H,

M , defines the number of parity check constraints for the code. The information length K

is K = N −M for full-rank matrices, otherwise K = N − rank. Column weight Wc is the

number of ones per column and row weight Wr is the number of ones per row.

LDPC codes can also be described by a bipartite graph or Tanner graph [69].

The parity check matrix and the corresponding Tanner graph of a (Wc = 2,Wr = 4)

(N = 12,K = 7) LDPC code are shown in Fig. 2.1. The rank of the matrix is 5, therefore

the information length K is 7. In the graph, there are two sets of nodes: check nodes

and variable nodes. Each column of the parity check matrix corresponds to a variable

node in the graph represented by V . Each row of the parity check matrix corresponds to

a check node in the graph represented by C. There is an edge between a check node Ci

and a variable node Vj if the position (i, j) in the parity check matrix is 1, or H(i, j) = 1.

For example, the first row of the matrix corresponds to C1 in the Tanner graph which is

connected to V3, V5, V8 and V10 variable nodes. A variable node which is connected to a

check node is called the neighbor variable node. Similarly, a check node that is connected

to a variable node is called the neighbor check node. Total number of edges (connections)

CHAPTER 2. BACKGROUND 8

C1 C2 C3 C4 C5 C6

V1 V2 V3 V4 V5 V6 V7 V8 V9

100001010

010100001

001001100

001100010

100010001

10001100

H =

0 0 1 0 1 0 0 1 0 C1

V3 V4 V8V1 V2 V5 V6 V7 V9

C2

C3

C4

C5

C6

001

010

010

100

001

100

V11V10 V12

V10 V11 V12

Check nodes

Variable nodes

Figure 2.1: Parity check matrix (upper) and Tanner graph (lower) representation of a 12
column (N), 6 row (M), column weight 2 (Wc), row weight 4 (Wr), LDPC code with
information length 7 (K).

between variable node and check nodes is N ×Wc or M ×Wr. For clearer explanations,

in this work, we examine cases where H is regular and thus Wr and Wc are constants. For

VLSI implementation examples, we use a (6,32)-regular (2048,1723) RS-LDPC code [19]

which has been adopted for the forward error correction in the IEEE 802.3an 10GBASE-T

standard [4]. The 384× 2048 H matrix of the code has a Wr = 32 and Wc = 6. There are

M = 384 check nodes and N = 2048 variable nodes in its graph representation.

The iterative message-passing algorithm is the most widely used method for prac-

tical decoding [39, 44] and its basic flow is shown in Fig. 2.2. After receiving the corrupted

information from an AWGN channel (λ), the algorithm begins by processing it and then

iteratively corrects the received data. First, all check node inputs are initialized to “0” and

then a check node update step (i.e. row processing) is done to produce α messages. Second,

the variable node receives the new α messages, and then the variable node update step (i.e.

column processing) is done to produce β messages. This process repeats for another itera-

tion by passing the previous iteration’s β messages to the check nodes. The algorithm finally

terminates when it reaches a maximum number of decoding iterations (Imax) or a valid

CHAPTER 2. BACKGROUND 9

Termination check

Check node

update

Variable node

update

Initialization

No

Yes

Output

Figure 2.2: Flow diagram of an iterative message-passing decoding algorithm.

code word is detected. Sum-Product (SPA) [43] and MinSum (MS) [22] are near-optimum

decoding algorithms which are widely used in LDPC decoders.

2.1.1 Sum Product Algorithm (SPA)

We assume a binary code word (x1, x2, ..., xN) is transmitted using a binary phase-

shift keying (BPSK) modulation. Then the sequence is transmitted over an additive white

Gaussian noise (AWGN) channel and the received symbol is (y1, y2, ..., yN).

We define V (i)\j as the set of variable nodes connected to check node Ci excluding

variable node j. Similarly, we define the C(i)\j as the set of check nodes connected to

variable node Vi excluding check node j. For example in Fig. 2.1, V (1) = {V3, V5, V8, V10}

and V (1)\3 = {V5, V8, V10}. Also C(1) = {C2, C5} and C(1)\2 = {C5}. Moreover, we define

the following variables which are used throughout this paper.

λi is defined as the information derived from the log-likelihood ratio of received symbol

yi,

λi = ln

(P (xi = 0|yi)
P (xi = 1|yi)

)
(2.1)

CHAPTER 2. BACKGROUND 10

αij is the message from check node i to variable node j. This is the check node processing

output.

βij is the message from variable node j to check node i. This is the variable node pro-

cessing output.

SPA decoding can be summarized in these four steps:

1. Initialization: For each i and j, initialize βij to the value of the log-likelihood ratio

of the received symbol yj , which is λj . During each iteration, α and β messages are

computed and exchanged between variable nodes and check nodes through the graph

edges according to the following steps numbered 2–4.

2. Row processing or check node update: Compute αij messages using β messages from

all other variable nodes connected to check node Ci, excluding the β information from

Vj :

αijSPA =
∏

j′∈V (i)\j

sign(βij′)× φ

 ∑
j′∈V (i)\j

φ(|βij′ |)

 (2.2)

where the non-linear function φ(x) = − log
(

tanh |x|2

)
. The first product term in

Eq. 2.2 is the parity (sign) bit update and the second product term is the reliability

(magnitude) update.

3. Column processing or variable node update: Compute βij messages using channel

information (λj) and incoming α messages from all other check nodes connected to

variable node Vj , excluding check node Ci.

βij = λj +
∑

i′∈C(j)\i

αi′j (2.3)

4. Syndrome check and early termination: When variable node processing is finished,

every bit in variable node j is updated by adding the channel information (λj) and α

messages from neighboring check nodes.

zj = λj +
∑

i′∈C(j)

αi′j (2.4)

CHAPTER 2. BACKGROUND 11

From the updated vector, an estimated code vector X̂ = {x̂1, x̂2, ..., x̂N} is calculated

by:

x̂i =


1, if zi ≤ 0

0, if zi > 0

(2.5)

If H ·X̂T = 0, then X̂ is a valid code word and therefore the iterative process has converged

and decoding stops, this is called early termination. Otherwise the decoding repeats from

step 2 until a valid code word is obtained or the number of iterations reaches a maximum

number, Imax , which terminates the decoding process.

2.1.2 MinSum Algorithm (MS)

MinSum simplifies the SPA check node update equation, which replaces the com-

putation of the non-linear φ() function by a min() function. The MinSum check node update

equation is given as:

αijMinSum = Sfactor ×
∏

j′∈V (i)\j

sign(βij′)︸ ︷︷ ︸
Sign Calculation

× min
j′∈V (i)\j

(|βij′ |)︸ ︷︷ ︸
Magnitude Calculation

(2.6)

where each αij message is generated using the β messages from all variable nodes V (i)

connected to check node Ci as defined by H (excluding Vj). Note that a normalizing factor

Sfactor is included to improve error performance, and so this variant of MinSum is called

“MinSum Normalized” [11, 10]. Because check node processing requires the exclusion of

Vj while calculating the min() for αij , it necessitates finding both the first and second

minimums (Min1 and Min2, respectively). In this case min() is more precisely defined as

follows:

min
j′∈V (i)\j

(|βij′ |) =


Min1i , if j 6= argmin(Min1i)

Min2i , if j = argmin(Min1i)

(2.7)

where,

Min1i = min
j∈V (i)

(|βij |) (2.8)

Min2i = min
j′′∈V (i)\argmin(Min1i)

(|βij′′ |) (2.9)

CHAPTER 2. BACKGROUND 12

Moreover, the term
∏

sign(βij′) is actually an XOR of sign bits, which generate the final

sign bit that is concatenated to the magnitude |αij |, whose value is equal to the min()

function given in Eq. 2.7.

The MinSum equations themselves do not cause the difficulties of implementing

LDPC decoders since, from an outward appearance, the core kernel is simply an addition

for the variable node update, and an XOR plus comparator tree for the check node update.

Rather, the complexities are caused by the large number of nodes and interconnections as

defined by H in tandem with the message-passing algorithm. Recall that the 10GBASE-T

H matrix has 2048 variable nodes, Vj , with each one connected to 6 check nodes, C(j), and

384 check nodes, Ci, with each Ci connected to 32 variable nodes, V (i). As a result, we

have M ×Wr + N ×Wc = 384 × 32 + 2048 × 6 = 24576 connections, where check nodes

send, as an aggregate, 12288 β messages to the variable nodes, and the variable nodes, as

an aggregate, send 12288 α messages to the check nodes per iteration.

In summary, for a single iteration of the message-passing algorithm, the 10GBASE-

T LDPC code requires a total of M ×Wr = 12288 total check node update computations

and N×Wc = 12288 total variable node update computations, as well as pass these updated

results for a total of M ×Wr +N ×Wc = 24576 unique messages.

2.2 LDPC Decoder Architectures

2.2.1 Full-parallel Decoders

Full-parallel decoders directly map each row and each column of the parity check

matrix H to a different processing unit, while all these processing units operate in parallel [7,

54, 50, 18]. All M check nodes, N variable nodes, and their associated M ×Wr +N ×Wc

total connections are implemented. Thus, a full-parallel decoder will have M + N check

and variable node processors, and M×Wr+N×Wc global interconnections. A full-parallel

10GBASE-T LDPC decoder will require 2432 processors which are interconnected by a

set of 24576 × b global wires and their associated wire buffers (i.e. repeaters), where b

is the number of bits in the datapath. So optimizing the fixed-point format becomes an

important design parameter in reducing chip costs, not only by optimizing logic area but

CHAPTER 2. BACKGROUND 13

also interconnect complexity.

In general, while full-parallel decoders have larger area and capacitance, and lower

operating frequencies than their partial-parallel counterparts (to be discussed shortly in the

next subsection), they typically only need a single cycle per message-passing iteration; thus,

full-parallel decoders are inherently more energy efficient [18].

2.2.2 Serial and Partial-parallel Decoders

In contrast to full-parallel decoders, serial decoders have one processing core and

one memory block. If the processing core can calculate either a single check or variable

node update per cycle, then the memory must store all M × Wr + N × Wc messages.

With this architecture a 10GBASE-T serial LDPC decoder will require a 24, 576 × b-bit

memory. A 5-bit datapath would require the memory to store 122,880 bits or 15.36 KB.

To increase performance we can alternatively make the processing core larger and calculate

several checks and variables per cycle and thus reduce the memory requirement, but this

requires a multi-port SRAM which increases SRAM area significantly [42] and building

large high-performance SRAMs in deep-submicron technologies results in sizable leakage

currents [57].

Although much smaller than full-parallel decoders, serial decoders have much lower

throughputs and larger latencies. Partial-parallel designs [47, 79, 16, 41, 84, 9, 13, 81] ideally

try to find a balance between the two extremes by partitioning H into rowwise and colum-

nwise groupings such that a set of check node and variable node updates can be done per

cycle. Block-structured [70] and quasi-cyclic [39, 21] codes are very well suited for partial-

parallel decoder implementations. The parity check matrix of these codes consists of square

sub-matrices, where each sub-matrix is either a zero matrix or a permuted identity. This

structure makes the memory address generation for partial-parallel decoders very efficient

and many communication standards such as DVB-S2, 802.11n, 802.16e and 10GBASE-T

use this structure.

Figure 2.3 (a) and (b) show the decoding throughput and the energy dissipation

per bit of the decoders versus CMOS technology, respectively. In order to fairly compare

throughput and energy dissipation, implementations with an early termination scheme are

CHAPTER 2. BACKGROUND 14

6590130160180
10

1

10
2

10
3

10
4

CMOS Technology (nm)

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Partial-parallel Decoder

Full-parallel Decoder

scaling technology

contour

(a) Throughput

6590130160180
10

-2

10
-1

10
0

10
1

10
2

CMOS Technology (nm)

E
n

e
rg

y
 p

e
r

b
it

(n
J
/b

it)

Partial-parallel Decoder

Full-parallel Decoder

scaling technology

and voltage contour

(b) Energy per bit

6590130160180
10

-1

10
0

10
1

10
2

10
3

CMOS Technology (nm)

A
re

a
 o

f
D

e
c
o

d
e

r
C

h
ip

 (
m

m
2
)

Partial-parallel Decoder

Full-parallel Decoder

scaling technology

contour

(c) Silicon area

6590130160180
10

3

10
4

10
5

CMOS Technology (nm)

N
u

m
b

e
r

o
f
e

d
g

e
s
 in

 L
D

P
C

 c
o

d
e

Partial-parallel Decoder

Full-parallel Decoder

(d) Number of edges (connections) in code

Figure 2.3: Throughput, energy dissipation per bit, silicon area and number of edges (check
node and variable node connections in Tanner graph) of reported LDPC decoder ASIC
implementations versus CMOS technology. For throughput and energy plots the implemen-
tations with early termination scheme are excluded. Also for the area plot, full-parallel
implementations with reduced routing schemes such as Split-Row [50], Split-Row Thresh-
old [54] and bit-serial [17] methods are excluded for a fair comparison. The idealized contour
in the throughput plot is obtained through linear scaling with technology (S); in the en-
ergy plot it is obtained through linear scaling with technology and quadratic scaling with
voltage (V); and in the area plot it is obtained through quadratic scaling with technology.

excluded. A curve is shown connecting data points that have the maximum throughput

and minimum energy per given technology in Fig. 2.3 (a) and (b), respectively. As shown

in the figures, in general, most partial-parallel decoders have lower decoding throughput

and higher energy dissipation than full-parallel decoders in each technology. However, as

shown in Fig. 2.3 (c) (where the curve connects the smallest die area per given technology)

full-parallel decoders have larger circuit area than partial-parallel decoders. Also note that,

in general, the number of edges in LDPC codes, which is an indication of code complexity,

CHAPTER 2. BACKGROUND 15

has increased as technology advances (Fig. 2.3 (d)).

2.3 Current Research on LDPC Decoders

Current research on LDPC decoders has focused on efficient code design, decoding

algorithm, and VLSI implementation to meet the demands for current applications. These

requirements are: very low error floor, hardware reconfigurability, small silicon area, very

high throughput and high energy efficiency.

2.3.1 Structured LDPC Codes

LDPC codes by nature have a very random structure that makes them very in-

efficient for hardware implementations. A new class of hardware efficient codes are called

Quasi-Cyclic (QC) [21, 36, 12] or block-structured LDPC codes [70] and have shown compa-

rable error performance as randomly structured codes. These codes have both encoding [37]

and decoding advantage over other types of LDPC codes. The parity check matrix of these

codes consists of square sub-matrices, where each sub-matrix is either a zero matrix or a

permuted identity. An example is shown in Fig. 2.4, which defines a matrix with n × b

columns which is the code length and m × b rows with b × b submatrices. This structure

makes the memory address generation for partial-parallel decoders very efficient and many

communication standards such as DVB-S2, 802.11n and 802.16e and 10GBASE-T use this

structure.

2.3.2 Error Floor Reduction

Although message passing decoding for LDPC codes have shown a very good error

performance, most LDPC codes have a major drawback known as an error floor and this

is when the error performance curve’s slope drop suddenly becomes shallow [62]. Usually

this happens when a small number of check sums are not satisfied because of a very small

number of errors. A trapping set is defined as a set of variable nodes that are connected

to a small number of odd degree check nodes [32, 62, 27]. If errors happen on variable

nodes in the trapping set, the messages from such a small number of check nodes are most

CHAPTER 2. BACKGROUND 16

H =

Number of Columns = n×b

N
u

m
b

e
r

o
f

ro
w

s
 =

m
×

b

0

0

b×b

Figure 2.4: Parity check matrix of a quasi-cyclic code consisting of b× b columns and m× b
rows, with n× b permuted identity submatrices.

probably not sufficient to correct these errors, which can result in an error floor. Current

studies to lower the error floor has focused on better code construction techniques, code

concatenation with conventional codes such as Reed-Solomon or BCH and decoding-based

strategies. The latter consists of two-stage decoding. The first stage is usually the regular

message passing scheme, the second stage is performed only if the iterative decoding fails

to correct the errors after some iterations. The recent proposed post-processing methods

perform a message biasing scheme [83] on check nodes or bit flipping on selective variable

nodes [32]. Both of these schemes are followed by at least another iteration of a regular

message passing scheme.

2.3.3 Reconfigurable Decoder Design

A generic architecture for a reconfigurable decoder is shown in Fig. 2.5, which maps

each submatrix or multiple submatricies to a memory block or register file and connects them

to variable and check node processors through a reconfigurable routing scheme. A controller

generates addresses for memory access and defines the interconnections for different modes.

Overlapped check node and variable node processing [14], also known as Turbo decoding

message passing (TDMP) [46] or Layer decoding [28], is used for Quasi-Cyclic codes to

enhance the throughput [47, 40, 66]. Depending on the code structure it may require

reordering row and columns of the parity check matrix for efficient address generation [66].

To reduce the area and power consumption, block-serial scheduling is used [33] and register

files are proposed [66]. For further power reduction, shared processors and memory blocks

CHAPTER 2. BACKGROUND 17

Mem Mem

Mem Mem

Chk Chk

Mem Mem

Mem Mem

Reconfigurable interconnect

Cntrol/

Addr

Gen

Reconfigurable interconnect

Chk Chk

Var Var Var Var

Figure 2.5: A generic reconfigurable decoder architecture

that are not used are deactivated [78].

2.3.4 Routing Congestion Reduction

Full-parallel decoders can potentially have the highest throughput and energy effi-

ciency but because of high routing congestion caused by long global wires between processors

they are not efficient to build. Several works tried to address this problem by reducing rout-

ing congestion and wire delay of the full parallel decoder implementations through bit-serial

communication [18], wire partitioning [59], and floorplan optimization [7, 82]. Bit-serial and

wire partitioning use microarchitectural techniques, while floorplan optimization use phys-

ical layout backend techniques. In the bit-serial method [18], messages are transmitted

serially in multiple cycles. Although the proposed work results in higher clock frequency,

the number of clock cycles required to transmit messages is increased, which overall results

in low decoding throughput and energy efficiency.Wire partitioning offers an improvement

in reducing differences in communication path delays by pipelining wires, however the clock

tree and additional registers increase overall power. For example, in a one frame-per-

iteration design, throughput was improved by only 1.3× but clock power was increased by

a factor of 1.8×, which resulted in worse power and negligible (∼1pJ/bit) or no energy im-

provements [59]. In floorplan optimization a grouping strategy is used to localize irregular

CHAPTER 2. BACKGROUND 18

wires and regularize global wires. While this method might be tangible for codes sizes <

2 Kbits, it requires large backend effort and floorplan design time and also depends on the

code structure. Both microarchitecture and floorplan techniques require careful implemen-

tation in order to reach the optimal efficiency. This work presents algorithm techniques to

reduce interconnect complexity which tradeoff error correction performance for improved

throughput and power.

19

Chapter 3

Split-Row Decoding Method

3.1 Proposed Split-Row Decoding Method

The Split-Row decoding method is proposed to facilitate hardware implementa-

tions capable of: high-throughput, high hardware efficiency, and high energy efficiency.

In the Split-Row algorithm, check node processing is partitioned into two blocks,

where the check node processing in each partition is performed using only the input messages

contained within its own partition, plus one cross-partition sign bit. This stands in contrast

to standard decoding where check node processing requires the passing of all check node

processor input data across the entire row of the parity check matrix. As an illustration,

Fig. 3.1 (a) shows a parity check matrix highlighting the processing of the first check node

using a standard decoding (SPA or MinSum) method. The check node C1 is shown at the

bottom and connects to four variable nodes. The Split-Row method is shown in Fig. 3.1 (b)

where the check node processing is divided into two parallel check node processing blocks

and the check nodes connect to only two variable nodes within each partition.

In the simplest possible split implementation of not passing any information be-

tween partitions, a significant error performance loss results. Thus, a sign bit is passed

between check node processor halves with a single wire. These are the only wires between

partitions. A block diagram of the Split-Row decoder with sign wires between the two

halves is shown in Fig. 3.2.

CHAPTER 3. SPLIT-ROW DECODING METHOD 20

H

HSplit-sp0 HSplit-sp1

100001010

010100001

001001100

001100010

100010001

10010100 001

010

010

100

001

100

0

C1sp0

V3 V5 V8 V10

C1sp1

100001010

010100001

001001100

001100010

100010001

10010100

H

001

010

010

100

001

100

0

C1

V3 V5

(a) (b)

V8 V10

Figure 3.1: The parity check matrix example highlighting the first check node processing
(row processing) step using (a) standard decoding (SPA or MinSum) and (b) Split-Row
decoding. The check node C1 and its connected variable nodes are shown for each method.

Var

Mem

Var

Mem

Chk Chk

SignSp1_0

SignSp0_1

αsplit

Sp0 Sp1

αsplit

Figure 3.2: Block diagram of the proposed Split-Row decoder

CHAPTER 3. SPLIT-ROW DECODING METHOD 21

This architecture has two major benefits: 1) it decreases the number of inputs and

outputs per check node processor, resulting in many fewer wires between check node and

variable node processors, and 2) it makes each check node processor much simpler because

the outputs are a function of fewer inputs. These two factors make the decoder smaller,

faster, and more energy efficient. In the following subsections, we show that Split-Row

introduces some error into the magnitude calculation of the check node processing outputs,

and that the error can be largely compensated with a correction factor.

3.1.1 SPA Split

From a mathematical point of view, all steps are similar to the SPA decoder except

the check node processing step. In each half of the Split-Row decoder’s check node operation,

the parity (sign) bit update is the same as in the SPA decoder, because the sign is passed

between halves. The magnitude part (the second product term) is updated using half of the

messages in each check node of the parity check matrix and this leads to an accuracy loss.

We denote the parity check matrix H divided into half column wise by HSplit. VSplit(i)\j

denotes the set of variable nodes in each half of the parity check matrix connected to check

node Ci, excluding variable node j. For example, in Fig. 3.1 (b) in the left half matrix,

HSplit−sp0, VSplit(1) = {V3, V5} and VSplit(1)\3 = {V5}. Therefore, modifying Eq. 2.2 using

half of the messages yields:

αijSPASplit =
∏

j′∈V (i)\j

sign(βij′)× φ

 ∑
j′∈VSplit(i)\j

φ(|βij′ |)

 (3.1)

If the β input messages for a Split-Row decoder and an SPA decoder are the same

in a particular decoding step, then,

1. αijSPASplit and αijSPA have the same sign, and

2. |αijSPASplit| ≥ |αijSPA|.

Since the sign values are passed between each half, the proof of the first assertion is straight-

forward. The proof of the second assertion comes from the fact that φ is a positive function

CHAPTER 3. SPLIT-ROW DECODING METHOD 22

and therefore the sum of half of the positive values is less than or equal to the sum of all:

∑
j′∈VSplit(i)\j

φ(|βij′ |) ≤
∑

j′∈V (i)\j

φ(|βij′ |) (3.2)

Also φ(x) is a decreasing function, therefore the following inequality holds:

φ

 ∑
j′∈VSplit(i)\j

φ(|βij′ |)

 ≥ φ
 ∑
j′∈V (i)\j

φ(|βij′ |)

 (3.3)

And we obtain:

|αijSPASplit| ≥ |αijSPA| (3.4)

To reduce the difference between αSPASplit and αSPA, αSPASplit values are multiplied by a

correction factor Sfactor less than one according to:

αijSPASplit = Sfactor ×
∏

j′∈V (i)\j

sign(βij′)× φ

 ∑
j′∈VSplit(i)\j

φ(|βij′ |)

 (3.5)

3.1.2 MinSum Split

Similarly, in the MinSum Split decoder the sign bit is computed using the sign

bit of all messages across the whole row of the parity check matrix. The magnitude of a

message in each half is computed using the minimum of the messages in each half.

αijMinSumSplit =
∏

j′∈V (i)\j

sign(βij′)× min
j′∈Vsplit(i)\j

(|βij′ |) (3.6)

It is clear that the minimum value among half of the messages is equal to or larger than

the minimum value of all messages. Therefore, we obtain:

|αijMinSumSplit | ≥ |αijMinSum |. (3.7)

To reduce the difference between αMinSumSplit and αMinSum, αMinSumSplit values are mul-

tiplied by a correction factor Sfactor less than one according to:

αijMinSumSplit = Sfactor ×
∏

j′∈V (i)\j

sign(βij′)× min
j′∈Vsplit(i)\j

(|βij′ |) (3.8)

The correction factor Sfactor is relatively easily obtained empirically through simulations

and examples are given in Section VI.

CHAPTER 3. SPLIT-ROW DECODING METHOD 23

M
 r
o
w
s

c
o
l
w
e
ig
h
t
=
W
c

H =

1
1

1
1

1
1

1

1
1

1

1

1

1

1

1
1

1
1

1
1

1
1

1

1

1
1

1 1

1

1

1

1

1

1

1
1

1

1

1

1
1 1

1

1

1
1

1

1

1

1

1

N/Spn columns

row weight=Wr/Spn
N/Spn columns

row weight=Wr/Spn

HSp0 HSp1 HSpn-1

N/Spn columns

row weight=Wr/Spn

Figure 3.3: The parity check matrix of a (Wc,Wr) (N,K) permutation-based LDPC code
highlighting the first check node processing operation with Spn-way splitting (Multi-Split)
method.

3.2 Multi-Split Decoding Method

To further reduce interconnect and decoder complexity, the Multi-Split method

partitions matrix rows into Spn multiple blocks (called Split-Spn). This requires new cir-

cuits to correctly process sign bits among multiple blocks and is especially beneficial for

regular permutation-based high row-weight (Wr ≥ 16) decoders. A Multi-Split parity check

matrix highlighting the check node processing operation is shown in Fig. 3.3. We denote

each partition of the parity check H which is divided into Spn partitions column wise by

HSpk, k = 0, ..., n − 1. As shown in the figure, in check node processing (check-node up-

date) there are only Wr/Spn nodes to be processed in each partition, resulting in even less

complex processing and wire interconnect in each partition.

In each partitioned Multi-Split row operation, the parity (sign) bit update is the

same as in the SPA decoder, since it uses sign bits from across the row of the matrix.

The magnitude part is updated using the messages of its own partition of the parity check

matrix. Similar to the Split-Row method, the magnitude part of the check node processor

output, α, is larger than that of the SPA decoder. Therefore the error performance can

be improved by multiplying the αSplit-Spk values with a correction factor Sfactor less than

CHAPTER 3. SPLIT-ROW DECODING METHOD 24

Sp1Sp0
Spn-1

SignSp0_1

SignSp1_0

SignSp1_2

SignSp2_1

SignSpn-2_n-1

SignSpn-1_n-2

final Local

sign

 local signs local signs local signs

final Local

sign

final Local

sign

MemMem

Var Var

Mem

VarChkChkChk

SignSp0_1

SignSp1_0

SignSp1_2

SignSp2_1

SignSpn-2_n-1

SignSpn-1_n-2

Figure 3.4: Multi-Split decoder with Spn-way splitting method, highlighting inter-partition
sign wires and the simplified logic for implementation of the sign bit in each check node
processor.

one. Modifying Eq. 2.2 using the messages in each partition yields:

αijSPASpk = Sfactor ×
∏

j′∈V (i)\j

sign(βij′)× φ

 ∑
j′∈VSpk(i)\j

φ(|βij′ |)

 (3.9)

VSpk(i)\j denotes the set of variable nodes in each partition of the parity check matrix

(HSpk) which connects to check node Ci, excluding variable node j.

Similarly, in MinSum Multi-Split, check node processor outputs are normalized

with a correction factor Sfactor:

αijMinSumSpk = Sfactor ×
∏

j′∈V (i)\j

sign(βij′)× min
j′∈VSpk(i)\j

(|βij′ |) (3.10)

Figure 3.4 shows how the sign bits are calculated according to Eq. 3.9 or Eq. 3.10.

The top half of the figure shows a block diagram of a decoder using an Spn-way splitting

method. A small number of sign wires pass between decoder partitions. The bottom

CHAPTER 3. SPLIT-ROW DECODING METHOD 25

0 0.2 0.4 0.6 0.8 1
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Correction Factor (S)
 (b)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

0 0.2 0.4 0.6 0.8 1
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Correction Factor (S)
 (a)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

SNR=3.0
SNR=3.2
SNR=3.4
SNR=3.6
SNR=3.8
SNR=4.0
SNR=4.2
SNR=4.4
SNR=4.6

SNR=3.0
SNR=3.2
SNR=3.4
SNR=3.6
SNR=3.8
SNR=4.0
SNR=4.2
SNR=4.4

Optimal correction factor
 at 4.4 dB=0.3 Optimal correction factor

at 4.6 dB=0.22

Figure 3.5: Determination of correction factor (Sfactor) for a (6,32) (2048,1723) RS-based
LDPC code using (a) MinSum Split-2 and (b) MinSum Split-4 decoders. The optimal
correction factor variations with the SNR values are very small with the average value of
0.3 for Split-2 and 0.19 of Split-4.

half shows the sign logic inside each check node processor. Local sign bits are generated

inside each block simultaneously, resulting in lower latencies. The final local sign bits are

calculated using 1 or 2 bits from adjacent blocks and are used to generate sign bits for

output messages.

3.3 Correction Factor and Bit Error Performance Results

3.3.1 Split-Row Correction Factors

Finding the optimal correction factor for the Split-Row algorithm that results in

the best error performance requires complex analysis such as density evolution [63]. For

simplicity and to account for realistic hardware effects, the correction factors presented in

this paper are determined empirically based on bit error rate (BER) results for various SNR

values and numbers of decoding iterations.

As the number of partitions increases, a smaller correction factor should be used

to normalize the error magnitude of check node processing outputs in each partition. This

is because for SPA Multi-Split, as the number of partitions increases, the summation on

the left side of Eq. 3.2 decreases in each partition and since φ(x) is a decreasing function,

CHAPTER 3. SPLIT-ROW DECODING METHOD 26

(N,K) (Wc,Wr) average optimal correction factor Sfactor
SP-2 SP-4 SP-6 SP-8 SP-12

(1536,770) (3,6) 0.45 * - * *
(1008,507) (4,8) 0.35 - * - *
(1536,1155) (4,16) 0.4 0.25 * - *
(8088,6743) (4,24) 0.4 0.27 0.22 - -
(2048,1723) (6,32) 0.3 0.19 * 0.15 *

(16352,14329) (6,32) 0.4 0.25 * 0.17 *
(8176,7156) (4,32) 0.4 0.24 * 0.17 *
(5248,4842) (5,64) 0.35 0.25 * 0.2 *
(5256,4823) (6,72) 0.35 0.2 0.18 0.15 0.14

Table 3.1: Average optimal correction factor Sfactor for different constructed regular codes.
The asterisk (“*”) indicates that the row weight of the code is not evenly divisible by that
level of splitting. The dash (“-”) indicates that the row weight for that level of splitting is
very small and error performance loss is therefore significant (≥0.7 dB).

the summation on the left side of Eq. 3.3 becomes larger which results in larger magnitude

check node processing outputs in each partition. For MS Multi-Split, except for the parti-

tion which has the global minimum, the difference between local minimums in most other

partitions and the global minimum becomes larger as the number of partitions increases.

Thus, the average check node processor output magnitude gets larger as the number of

partitions increases and a smaller correction factor is required to normalize the check node

processing outputs in each partition.

Achieving an absolute minimum error performance would require a different cor-

rection factor for each check node processor output—but this is impractical because it would

require knowledge of unavailable information such as check node processor inputs in other

partitions. Since significant benefit comes from the minimization of communication between

partitions, we assume a constant correction factor for all row processing outputs. This is

the primary cause of the error performance loss and slower convergence rate of Split-Row.

Figure 3.5 plots the error performance of a (6,32) (2048,1723) RS-based LDPC

code [19] when decoded with (a) MinSum Split-2 and (b) MinSum Split-4 methods versus

correction factors for various SNR values with a maximum of 15 decoding iterations. As

shown in the figures, there is a strong dependence of the error performance on the correction

factor magnitudes. The optimum correction factors are different for different SNR values,

although the variations are very small. In MinSum Split-2 the optimum correction factors

CHAPTER 3. SPLIT-ROW DECODING METHOD 27

2 2.5 3 3.5 4 4.5 5
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Eb/N0 (dB)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

SPA
MinSum Normalized
SPA Split−2
MinSum Split−2
SPA Split−4
MinSum Split−4

Figure 3.6: BER performance of the (6,32) (2048,1723) code using the Multi-Split method
in SPA and MinSum decoders with optimal correction factors.

for SNR ranges of 3.4–4.4 dB are between 0.28–0.32 with an average of 0.3 and a variation

from the mean of ±0.016 (±5%). In MinSum Split-4 the optimum correction factor is in the

range 0.16–0.22 with an average of 0.19 and a variation of ±0.02 (±11%). Similar analysis

was performed for various maximum numbers of decoding iterations and simulation results

indicate the optimum correction factors remain the same as the values shown in Fig. 3.5.

Since the error performance improvements are small (≤0.07 dB) if a decoder used

multiple correction factors for different SNR values, we use the average value as the correc-

tion factor for the error performance simulations in this paper.

Table 3.1 summarizes the average optimal correction factors for different regular

constructed permutation-based codes with various levels of splitting. Multi-Split is specially

beneficial for regular high row weight codes. Correction factors decrease in magnitude as

the level of splitting increases; but the correction factor varies little across the wide variety

of codes for the same level of splitting.

CHAPTER 3. SPLIT-ROW DECODING METHOD 28

0 1 2 3 4 5 6 7
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Eb/N0(dB)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

SPA
MinSum Normalized
SPA Split−2
MinSum Split−2
Improved WBF
WBF
BF

Figure 3.7: Error performance comparison with different decoding algorithms for a (4,32)
(8176,7156) QC-LDPC code

3.3.2 Error Performance Results

All simulations assume an additive white Gaussian noise channel with BPSK mod-

ulation. BER results presented here were made using simulation runs with more than 100

error blocks each and with a maximum of 15 iterations (Imax = 15) or were terminated

early when a zero syndrome was detected for the decoded codeword.

Figure 3.6 shows the bit error rate (BER) for the same code using standard, Split-2

and Split-4 decoding with SPA and MinSum algorithms. The error performance of SPA

Split-2 is approximately 0.35 dB away from SPA and SPA Split-4 is 0.2 dB away from SPA

Split-2 at BER = 10−7. The BER curves show that when using the same level of splitting

in SPA and MinSum decoders, the error performance of MinSum Split is about 0.05 dB

away from the SPA Split decoder.

Figure 3.7 shows the error performance of the (4,32) (8176,7156) Euclidean geometry-

based QC-LDPC code [12] using standard and Split-2 decoding in SPA and MinSum

algorithms. Also shown are reduced complexity hard decision algorithms: Bit-Flipping

(BF) [25], weighted Bit-Flipping (WBF) [34], and improved WBF [80]. Split-2 performs

approximately 0.5 dB away from the SPA and MS decoders and attains around 1.7 dB gain

CHAPTER 3. SPLIT-ROW DECODING METHOD 29

3.5 4 4.5 5 5.5
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Eb/N0(dB)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

MinSum Norm

MinSum Split−2
MinSum Split−4
MinSum Split−6
MinSum Split−8
Minsum Split−12

Figure 3.8: BER performance of a (6,72) (5256,4823) QC-LDPC code using various MinSum
decoders with different levels of splitting and near-optimal correction factors.

over improved WBF at BER = 2× 10−7.

With high row-weight codes, the H matrix can be split into more blocks reducing

the decoder complexity even further. As an example, Fig. 3.8 shows the error performance

for a (6,72) (5256,4823) code with row weight 72 using MinSum normalized algorithm with

different levels of splitting and with near-optimal correction factors. Changing from MinSum

to Split-2 loses about 0.25 dB. Then, from Split-2 through Split-4, 6, 8, and all the way to

Split-12 results in small degradations of less than 0.1 dB in each step, and the total from

Split-2 to Split-12 is only 0.3 dB loss at BER = 10−7.

3.4 Full-Parallel MinSum Multi-Split Decoders

Figure 3.9 shows the top level block diagram of a full-parallel decoder for an N -

bit and M -parity check code using the Multi-Split method. The decoder uses a two-phase

check node and variable node processing method. The pipelined decoder is partitioned

into Spn sub-blocks where the check node processors are interconnected by 2M sign wires

CHAPTER 3. SPLIT-ROW DECODING METHOD 30

Chk
1

Chk
2

Chk
M

Sign Sp0

Sign Sp1

Sign Spn-2

Sign Spn-1

Sign Sp1

Sign Sp2

Sp0 Spn-1

Var
(Spn-1)J+1

Var
N-1

Var
(Spn-1)J

Var
1

Var
J-1

Var
0

Sp1

Var
J+1

Var
2J-1

Var
J

Syndrome Check

2 M sign

wires

Chk
1

Chk
2

Chk
M

Chk
1

Chk
2

Chk
M

Figure 3.9: Top level block diagram of a full-parallel decoder corresponding to an M ×N
parity check matrix, using Split-Row with Spn partitions. The inter-partition Sign signals
are highlighted. J = N/Spn, where N is the code length.

(each check node processor sends its sign bit and receives a sign bit from the check node

processor in the neighboring partition). Each partition consists of M check node processors

and N/Spn variable node processors. The α messages from each check node processor are

routed to variable node processors according to the parity check matrix structure. Similarly,

β messages are sent to corresponding check node processors after syndrome check and after

being synchronized by the global clock signal.

The check node processor block diagram for the MinSum Multi-Split decoder in

partition Spk is shown in Figure 3.10. Each row processor has Wr/Spn inputs (β) and

Wr/Spn outputs (α) (instead of the Wr inputs and outputs in MinSum and SPA). The

inputs arrive in sign-magnitude format in parallel. The XOR circuits on top generate the

sign bit for each αi message and the output sign (SignSpk) to the nearest neighbors. In

partition Spk, sign bits from partitions Spk − 1 and Spk + 1 are received, XORed with

the local sign bit resulting SignSpn, which is sent to partition Spk + 1 and Spk − 1. The

sign bit for αi is the 1-bit multiplication of all neighboring sign bits and the sign bit of

local β messages, excluding βi. The Min block finds the smallest magnitude (Min1) and

the second smallest magnitude (Min2) among all β messages in the row of the partition.

It also outputs the location of Min1 (IndexMin1). For each output (αi), the Mux selects

Min2 if (IndexMin1=Indexαi), otherwise it selects Min1 [26].

Figure 3.11 shows the block diagram of the variable node processor. Similar to

MinSum normalized, the messages from check node processors (check nodes) are multiplied

CHAPTER 3. SPLIT-ROW DECODING METHOD 31

Min

Sign (1)

Min1

Min2

1

wr/Spn

| 1|

SignSpk+1 SignSpk

Sign(wr/Spn)

| 1|

| wr/Spn |

Sign (wr/Spn)

| wr/Spn |

Sign(1)

SignSpk-1

Index Min1 Comp

Index 1

Index Min1 Comp

Index wr/Spn

Sign Logic for
Multi-Split

Figure 3.10: Check node processor block diagram of MinSum Multi-Split for partition Spk,
with sign logic on top and magnitude calculation of α at the bottom.

by the correction factor Sfactor. This correction scheme can be implemented with shift

registers if the correction factor is a power of 2, or can be implemented using lookup tables—

both have small circuit area and complexity. The number of inputs and outputs to each

variable node processor (Wc, which is the column weight of parity check matrix) and their

processing are the same as standard decoding (SPA or MS). After being converted from

sign-magnitude to 2’s complement, α and λ are added together to generate β according to

variable node processing equation Eq. 2.3. β messages are then converted to sign-magnitude

for use in check node processing in the next iteration.

3.5 Decoder Implementation Example and Results

To precisely quantify the benefits of the Split-Row and Multi-Split algorithms

when built into hardware, we have implemented three MinSum full-parallel decoders for

CHAPTER 3. SPLIT-ROW DECODING METHOD 32

+

+

+
3

i

i + jSM

to 2's

2's to

SM

2's to

SM
wc

×S (correction

factor)

SM

to 2's

j=1:wc
1

wc

1

×S (correction

factor)

Figure 3.11: Variable node processing unit block diagram

Code length, No. of columns (N) 2048
Information length (K) 1723
Parity check equations, No. of rows (M) 384
Row weight (Wr) 32
Column weight (Wc) 6
Size of permutations 64

Table 3.2: Summary of the key parameters of the implemented (6,32) (2048,1723)
10GBASE-T LDPC code

the (2048,1723) 10GBASE-T code using MinSum normalized, Split-2 and Split-4 meth-

ods. The decoders were developed using Verilog to describe the architecture and hardware,

synthesized with Synopsys Design Compiler, and placed and routed using Cadence SOC

Encounter. All designs were created in ST Microelectronics’ 65 nm, 1.3 V low-leakage,

seven-metal layer CMOS.

The parity check matrix of the (2048,1723) code has 384 rows and is composed of

6× 32 sub-matrices. Each sub-matrix is a 64× 64 permutation. Table 3.2 summarizes the

code parameters that specify all three decoder implementations.

The full-parallel decoder maps each variable node to one variable node processor

and each check node to one check node processor. Figure 3.12 shows the mapping block

diagrams for full-parallel decoders using (a) MinSum normalized, (b) Split-2 and (c) Split-

4 architectures. The MinSum normalized decoder has 384 row and 2048 variable node

processors corresponding to the parity check matrix dimensions M and N, respectively. As

seen in Fig. 3.1 and further described in Sec. VII, the split architectures reduce the number

of interconnects by reducing the number of columns per sub-block by a factor of 1/Spn.

CHAPTER 3. SPLIT-ROW DECODING METHOD 33

Thus, in each Split-2 sub-block there are again 384 row processors (though simplified), but

only 1024 variable node processors. For Split-4 there are only 512 variable node processors

in each sub-block. The area and speed advantage of a Multi-Split decoder is significantly

higher than in a MinSum normalized version due to the benefits of smaller and relatively

lower complexity partitions, each of which communicate using short and structured sign

passing wires.

3.5.1 Effects of Fixed-point Number Representation

One of the major issues when realizing decoder architectures is the choice of num-

ber representation. Although software simulations can show the trade-off in error perfor-

mance due to quantization noise, it does not give any indication of the hardware costs.

Figure 3.14 compares the error performance of floating-point and 5-bit fixed-point imple-

mentations of MinSum normalized, MinSum Split-2 and MinSum Split-4 decoders. The

MinSum fixed-point is less than 0.1 dB away from MinSum floating point. The error

performance loss in Split-2 and Split-4 fixed-point is about 0.15 dB compared to their

floating-point equivalents. Because of this reasonable loss in error performance compared

to floating-point and its greatly reduced hardware costs, we focus only on trade-offs of

fixed-point word widths.

Although there have been several studies on the quantization effects in LDPC

decoders [85], [10], as a base overview of the effects of word length in a decoder’s datapath

we will uniformly change the word widths of the λ, α and β messages. For a fixed-point

datapath width of q bits, the majority of the decoder’s hardware complexity can be roughly

estimated by the wires going to and from variable and check node processors. For M check

node processors, the total number of word busses that pass α messages is M ×Wr, while

N variable node processors that pass β messages require N ×Wc messages. Therefore, the

total number of global communication wires is q× (M ×Wr+N ×Wc). Increasing the word

width of the datapath from a 5-bit to 6-bit fixed-point representation—4.1 and 4.2 formats,

respectively—increases the number of global wires by M ×Wr + N ×Wc. However, the

CHAPTER 3. SPLIT-ROW DECODING METHOD 34

Col

1

Col

16

Row

Sp0

Col

17

Col

32

Row

Sp1

SignSp1_0

SignSp0_1

Col

1
Col

2

Col

32

Row

Row
Sp1

Row
Sp2

Row+Col

Sp1

Row+Col

Sp2

Row+Col

Sp0

Col

9
Col

16

Col

17

Col

25Row
Sp0

Row
Sp3

Col

1

Col

8
Col

26

Col

32

Row+Col

Sp1

Row+Col

Row+Col

Sp0

Row+Col

Sp3

(a) (b)

(c)

Figure 3.12: Mapping a full-parallel decoder with (a) MinSum normalized (b) Split-2 and
(c) Split-4 decoding methods for the (6,32) (2048,1723) code

CHAPTER 3. SPLIT-ROW DECODING METHOD 35

Figure 3.13: Final layout of (a) MinSum normalized, (b) MinSum Split-2 and (c) MinSum
Split-4 decoder chips, shown approximately to scale

2.5 3 3.5 4 4.5 5
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Eb/N0 (dB)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

MinSum Normalized Floatingpoint
MinSum 5bit−4.1
MinSum Split−2 Floatingpoint
MinSum Split−2 5bit−4.1
MinSum Split−4 Floatingpoint
MinSum Split−4 5bit−4.1

Figure 3.14: BER performance of a (6,32) (2048,1723) LDPC code with floating-point and
fixed-point 5-bit 4.1 implementations of MinSum normalized, MinSum Split-2 and MinSum
Split-4 with optimal correction factors

CHAPTER 3. SPLIT-ROW DECODING METHOD 36

MinSum Split-2 Split-4
normalized MinSum MinSum

CMOS fabrication process 65 nm CMOS, 1.3 V
Area utilization 38% 50% 85%
Average wire length (µ) 175.2 115.5 73.8
Area per sub-block (mm2) 20 6.9 1.5
Total layout area (mm2) 20 13.8 6.1

% area for check node processors 13.2% 19.2% 41.3%
% area for variable node processors 8.0% 11.6% 26.0%
% area for registers and clock tree 16.8% 19.2% 17.7%
% area without standard cells 62.0% 50.0% 15.0%

Maximum clock rate (MHz) 59 110 146
Power dissipation (mW) 1941 2179 1889

Throughput @Imax = 15 (Gbps) 8.1 15.0 19.9
Energy per bit @Imax = 15 (pJ/bit) 241 145 95

Avg. iterations @ BER = 3× 10−5 (Iavg) 3.8 4.8 4.9
Throughput @Iavg (Gbps) 31.8 46.9 61.0
Energy per bit @Iavg (pJ/bit) 61 46 31

Table 3.3: Comparison of the three full-parallel decoders implemented in 65 nm CMOS for
a (6,32) (2048,1723) code. All area values are for final placed and routed layout. Maximum
number of iterations Imax = 15.

complexity caused by additional wires is not a simple linear relationship. When designed in

a chip, every additional wire results in a super-linear increase in circuit area and delay [7].

On the other hand, using wider fixed-point words improves the error performance.

BER simulations show an approximate 0.07-0.09 dB improvement in all three decoders when

using 6-bit words (4.2) instead of 5-bit words (4.1). To achieve this improved performance

for MinSum normalized with one additional bit, the number of wires increases by M ×

Wr +N ×Wc, but for Multi-Split the increase is only M ×Wr + (N/Spn)×Wc per block.

Synthesis results for a 6-bit implementation of Split-2 and Split-4 show that the row and

variable processors have a 12% and 8% area increase respectively, without any reduction

in clock rate, compared to a 5-bit implementation using the same constraints. Thus, the

error performance loss of the Split-2 and Split-4 decoders can be reduced by using a larger

fixed-point word with a small area penalty.

CHAPTER 3. SPLIT-ROW DECODING METHOD 37

3.5.2 Area, Throughput and Power Comparison

Figure 4.8 shows the final chip layouts of the (a) MinSum normalized, (b) MinSum

Split-2 and (c) MinSum Split-4 decoders, and Table 5.3 summarizes their post-layout results.

In Split-2 and Split-4, although the number of check node processors increases with higher

splitting levels (they are replicated Spn times), Fig. 4.8 highlights the fact that total chip

size is actually reduced with these Split decoders.

To achieve a fair comparison between all three architectures, a common CAD tool

design flow was adopted. The synthesis, floorplan, and place and route stages of the layout

were automated with minimal designer intervention.

Since Split-Row reduces check node processor area and eliminates significant com-

munication between row and variable node processors (causing them to operate as smaller

nearly-independent groups), layout becomes much more compact and automatic place and

route tools can converge towards a better solution in a much shorter period of time.

As shown in Table 5.3, Split-4 achieves a high area utilization (the ratio of standard

cell area to total chip area) and a short average wire length compared to the MinSum

normalized decoder whose many global row and variable node processor interconnections

force the place and route tool to spread standard cells apart to provide sufficient space for

routing.

As an additional illustration, Table 5.3 provides a breakdown of the basic contrib-

utors of layout area, which shows the dramatic decrease in % area without standard cells

(i.e., chip area with only wires) with an increased level of splitting.

The critical path delay in Split-4 is about 2.3 times shorter than that of MinSum

normalized. Place and route timing analysis and extracted delay/parasitic annotation files

(i.e., SDF) show that the critical path delay is composed primarily of a long series of

buffers and wire segments. Some buffers have long RC delays due to large fanouts of

their outputs. For the MinSum decoder, the sums of interconnect delays caused by buffers

and wires (intrinsic gate delay and RC delay) is 13.1 ns. In Split-2 and Split-4, the total

interconnect delays are 5.1 ns and 6.2 ns, respectively, which are 2.6 and 6 times smaller

than that of MinSum. Thus, Split-4’s speedup over MinSum normalized is due in part to

CHAPTER 3. SPLIT-ROW DECODING METHOD 38

its simplified check node processing, but the major contributor is the significant reduction

in variable/check node processor interconnect delay.

To summarize Split-Row’s benefits, the Split-4 decoder occupies 6.1 mm2, which

is 3.3 times smaller than MinSum normalized. It runs at 146 MHz and with 15 itera-

tions it attains 19.9 Gbps decoding throughput which is 2.5 times higher, while dissipating

95 pJ/bit—a factor of 2.5 times lower than MinSum normalized.

Although it is not possible to exactly quantify the benefit of chip area reductions,

chip silicon area is a critical parameter in determining chip costs. For example, reducing die

area by a factor of 2 results in a die cost reduction of more than 2 times when considering

the cost of the wafer and die yield [61]. Other chip production costs such as packaging and

testing are also significantly reduced with smaller chip area.

At a supply voltage of 0.79 V, the Split-4 decoder runs at 47 MHz and achieves the

minimum 6.4 Gbps throughput required by the 10GBASE-T standard [4]. Power dissipation

is 226 mW at this operating point. These estimates are based on measured data from a

chip that was recently fabricated on the exact same process and operates correctly down to

0.675 V [71].

3.5.3 Wire Statistics

Figure 3.15 shows the wire length distribution of (a) MinSum normalized, (b)

MinSum Split-2, and (c) MinSum Split-4 decoders. Compared to the MinSum decoder, the

longest wire in Split-2 and Split-4 is 1.9 times and 3.6 shorter, respectively. The average

wire length in Split-2 and Split-4 is about 1.5 and 2.4 times shorter, respectively, than the

MinSum decoder.

The total number of sign-passing wires between sub-blocks in the Multi-Split meth-

ods is 2(Spn− 1)M . For these decoders where M = 384, the sign wires in Split-2 are only

0.12% of the total number of wires and in Split-4 they are only 0.30% of the total.

The source of Multi-Split’s benefits are now clear: the method breaks row pro-

cessors into multiple blocks whose internal wires are all relatively short. These blocks are

interconnected by a small number of sign wires. This results in denser, faster and more

CHAPTER 3. SPLIT-ROW DECODING METHOD 39

0 2000 4000 6000 8000
1

100

10000

1000000

Wire Length (um)
(a) MinSum normalized

N
um

be
r

of
 W

ire
s

Longest wire
= 7909 um

0 2000 4000 6000 8000
1

100

10000

1000000

Wire Length (um)
(b) MinSum Split−2

N
um

be
r

of
 W

ire
s

Longest wire
= 4245 um

0 2000 4000 6000 8000
1

100

10000

1000000

Wire Length (um)
(c) MinSum Split−4

N
um

be
r

of
 W

ire
s

Longest wire
= 2208 um

Figure 3.15: Wire length distribution for (a) MinSum normalized, (b) MinSum Split-2 and
(c) MinSum Split-4 decoders

CHAPTER 3. SPLIT-ROW DECODING METHOD 40

3.8 4 4.2 4.4

10
−8

10
−6

10
−4

10
−2

4.5

3.6

3.1

2.4

4.2

3.5

3.1

2.7

3

3

2.8

2.6

10.1

6.6 4.8

3.9

8.6

6.4

4.8

3.9

12.1

8.7

6.2

4.9

Eb/N0 (dB)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

MS Imax=15
MS Imax=5
MS Imax=3
MS Split−2 Imax=20
MS Split−2 Imax=15
MS Split−4 Imax=15

Figure 3.16: Error performance of the MinSum normalized, MinSum Split-2 and MinSum
Split-4 decoders for (2048,1723) code with various maximum number of iterations (Imax).
The average number of decoding iterations is shown at every simulation point.

energy efficient circuits.

3.5.4 Analysis of Maximum and Average Numbers of Decoding Iterations

The maximum number of decoding iterations strongly affects the best case error

performance, the maximum achievable decoder throughput, and the worst case energy con-

sumption. Fortunately, the majority of frames require only a few decoding iterations to

converge (specially at high SNRs). By detecting early decoder convergence, throughput

and energy can potentially improve significantly while maintaining the same error perfor-

mance. Early convergence detection is done by a syndrome check circuit [18, 66] which

checks the decoded bits every cycle (see Fig. 3.9) and terminates the decoding process when

convergence is detected. Decoding of a new frame can begin if one is available.

Post-layout results show that the syndrome check block for a (2048,1723) code

occupies only approximately 0.1 mm2 and its maximum delay is 2 ns. By adding a pipeline

stage for the syndrome check, the block’s delay does not add at all to the critical path delay

CHAPTER 3. SPLIT-ROW DECODING METHOD 41

3.8 4 4.2 4.4
0

10

20

30

40

50

60

70

Eb/N0 (dB)

A
ve

ra
ge

 D
ec

od
in

g
T

hr
ou

gh
pu

t (
G

bp
s)

MS Imax=15
MS Imax=5
MS Imax=3
MS Split−2 Imax=20
MS Split−2 Imax=15
MS Split−4 Imax=15

(a)

3.8 4 4.2 4.4
0

20

40

60

80

100

Eb/N0 (dB)

A
ve

ra
ge

 E
ne

rg
y

pe
r

B
it

(p
J/

bi
t)

MS Imax=15
MS Imax=5
MS Imax=3
MS Split−2 Imax=20
MS Split−2 Imax=15
MS Split−4 Imax=15

(b)

Figure 3.17: (a) Average decoding throughput and (b) average energy dissipation per bit in
MinSum normalized, MinSum Split-2 and MinSum Split-4 decoders as a function of SNR
and the average decoding iteration for different maximum numbers of iterations (Imax).

of the decoder.

Figure 3.16 compares the BER of MinSum normalized, MinSum Split-2, and Min-

Sum Split-4 when decoding the (2048,1723) code with a maximum number of decoding

iterations (Imax). At every simulation point the average number of iterations resulting

in convergence is also shown. At the same BER and with an identical Imax setting, the

average number of iterations in Split-2 is 1.2 to 1.4 times larger than MinSum normalized,

and Split-4 is 1.3 to 1.5 times larger. Despite requiring more decoding iterations per block,

the Split-2 and Split-4 decoders achieve a throughput 1.5 and 1.9 times higher and energy

dissipation 1.3 and 2.0 times lower, respectively, when compared to the MinSum decoder

at BER = 3× 10−5. These data are detailed in Table 5.3.

Figure 3.17 shows the (a) average throughput and (b) average energy dissipation

per bit for the same group of decoders shown in Fig. 3.16 as a function of SNR (at different

Imax). The variance across SNR is caused by a varying number of decoding iterations to

achieve convergence (see Fig. 3.16). For throughput results, we assume that there is always

a new frame to be decoded upon request.

It is interesting to compare decoders at the same BER. From Fig. 3.16, Split-2 at

Imax = 20 and MinSum normalized at Imax = 5 both have nearly the same BER. But

the Split-2 implementation has 1.2 to 1.3 times higher throughput while consuming 1.1

CHAPTER 3. SPLIT-ROW DECODING METHOD 42

times lower energy for SNR values larger than 4.1 dB. Similarly, Split-4 at Imax = 15 and

MinSum normalized at Imax = 3 have nearly equal BER, but Split-4 has 1.1 to 1.3 times

greater throughput and 1.1 to 1.4 times lower energy dissipation for SNR values larger than

4.1 dB.

In summary, with the same maximum number of decoding iterations (Imax) and

at the same BER, the average number of decoding iterations (Iavg) of Split-2 and Split-4 are

larger than that of MinSum normalized, but they still have larger throughput and energy

efficiency at high SNR values. The maximum number of decoding iterations for MinSum

normalized can be lowered until it obtains the same BER as Split-2 and Split-4. Even

when MinSum normalized operates with a much lower number of iterations, Split-2 and

Split-4 have higher throughput and energy efficiencies for most SNR values. In addition,

Split-2 and Split-4 require 1.4 times and 3.3 times smaller circuit area, respectively, than

the MinSum normalized decoder.

3.6 Summary

The proposed Split-Row and Multi-Split algorithms are viable approaches for high

throughput, small area, and low power LDPC decoders, with a small error performance

degradation that is acceptable for many applications—especially in mobile designs that

typically have severe power and cost constraints. The method is especially well suited for

long-length regular codes and codes with high row weights. Compared to standard (MinSum

and SPA) decoding, the error performance loss of the method is about 0.35–0.65 dB for the

implemented (2048,1723) code, depending on the level of splitting.

The proposed algorithm and architecture break check node processors into multiple

blocks whose internal wires are all relatively short. These blocks are interconnected by a

small number of sign wires whose lengths are almost zero. The result is decoders with

denser, faster and more energy efficient circuits.

We have demonstrated the significant benefits of the splitting methods by imple-

menting three decoders using MinSum normalized, MinSum Split-2, and MinSum Split-4

for the 2048-bit code used in the 10GBASE-T 10 Gigabit ethernet standard. Post-layout

CHAPTER 3. SPLIT-ROW DECODING METHOD 43

simulation results show that the Split-4 decoder is 3.3 times smaller, attains 2.5 times higher

throughput, and dissipates 2.5 times less energy per bit compared to a MinSum normalized

decoder while performing 0.55 dB away from MinSum normalized at BER = 5× 10−8 with

15 decoding iterations.

Using early termination circuits, the average number of decoding iterations in the

Split-4 decoder is about 1.3 times larger than that of the MinSum normalized decoder. With

early termination enabled, the Split-4 decoder’s throughput is 1.9 times higher and its energy

dissipation per bit is 2.0 times lower compared to the MinSum decoder at BER = 3× 10−5.

Increasing the number of decoding iterations and increasing the fixed-point word

width reduces the error performance loss in the Split-2 and Split-4 decoders. With a maxi-

mum of 20 decoding iterations, the error performance loss of the Split-2 decoder is reduced

to 0.25 dB compared to MinSum normalized while it still achieves times higher throughput

and occupies smaller circuit area.

44

Chapter 4

Split-Row Threshold Decoding

Method

In order to improve the error correction performance of Split-Row, this chapter

presents a low cost algorithm called Split-Row Threshold. We first study the Split-Row

ability to reduce routing congestion in layout.

4.1 Routing Congestion Reduction with Split-Row

In theory, for Spn equally dimensioned matrices, we have 1/Spn times the number

of computations and 1/Spn times the number of messages for each decoder partition per

iteration. But since we still have Spn times the number of decoder partitions, then it

initially appears that the interconnect, memory, and logic complexity should in fact be

the same. However, it has been shown that, for full-parallel decoders, Split-Row provides

significant increase in area utilization over other message-passing decoders that implement

large row weight LDPC codes [18, 50, 49, 42]. This result is reasonable if we consider the

physical role that interconnect complexity plays in the design of VLSI systems.

Given an LDPC decoder with equal Spn decoder partitions, each with 1/Spn logic

and memory resources, the core area Ac per partition is proportional to Spn. Ac quanti-

fies the silicon area used exclusively for logic and memory (e.g. standard cells, SRAMs,

CHAPTER 4. SPLIT-ROW THRESHOLD DECODING METHOD 45

(a) Normalized ratios of per partition properties: av-

erage wire length, capacitance, area and worst case

delay, compared with the routing congestion model

(gSpn = 1/
√
Spn)

(b) Normalized ratios of whole decoder properties:

total wire length, percentage gate count & area in-

crease (i.e. Ac vs. Apl) and via/pin/net/gate

count, compared with routing CPU time

Figure 4.1: Physical indicators of interconnection complexity over five Spn-decoders (Spn =
1, 2, 4, 8, 16) normalized to the the case where Spn = 1 (i.e. MinSum). A 5-bit datapath
(1-bit sign, 4-bit magnitude) is used for all five decoder implementations.

etc.). Routing congestion is defined as: g = Td/Ts, where Td is the number “tracks de-

manded”, and Ts is the number of “tracks supplied” [65]. Tracks are the lengthwise (or

widthwise) wires drawn assuming constant metal pitch and width. The maximum number

of tracks for one metal layer is proportional to the length (or width) of Ac. Therefore, if

we assume that the layout is square1, Ts ∝
√
Ac, which provides a measure of the max-

imum routing resources available. Given that Td ∝ (M × (Wr/Spn) + (N/Spn) × Wc)

(i.e. the communication requirements) per partition, then as the decoder partition’s Ac is

reduced by 1/Spn, the routing congestion for an LDPC decoder with Spn partitions is:

gSpn ∝ (1/Spn)/
√

1/Spn = 1/
√
Spn. In other words, gSpn is the ratio of interconnect

complexity over a given chip dimension.

Figure 4.1(a) plots gSpn with the per partition capacitance, area, average wire

length, and worst-case (intra-partition) delay of five post-layout 10GBASE-T LDPC de-

coder implementations with Spn = 1, 2, 4, 8, 16. (Note that Spn = 1 represents a decoder

using MinSum Normalized.) Clearly our routing congestion model (gSpn = 1/
√
Spn) fol-

1If the layout is rectangular then we have two routing congestion numbers, gwidth and glength, and the
same analysis is done for each. For simplicity we assume a square layout.

CHAPTER 4. SPLIT-ROW THRESHOLD DECODING METHOD 46

low these metrics closely. For all five decoders, we use a 5-bit datapath (1-bit sign and

4-bit magnitude). Since Split-Row eliminates the wires for check node magnitudes between

partitions, its impact of routing congestion reduction is even more significant when imple-

menting larger datapath widths. On the other hand, using a smaller datapath width results

in significant error performance loss when compared to a floating point implementation.

Usually a 4 to 6-bit datapath results in near floating point error performance.

Cadence’s SoC Encounter CAD tool’s computational complexity, given by its rout-

ing CPU time, is a real measure of routing congestion on their algorithms’ ability to converge

to a solution that satisfies the design rules, timing, etc. Since total wire length can be used

as a pessimistic measure of routing congestion [65], then it should behave closely with the

route CPU time. Figure 4.1(b) verifies this, and in fact, the percentage area (as well as gate

count) increase as compared to the original core (synthesis/core area and gate count) also

follow this trend. Via count also matches with the rate of change in total wire length, albeit

at a different magnitude. Notice that gate, pin, and net counts do not increase rapidly until

Spn = 2, which indicate that increases in wire buffering changes more dramatically starting

at the Spn = 2 data point. Since the gate, pin, and net counts represent the connectivity

needed by the design and is not decreasing as much as compared to total wire length for

Spn > 2 this means that the amount of tracks needed (Td) is decreasing faster than the

silicon complexity. Therefore, both post-layout (Apl) and core (Ac) areas will converge with

increasing Spn: limSpn→∞Apl(Spn) = Ac(Spn) ≡ Ac.

In conclusion, theoretical results show that Split-Row can reduce routing conges-

tion by a factor of 1/
√
Spn. Actual implementation results of decoders at the post-layout

step bore out this conclusion.

4.2 Split-Row Threshold Decoding Method

4.2.1 Split-Row Error-performance

Because Split-Row is a general modification of the message-passing algorithm, it

can be used with both SPA and MinSum [52]. In addition, Split-Row, like SPA or MinSum,

CHAPTER 4. SPLIT-ROW THRESHOLD DECODING METHOD 47

H =

(b) H matrix

0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0

0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0

1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0

 0.2 2 2.5 3.2

(c) Matrix initialized with channel data

(replace all non-zero entries with channel data)

0 0.2 0 0 0.1 0 0 0 0 0 2 0 0 0 3 0 0.3 0 0 0 0 5 0 0

0 0 0.8 0 0 1.5 0 0 0 0 0 2 0 0 0 30 0.2 0 0 0 0 4 0

0 0 2.2 0 0 0 0 2.5 3.2 0 0 0 0 0 2.1 0 2 0 0 0-4 0 0 0

 Condition 2a

Condition 3

Condition 4

(d) MinSum Normalized

0 0 0.2 0 0 0.2 0 0 0 0 0 0.2 0 0 0 0.20 0.8 0 0 0 0 0.2 0

-2 0 0 0 0 -2 -2 0 0 0 0 0 -2 02 0 0 0

0 0 0.2 0 0 0.2 0 0 0 0 0 3 0 0 0 20 0.8 0 0 0 0 2 0

0 0 -2.5 0 0 0 0 -2.2 -2 0 0 0 0 0 -2 0 -2.1 0 0 02.2 0 0 0

0 0.1 0 0 0.2 0 0 0 0 0 0.1 0 0 0 0.3 0 3 0 0 0

(e) MinSum Split-Row

0 0.3 00

0 0.1 0 0 0.2 0 0 0 0 0 0.1 0 0 0 0.1 0 0.1 0 0 0 0 000.1

00 0-2.1 0 0

0 0 0.2 0 0 0.2 0 0 0 0 0 T 0 0 0 T0 0.8 0 0 0 0 T 0

0 0 -2.5 0 0 0 0 -2.2 -2 0 0 0 0 0 -2 0 -2.1 0 0 02.2 0 0 0

0 0.1 0 0 0.2 0 0 0 0 0 0.1 0 0 0 0.3 0 T 0 0 0

(f) MinSum Split-Row Threshold, T=0.4

0 0.3 00 Condition 1

 Condition 2b

Condition 4

 3 2 0.3 2.1 3 5 4 0.12-41 0.1 1.5 2.2 0.7 -4 0.2 0.8 5=

Sp0 Sp1

Sp0 Sp1

(a) Channel data ()

min1=0.3, min2=3

min1=2, min2=2.1

min1=2, min2=3

min1=0.1, min2=0.2

min1=0.2, min2=0.8

min1=2.2, min2=2.5

Condition in Sp0 Condition in Sp1

min1=0.2, min2=0.8

min1=2, min2=2.1

min1=0.1, min2=0.2

Check node outputs

using different

decoding algorithms

H matrix and

initialization

Min (from (C))

Min (from (C)) in Sp0 Min (from (C)) in Sp1

Figure 4.2: Channel data (λ), H matrix, the initialization matrix and the check node
output (α) values after the first iteration using MinSum Normalized, MinSum Split-Row
and Split-Row Threshold algorithm. The Split-Row entries in (e) with the largest deviation
from MinSum Normalized are circled and are largely corrected with Split-Row Threshold
method in (f). Correction factors are set to be one here.

CHAPTER 4. SPLIT-ROW THRESHOLD DECODING METHOD 48

is not restricted to either full-parallel, full-serial, or partial-parallel architectures. But the

major benefit from “splitting” is its ability to reduce routing congestion, which primarily

only affects the global interconnects caused by message-passing. Full-serial architectures

will gain nothing, while full-parallel architectures will improve greatly; partial-parallel ar-

chitectures will find their level of improvement based on the amount of “parallelism” versus

“serialism” contained in their designs.

The major cost of partitioning comes from the incomplete message-passing that

specifically affects check node updates (to be discussed in Sec. 4.2.1). The major drawback

of Split-Row is that it suffers from a 0.4–0.7 dB error performance loss proportional to Spn

compared to MinSum and SPA [43] decoders. Because each Split-Row partition has no

information about the minimum value of the other partition, the minimum value in one

partition could be much larger than the global minimum. Then the check node generated α

values in the partition with the error are overestimated. This leads to a possible incorrect

estimation of the bits during its variable node update.

Figure 4.2 shows (a) the channel data (λ) and (b) the first three rows of the parity

check matrix for an LDPC code with Wr = 6, and N = 24. Figure 4.2 (c) shows the

initialization step where all non-zero entries are initialized with channel data. Also, Fig. 4.2

shows the check node outputs using (d) MinSum, (e) MinSum Split-Row and (f) Split-Row

Threshold based on the initialization step. To find Min1 and Min2 for each case, reader

should look at Fig. 4.2(c). For example, in Fig. 4.2(c) in the first row, the entries are: 0.2,

0.1, 2, 3, 0.3 and 5. Therefore, Min1=0.1 and Min2=0.2 in Fig. 4.2(d).

In Split-Row, entries with the largest deviations from MinSum Normalized are

circled. For example, in the second row of the Split-Row matrix output in Fig. 4.2(e), the

local minimum (Min1) in Sp1 is “2”, which is 10 times larger than the local minimum

in Sp0, “0.2”, which is also the global minimum of the entire row. This results in an

overestimation of α values for the bits on the right side of the second row, possibly causing

an incorrect decision for these three bits. In the first row, although Min1 in Sp1 which is

“0.3” is close to the Min1 in Sp0 (“0.1”), Min2 in Sp1 (“3”) deviates significantly from

Min2 in Sp0 (“0.2”) and this results in a large error in the bit on the right side.

CHAPTER 4. SPLIT-ROW THRESHOLD DECODING METHOD 49

4.2.2 Split-Row Threshold Algorithm

The Split-Row Threshold algorithm significantly improves the error performance

without reducing the effectiveness of Split-Row while adding negligible hardware to the

check node processor and one additional wire between blocks [53]. Like Split-Row, the check

node processing step is partitioned into multiple semi-autonomous (Spn) partitions. Each

partition computes localMin1 andMin2 simultaneously and sends the sign-bit with a single

wire to the neighboring blocks serially. However, in the Split-Row Threshold algorithm, both

Min1 and Min2 are additionally compared with a predefined threshold (T), and a single

bit threshold enable (Threshold en out) global signal is sent to indicate the presence of a

potential global minimum to other partitions. The αij:Spk values in Split-Row Threshold

are computed as follows:

αij:Spk = Sfactor ×
∏

j′∈V (i)\j

sign(βij′)︸ ︷︷ ︸
Sign Calculation

× MinSpk︸ ︷︷ ︸
Magnitude Calculation

(4.4)

where MinSpk is given in Algorithm 1. As shown, four conditions will occur: Condition

1 occurs when both Min1 and Min2 are less than threshold T , thus they are used to

calculate α messages according to Eq. 4.1. Additionally, Threshold ensp(k) out(k ± 1),

which represents the general threshold enable signal of a partition Spk with two neighbors,

asserted high, indicating that the least minimum (Min1) in this partition is smaller than T .

Condition 2, as represented by lines 7 to 13, occurs when only Min1 is less than T . As

with Condition 1, Threshold ensp(k) out(k±1) = 1. If at least one Threshold ensp(k±1)

signal from the nearest neighboring partitions is high, indicating that local minimum in the

other partition is less than T , then we use Min1 and T to update the α messages, while

using Eq. 4.2 (Condition 2a). Otherwise, we use Eq. 4.1 (Condition 2b). Condition

3, as represented by lines 14 to 16, occurs when the local Min1 is larger than T and at

least one Threshold ensp(k±1) signal from the nearest neighboring partitions is high; thus,

we only use T to compute all α messages for the partition using Eq. 4.3. Condition 4,

as represented by lines 17 to 19 occurs when the local Min1 is larger than T and if the

Threshold ensp(k ± 1) signals are all low; thus, we again use Eq. 4.1. The variable node

CHAPTER 4. SPLIT-ROW THRESHOLD DECODING METHOD 50

Algorithm 1 Split-Row Threshold Algorithm

Require: j′ ∈ V
Spk(i)\j

Require: Min1i and Min2i as given in Eqs. (2.8) and (2.9)

Require: T threshold value

1: // Finds min(|βij′ |) and Threshold ensp(k) out(k± 1)

2: // for the i-th partition of a Spn-decoder (Spk).

3:

4: if Min1i ≤ T and Min2i ≤ T then

5: Threshold ensp(k) out(k± 1) = 1

6:

MinSpk =


Min1i , if j 6= argmin(Min1i)

Min2i , if j = argmin(Min1i)

(4.1)

7: else if Min1i ≤ T and Min2i > T then

8: Threshold ensp(k) out(k± 1) = 1

9: if Threshold ensp(k + 1) == 1 or Threshold ensp(k− 1) == 1 then

10:

MinSpk =


Min1i , if j 6= argmin(Min1i)

T , if j = argmin(Min1i)

(4.2)

11: else

12: do Equation (4.1)

13: end if

14: else if Min1i > T and (Threshold ensp(k + 1) == 1 or Threshold ensp(k− 1) == 1) then

15: Threshold ensp(k) out(k± 1) = 0

16:

MinSpk == T (4.3)

17: else

18: Threshold ensp(k) out(k± 1) = 0

19: do Equation (4.1)

20: end if

CHAPTER 4. SPLIT-ROW THRESHOLD DECODING METHOD 51

operation in Split-Row Threshold is identical to the MinSum Normalized and Split-Row

algorithms.

The updated check node messages (α) after one iteration using Split-Row Thresh-

old (T = 0.40) are shown in Fig. 4.2(f). Condition 1 and Condition 4 lead to the original

Split-Row decoding, while Condition 2 and Condition 3 largely correct the errors by the

original Split-Row algorithm. Note that this is a simplistic representation of the improve-

ment that Split-Row Threshold decoding will have over Split-Row decoding method for

larger parity check matrices.

4.2.3 Bit Error Simulation Results

The error performance depends strongly on the choice of threshold values. If the

threshold T is chosen to be very large, most local Min1 and Min2 values will be smaller

than T which results in only Condition 1 being met and the algorithm behaves like the

original MinSum Split-Row. On the other hand if the threshold value is very small, most

local minimums will be larger than T and only Condition 4 is met which is again the original

MinSum Split-Row algorithm.

The optimum value for T is obtained by empirical simulations. Although the

Threshold algorithm itself is independent of the modulation scheme and channel model,

in this work we use BPSK modulation and an additive white Gaussian noise (AWGN)

channel for all simulations. Simulations were run until 80 error blocks were recorded.

Blocks were processed until the decoder converged early or the maximum of 11 decoding

iterations was reached. To further illustrate the impact of the threshold value on error

performance, Fig. 4.3(a) plots the error performance of a (6,32) (2048,1723) RS-based LDPC

code [19], adopted for 10GBASE-T [4] versus threshold values for different SNRs, using

Split-Row Threshold with Spn = 2. As shown in the figure, there are two limits for

the threshold value which lead the algorithm to converge to the error performance of the

original Split-Row. Also shown is the optimum value for the threshold (T = 0.2) for which

the algorithm performs best. BER simulation results for a (16,16) (175,255) EG-LDPC and

(4,16) (1536,1155) QC-LDPC codes show that the average optimal threshold T with two

CHAPTER 4. SPLIT-ROW THRESHOLD DECODING METHOD 52

0 0.5 1 1.5 2
10

−5

10
−4

10
−3

10
−2

10
−1

Threshold values

B
it

E
rr

or
 P

ro
ba

bi
lit

y

SNR 3.2
SNR 3.4
SNR 3.6
SNR 4.0
SNR 4.2T=0.2

(a) The BER performance versus threshold value (T) with

different SNR values for Split-2 Threshold. The optimal

region is circled with an average value of T = 0.2.

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR (dB)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

SPA
MS Normalized
MS Split−Row−2 Threshold
MS Split−Row−4 Threshold
MS Split−Row−8 Threshold
MS Split−Row−16 Threshold
MS Split−Row−2 Original

(b) Error performance results

Figure 4.3: The impact of choosing threshold value (T) on the error performance and
BER comparisons for a (6,32)(2048,1723) LDPC code using Sum Product algorithm (SPA),
MinSum Normalized, MinSum Split-Row(original) and Split-Row Threshold with different
levels of partitioning, and with optimal threshold and correction factor values

partitions is 0.22 and 0.23, respectively.

The threshold value can be dynamically varied or made static. Example imple-

mentations include: T dynamically changed while processing, T statically configured at

runtime, or T hard-wired directly into the hardware. In general, decoders will have higher

throughput and higher energy efficiency the less T is allowed to vary. Fortunately, as can

be seen in Fig. 4.3(a), the optimal BER performance is near the same threshold value for

a wide range of SNR values, which means that dynamically varying T produces little ben-

efit. Efficient implementations can use a static optimal value for T found through BER

simulations.

One benefit of Split-Row Threshold decoding is that partitioning of the check node

processing can be arbitrary so long as there are two variable nodes per partition and the error

performance loss is less than 0.3 dB. For example, Fig. 4.3(b) shows the error performance

results for a (6,32) (2048,1723) LDPC code for (from left to right) SPA, MinSum Normalized,

MinSum Split-Row Threshold with different levels of splitting (Spn) and with optimal

threshold values and, lastly Split-Row (original). As the figure shows, Split-2 Threshold is

CHAPTER 4. SPLIT-ROW THRESHOLD DECODING METHOD 53

Split-2 Split-4 Split-8 Split-16

Spn 2 4 8 16
Average optimal T 0.20 0.23 0.24 0.24

Table 4.1: Average optimal Threshold value (T) for the Split-Row Threshold decoder with
different levels of partitioning, for a (6,32) (2048,1723) LDPC code.

about 0.13 dB and 0.07 dB away from SPA and MinSum Normalized, respectively. The

SNR loss between multiple Split-Row Threshold decoders is less than 0.05 dB and total loss

from Split-16 Threshold to Split-2 Threshold is 0.15 dB at BER = 10−7. Also shown in the

plot is the Split-2 original algorithm which is still 0.12 dB away from Split-16 Threshold

algorithm. Table 4.1 summarizes the average optimal threshold values (T) for Split-Row

Threshold, and shows small changes with different partitioning levels.

4.3 Split-Row Threshold Decoding Architecture

4.3.1 Check Node Processor

The logical implementation of a check node processor in partition Spk using Split-

Row Threshold decoding is shown in Fig. 4.4. The magnitude update of α is shown along

the upper part of the figure while the global sign is determined with the XOR logic along

the lower part. In Split-Row Threshold decoding, the sign bit calculated from partition Spk

is passed to the Sp(k − 1) and Sp(k + 1) neighboring partitions to correctly calculate the

global sign bit according to the check node processing equation Eq. 2.6 and Eq. 4.4.

In both MinSum Normalized and Split-Row Threshold decoding, the first minimum

Min1 and the second minimum Min2 are found alongside the signal IndexMin1, which

indicates whether Min1 or Min2 is chosen for a particular α. We use multiple stages of

comparators to find Min1 and Min2. The first stage (the left most) is composed of simple

comparators which sort the two inputs and generate min and max outputs. The second

stage and afterwards consist of 4 to 2 comparators and a block is shown in the right corner

of Fig. 4.4. One benefit of the Split-Row Threshold algorithm is that the number of β inputs

CHAPTER 4. SPLIT-ROW THRESHOLD DECODING METHOD 54

Min1

Min2

β1

βWr/Spn

| β1 |

| βWr/Spn|

IndexMin1

β2

| αWr/Spn |

| α1 |

CompThreshold

Threshold_ensp(k-1)

Threshold_ensp(k+1)

βn–1

βn

βWr/Spn – 1

| β2 |

| βn–1 |

| βn |

|βWr/Spn – 1|

L = log2(Wr/spn)

Comp

Comp

Comp

Comp

4:2

Comp

4:2

Comp

Threshold_ensp(k)_out(k-1)

Threshold Logic

Sign (β1)

SignSp(k-1)_(k)
SignSp(k)_(k+1)

Sign (αWr/Spn)
Sign (βWr/Spn)

Sign (α1)

SignSp(k+1)_(k)SignSp(k)_(k-1)

Threshold_ensp(k)_out(k+1)

Comp

Comp

CompMax1-1

Max1-2

Min1-1

Min1-2

Min2-1

Min3-1

Comp 4:2

Logic

Figure 4.4: The block diagram of magnitude and sign update in check node processor of
partition Sp(k) in Split-Row Threshold decoder. The Threshold Logic is shown within the
dashed line. The 4:2 comparator block is shown in the right.

CHAPTER 4. SPLIT-ROW THRESHOLD DECODING METHOD 55

(variable node outputs) to each check node is reduced by a factor of 1/Spn, which lowers

the circuit complexity of each check node processor as the number of comparator stages is

reduced to L = log2(Wr/Spn).

The threshold logic implementation is shown within the dashed line which consists

of two comparators and a few logic gates. The Threshold Logic contains two additional

comparisons between Min1 and Threshold, and Min2 and Threshold, which are used to

generate the final α values. The local Threshold en signal that is generated by comparing

Threshold and Min1 is OR’ed with one of the incoming Threshold en signals from Sp(k−1)

and Sp(k + 1) neighboring partitions and is then sent to their opposite neighbors.

4.3.2 Variable Node Processor

The variable node equations remain unchanged between MinSum Normalized and

Split-Row Threshold algorithms, and thus the variable node processors are identical in all

cases. Fig. 4.5 shows the variable node processor architecture for both MinSum and Split-

Row Threshold decoders, which computes β messages according to Eq. 2.3 and contains

multi-stage adders. Its complexity highly depends on the numbers of inputs (column weight

Wc) and the input wordwidths. As shown in the figure, this implementation uses a 5-bit

datapath.

4.3.3 Full-parallel Decoder Implementation

The block diagram of a full-parallel implementation of Split-Row Threshold decod-

ing with Spn partitions, highlighting the Sign and Threshold en passing signals, is shown

in Fig. 4.6. These are the only wires passing between the partitions. In each partition,

local minimums are generated and compared with T simultaneously. If the local minimum

is smaller than T then the Threshold en signal is asserted high. The magnitude of the

check node outputs are computed using local minimums and the Threshold en signal from

neighboring partitions. If the local partition’s minimums are larger than T , and at least

one of the Threshold en signals is high, then T is used to update its check node outputs.

Otherwise, local minimums are used to update check node outputs. Figure 4.7 (a) shows the

CHAPTER 4. SPLIT-ROW THRESHOLD DECODING METHOD 56

+

+

+
3

i

i + jSM to

2's

2's to

SM

2's to

SM

wc

SM to

2's

j=1:wc

1

1

wc

SAT

SAT

7

5

5

7

6

6

6

5

× Correction

factor

× Correction

factor

Figure 4.5: The block diagram of variable node update architecture for MinSum Normalized
and Split-Row Threshold decoders.

pipeline diagram of one partition in the decoder. The timing diagram of a check node and

a variable node update is shown in Fig. 4.7 (b). The check and variable node messages are

updated one after the other in one cycle after receiving the Sign and Threshold en signals

from its neighboring partitions. In full-parallel implementations all check and variable pro-

cessor outputs are updated in parallel, and as shown in the timing diagram in Fig. 4.7 (b),

it takes one cycle to update all messages for one iteration. Therefore the throughput for

the proposed full-parallel decoder with code length N is:

Throughput =
N ∗ f

Iterations
(4.5)

where f is the maximum speed of the decoder and is based on the delay of one iterative

check node and variable node processing.

4.4 Design of Five CMOS Decoders

To further investigate the impact on the hardware implementation due to partition-

ing, we have implemented five full-parallel decoders using MinSum Normalized and Split-

CHAPTER 4. SPLIT-ROW THRESHOLD DECODING METHOD 57

Chk

1

Chk

2

Chk

M

Sign Sp0

Sign Sp1

Threshold_ensp0

Threshold_ensp1

Sign Spn-2

Sign Spn-1

Threshold_enspn-2

Threshold_enspn-1

Sign Sp1

Sign Sp2

Threshold_ensp1

Threshold_ensp2

Chk

1

Chk

2

Chk

M

Sp0 Spn-1

Var

(Spn-1)J+1
Var

N-1
Var

(Spn-1)J
Var

1
Var

J-1
Var

0

Chk

1

Chk

2

Chk

M

Sp1

Var

J+1
Var

2J-1
Var

J

Figure 4.6: Top level block diagram of a full-parallel decoder corresponding to a M × N
parity check matrix, using Split-Row Threshold with Spn partitions. The inter-partition
Sign and Threshold en signals are highlighted. J = N/Spn, where N is the code length.

Local sign &

mag update

1/f

Final sign &

mag update

& out

update

All check

nodes update

All variable

nodes update

Iteration 1

Local sign &

mag update
Final sign &

mag update

& out

update

Clk

Iteration 2

Threshold_en_in Threshold_en_out

outCheck

proc Variable

proc

(a) (b)

Figure 4.7: (a) The pipeline and (b) the timing diagram for one partition of Split-Row
Threshold decoder. In each partition, the check and variable node messages are updated in
one cycle after receiving the Sign and Threshold en signals from the nearest neighboring
partitions.

Figure 4.8: Layout of MinSum Normalized and Split-Row Threshold decoder implementa-
tions shown approximately to scale for the same code and design flow

CHAPTER 4. SPLIT-ROW THRESHOLD DECODING METHOD 58

Sp0 Spn-1Sp1

Threshold_en_out

out
Check

proc
Variable

proc

Threshold_en_in Threshold_en_out

out
Check

proc
Variable

proc

Threshold_en_in

out
Check

proc
Variable

proc

Path 2

Path 1

Figure 4.9: The check to variable processor critical path Path1, and the inter-partition
Threshold en critical path Path2 for the Split-Row Threshold decoding method with Spn
partitions.

Row Threshold methods with multiple partitioning for the (6,32) (2048,1723) 10GBASE-T

LDPC code in 65 nm, 7-metal layer CMOS. All circuit-related performance results are

measured under “typical” process and temperature conditions.

The parity check matrix of the 10GBASE-T code has 384 rows, 2048 columns,

row weight 32 (Wr = 32), column weight 6 (Wc = 6) and information length 1723. The

full-parallel MinSum Normalized decoder has 384 check and 2048 variable processors cor-

responding to the parity check matrix dimensions M and N, respectively. The split ar-

chitectures reduce the number of interconnects by reducing the number of columns per

sub-block by a factor of 1/Spn. For example, in each Split-16 sub-block there are 384 check

processors (though simplified), but only 128 (2048/16) variable processors. The area and

speed advantage of a Split-Row Threshold decoder is significantly higher than in a MinSum

Normalized implementation due to the benefits of smaller and relatively lower complexity

partitions, each of which communicate with short and structured sign and Threshold en-

passing wires. In this implementation, we use a 5-bit fixed-point datapath, which results

in about 0.1 dB error performance loss for MinSum Normalized and MinSum Split-Row

Threshold decoders, when compared to the floating point implementation. Increasing the

fixed-point word width improves the error performance at the cost of a larger number of

global wires and larger circuit area.

4.4.1 Design Flow and Implementation

We use a standard-cell-based automatic place and route flow to implement all

decoders. The decoders were developed using Verilog to describe the architecture and hard-

CHAPTER 4. SPLIT-ROW THRESHOLD DECODING METHOD 59

ware, synthesized with Synopsys Design Compiler, and placed and routed using Cadence

SOC Encounter. Each block is independently implemented and connected to the neigh-

boring blocks with Sign and Threshold en wires. We pass these signals across each block

serially. One of the key benefits of the Split-Row Threshold decoder is that it reduces the

time and effort for a full-parallel decoder implementation of large LDPC codes using auto-

matic CAD tools. Since Split-Row Threshold reduces the check node processor complexity

and the interconnection between check nodes and variable nodes per block, then each block

becomes more compact whose internal wires are all relatively short. The blocks are inter-

connected by a small number of sign wires. This results in denser, faster and more energy

efficient circuits. Split-Row also has the potential to minimize cross talk and IR drops due

to reduced wire lengths, reduced routing congestion, more compact standard cell placement,

and lower overall area.

Figure 4.8 shows the post-route GDSII layout implementations drawn roughly to

scale for the five decoders using MinSum Normalized and Split-Row Threshold algorithms

with multiple levels of partitioning. In addition to the significant differences in circuit area

for complete decoders, the even more dramatic difference in individual “place and route

blocks” is also apparent.

4.4.2 Delay Analysis

In MinSum Normalized decoder, the critical path is the path along a partition’s

local logic and wire consisting of the longest path through the check node and variable

node processors. However, in Split-Row Threshold decoder, since the Threshold Logic (see

Fig. 4.4) is also dependent on the neighboring Threshold en signals from partitions Sp(k−1)

and Sp(k + 1), one possible critical path is a Threshold en signal that finally propagates

to partition Spk and changes the mux select bits influencing check node output α. To

illustrate both critical paths, Fig. 4.9 highlights two possible worst case paths for Split-Row

Threshold decoders in bold. Path1 shows the original delay path through the check and

variable processors. While Path2 shows the propagation of the Threshold en signal starting

from the leftmost partition’s (Sp0) check node processor, through Spn − 2 middle blocks,

CHAPTER 4. SPLIT-ROW THRESHOLD DECODING METHOD 60

Min1

Min2

β1

βWr/Spn

| β1 |

| βWr/Spn|

β2

Threshold

βn–1

βn

βWr/Spn – 1

| β2 |

| βn–1 |

| βn |

|βWr/Spn – 1|

L = log2(Wr/spn)

Comp

Comp

Comp

Comp

Comp

Comp

Threshold_ensp(k)_out(k-1)

reg2out path example
Comp

Figure 4.10: The components in the reg2out delay path for Threshold en propagation
signal in Split-Row Threshold decoding.

αWr/Spn

α1

Threshold_ensp(k-1)

Threshold_ensp(k+1)in2reg path example

Variable

proc

β1

βWr/Spn

Figure 4.11: The components in the in2reg delay path for Threshold en propagation signal
in Split-Row Threshold decoding.

CHAPTER 4. SPLIT-ROW THRESHOLD DECODING METHOD 61

and finally to the variable node processor of the rightmost partition (Spn−1). In general,

Threshold en propagation path consists of three delay blocks:

1. Origin Block (reg2out delay): This is the path where Threshold en signal is generated

in a block, and is shown in Fig. 4.10. As shown in the figure, the path consists of com-

parators to generate Min1 and Min2, in addition to a comparison with Threshold (T)

and an OR gate to generate the Thrshold en out signal going to the next partition.

2. Middle Blocks (in2out delay): This path consists of middle blocks where Threshold en

signal is passing through. Assuming local Min1 and Min2 in all blocks are gener-

ated simultaneously, the delay in a middle block is one OR gate which generates the

Threshold en out signal.

3. Destination Block (in2reg delay): This is the path that a block updates the final check

node output (α) and is using the Threshold en signal from neighboring partitions.

The path is shown in Fig. 4.9 which goes through the variable processor and ends at

the register.

Table 4.2 summarizes the reg2out, in2out and in2reg delay values for four Split-

Row Threshold decoders. As shown in the table, the in2out delay remains almost unchanged

due to the fact that it is one OR gate delay. For Split-2, there is no middle block and

therefore in2out delay is not available. Total inter-partition Threshold en delay (TTh en)

for an Spn-way Split-Row Threshold decoder is the summation of all three delay categories:

TTh en = Treg2out + (Spn− 2) · Tin2out + Tin2reg (4.6)

Just as with check to variable delays, Threshold en delays also are subject to the effects of

interconnect delays. Delays in the in2reg and reg2out paths both decrease with increased

splittings due to the lessening wiring complexity. Note that because of the decrease in

comparator stages with each increase in splitting in the check node processor, the reg2out

delay sees a significant reduction while the worst case serial Threshold en signal path’s

in2out increases its contribution by Spn− 2 as shown in Eq. 4.6.

CHAPTER 4. SPLIT-ROW THRESHOLD DECODING METHOD 62

MS Norm Split−2 Split−4 Split−8 Split−16
0

5

10

15
D

el
ay

 fo
r

D
ec

od
er

s
(n

s)

Check proc
Variable proc
DFF
Interconnect

(a) Path1: Check to Variable processor delay

Split−2 Split−4 Split−8 Split−16
0

5

10

15

D
el

ay
 fo

r
D

ec
od

er
s

(n
s)

Check proc
Variable proc
DFF
Interconnect

(b) Path2: Threshold en propagation delay

Figure 4.12: Post-route delay breakdown of major components in the critical paths of five
decoders using MinSum Normalized and Split-Row Threshold methods.

MS Norm Split−2 Split−4 Split−8 Split−16
0

5

10

15

20

A
re

a
fo

r
D

ec
od

er
s

(m
m

2)

Check Proc
Variable Proc
 Regs

(a) Post synthesis

MS Norm Split−2 Split−4 Split−8 Split−16
0

5

10

15

20

A
re

a
fo

r
D

ec
od

er
s

(m
m

2)

Check Proc
Variable Proc
ClkTree and Regs
Wire Buffers
Only Wires

(b) Post layout

Figure 4.13: Area breakdown for five decoders using MinSum Normalized and Split-Row
Threshold methods. The interconnect and wire buffers are added after layout which take a
large portion of MinSum Normalized and Split-2 Threshold decoders.

Split-2 Split-4 Split-8 Split-16

Spn 2 4 8 16
Treg2out (ns) 3.667 2.784 1.911 1.328
Tin2reg (ns) 4.788 3.964 3.189 2.729
Tin2out (ns) - 0.113 0.082 0.077

Table 4.2: Threshold en delay path components for the Split-Row Threshold decoders.

CHAPTER 4. SPLIT-ROW THRESHOLD DECODING METHOD 63

The maximum speed of an Spn-way Threshold decoder (TSpn threshold) is deter-

mined by the maximum between Threshold en delay (TTh en) and the check to variable

processor delay (TC to V) paths:

TSpn threshold = max{TTh en, TC to V } (4.7)

Although the Sign bit is also passed serially since its final value is updated with

a single XOR logic in each block, its delay is smaller than the Threshold en propagation

delay and therefore is not considered.

The bar plots in Fig. 4.12 show the post-route delay breakdown of (a) Path1

(Check to Variable processor) and (b) Path2 (Threhsold en propagation) in the decoders

and are partitioned into interconnect and logic (check, variable processors and registers).

The timing results are obtained using extracted delay/parasitic annotation files. As shown

in the figures, for MinSum Normalized and Split-2 Threshold, Path1 is the dominant critical

path but for Spn > 2, Path2 (Threshold en propagate path) begins to dominate due to the

overwhelming contribution of the (Spn− 2) term in Eq. 4.6.

The figures show that while the variable processor delay remains constant (be-

cause all decoders use the same variable node architecture) the check node processor delay

improves with the increase of splitting. For MinSum Normalized and Split-2 Threshold,

the interconnect delay is largely dominant. This is caused by the long global wires between

large number of processors. The interconnect path in these decoders is composed primarily

of a long series of buffers and wire segments. Some buffers have long RC delays due to large

fanouts of their outputs. For the MinSum Normalized and Split-2 decoders, the summation

of interconnect delays caused by buffers and wires (intrinsic gate delay and RC delay) in

Path1 are 12.4 ns and 5.1 ns, which are 73% and 50% of their total delay, respectively.

4.4.3 Area Analysis

Figure 4.13 shows the decoder area after (a) synthesis and (b) layout. The area

of decoder after synthesis remains almost the same. However, for the MinSum Normalized

and Split-2 decoders the layout area deviates significantly from the synthesized area. The

reason is because of the inherent interdependence between many number of check and

CHAPTER 4. SPLIT-ROW THRESHOLD DECODING METHOD 64

variable nodes for large row weight LDPC codes, the number of timing critical wires that

the automatic place and route tool must constrain becomes an exponentially challenging

problem. Typically, the layout algorithm will try to spread standard cells apart to route

the gates. This results in a lower logic (i.e. silicon/transistor) utilization and a larger

overall area. As an additional illustration, Fig. 4.13 shows the area breakdown of the basic

contributors of synthesis and layout for the decoders. As shown in the postlayout figure,

more than 62% and 49% of the MinSum Normalized and Split-2 decoder area is without

standard cells and is required for wiring.

Also, another indication of circuit area is the wire length in the decoder chips

where there exist a limited number of metal layers (7 metal layers). In MinSum Normalized

and Split-2 decoders, average wire lengths are 93 µm and 71 µm which are 4.4 and 3.4 times

longer than Split-16.

4.4.4 Power and Energy Analysis

The energy consumed by a decoder is directly proportional to capacitance, and by

setting all decoder designs to the same voltage, then their given capacitances will indicate

energy efficiency. Because our routing congestion model (Fig. 4.1(a)) can follow capac-

itance versus the number of partitions, then for a given Spn, normalized capacitance is

CSpn/CSpn=1 = 1/
√
Spn. For Spn → ∞ energy efficiency will be limited to the algorithm

and architecture—not the routing congestion in layout.

The average power for Split-16 Threshold is 0.70 times that of MinSum. Inter-

estingly Split-16’s operating frequency is 3.3 times that of MinSum, so if we simplify by

assuming equal activity for both designs, then effective lumped capacitance is decreasing at

a rate faster than the increased performance in terms of RC delay (again, for simplicity, we

assume core logic gates have also been unchanged)—see Fig. 4.14.

Additional savings to average power and energy (along with increased throughput)

can be achieved through early termination. This technique checks the decoded bits every

cycle and will terminate the decoding process when convergence is detected. The cost of

the early termination circuit is the use of the already existing XOR signals (the sign(β)

calculation), which gives “1” and “0”. Parity is then checked through an OR gate tree with

CHAPTER 4. SPLIT-ROW THRESHOLD DECODING METHOD 65

1 2 4 8 16

60

80

100

120

140

160

180

200

F
re

qu
en

cy
 (

M
H

z)

Number of Partitions per Decoder (Spn)
1 2 4 8 16

10

20

30

40

50

60

70

80

C
ap

ac
ita

nc
e

(n
F

)

Number of Partitions per Decoder (Spn)

Capacitance
Frequency

Figure 4.14: Capacitance and maximum clock frequency versus the number of partitioning
Spn.

these XOR signals as inputs [18]. Post-layout results show that the early termination block

for a (2048,1723) code occupies only approximately 0.1 mm2.

Figure 4.15(a) shows the average convergence iterations for MinSum Normalized

and Split-Row Threshold decoders for a range of SNR values with Imax = 11. At low SNR

values (SNR ≤ 2.8 dB) most decoders cannot converge within 11 iterations. For SNR values

between 3.0 to 3.8 dB, the average convergence iteration of MinSum Normalized is about

30% to 8% less than the Split-Row Threshold decoders. For large SNRs (SNR ≥ 3.8 dB)

the difference between number of iterations for decoders ranges from 18% to 1%, indicat-

ing that all decoders can converge almost within the same average number of iterations.

Figure 4.15(b) shows the average energy dissipation per bit of the five decoders. The Min-

Sum Normalized decoder dissipates 3.4 to 4.7 times higher energy per bit compared to the

Split-16 decoder.

4.4.5 Summary and Further Comparisons

Table 4.3 summarizes the post layout implementation results for the decoders.

The Split-16 decoder’s final logic utilization is 97% which is 2.6 times higher than

CHAPTER 4. SPLIT-ROW THRESHOLD DECODING METHOD 66

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2
0

2

4

6

8

10

12

14

SNR (dB)

A
ve

ra
ge

 C
on

ve
rg

en
ce

 It
er

at
io

n

MS Normalized
MS Split−2 Threshold
MS Split−4 Threshold
MS Split−8 Threshold
MS Split−16 Threshold

(a) Average convergence iteration

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4
0

20

40

60

80

100

SNR (dB)

A
ve

ra
ge

 E
ne

rg
y

pe
r

B
it

(p
J/

B
it)

MS Normalized
MS Split−2 Threshold
MS Split−4 Threshold
MS Split−8 Threshold
MS Split−16 Threshold

(b) Average energy dissipation

Figure 4.15: Average convergence iteration and energy dissipation versus a large number of
SNR values for five decoders using MinSum Normalized and Split-Row Threshold methods.

MinSum Normalized. The average wire length in each sub-block of Split-16 is 21 µm, which

is 4.4 times shorter than in MinSum Normalized. It occupies 4.84 mm2, runs at 195 MHz,

delivers 36.3 Gbps throughput, and dissipates 37 pJ/bit with 11 iterations.

Compared to MinSum Normalized, Split-16 is 4.1 times smaller, has a clock rate

and throughput 3.3 times higher, is 4.8 times more energy efficient, and has an error perfor-

mance degradation of only 0.23 dB with 11 iterations. At BER = 10−7, the average number

of iterations of Split-16 is 1.15 times larger than MinSum Normalized and it has a coding

loss of 0.23 dB compared to MinSum Normalized. At this BER point, its average decoding

throughput is 92.8 Gbps which is 2.9 times higher and dissipates 15 pJ/bit which is 4 times

lower than the MinSum Normalized decoder.

At a supply voltage of 0.7 V, the Split-16 decoder runs at 35 MHz and achieves the

minimum 6.5 Gbps throughput required by the 10GBASE-T standard [4] (which requires

6.4 Gbps). Power dissipation is 62 mW at this operating point. These results are obtained

by interpolating operating points using measured data from a recently fabricated chip on

the exact same process [71].

CHAPTER 4. SPLIT-ROW THRESHOLD DECODING METHOD 67

Normalized Split-2 Split-4 Split-8 Split-16
MinSum

CMOS fabrication process 65 nm CMOS, 1.3 V
Initial area utilization 25% 35% 75% 88% 94%
Final area utilization 38% 51% 85% 92% 97%
Wire length per sub-block (µm) 93 71 44 28 21
Core area (mm2) 20 14.05 6.45 5.38 4.84
Clock frequency (MHz) 59 106 143 179 195
Average Power (mW) 1941 2463 1950 1511 1359
Leakage power (mW) 20.3 18.1 8.9 6.4 6.5

Throughput @Imax (Gbps) 11.0 19.7 26.7 33.3 36.3
Energy per bit @Imax (pJ/bit) 177 125 73 45 37

SNR@ BER = 10−7 (dB)† 4.32 4.40 4.46 4.50 4.55
Iterations @BER = 10−7 (Iavg) 3.75 3.9 4.1 4.2 4.3
Throughput @Iavg (Gbps) 32.2 55.6 71.4 87.2 92.8
Energy per bit @Iavg (pJ/bit) 60 44 27 17 15

Table 4.3: Comparison of full-parallel decoders in 65 nm, 1.3 V CMOS, for a (6,32)
(2048,1723) code implemented using MinSum Normalized and Split-Row Threshold with
different levels of splitting. Maximum number of iterations is Imax =11.
† The BER and SNR values are for 5-bit fixed-point implementations.

Liu [41] Zhang [84] This work

Decoding algorithm Sum Product Two step MinSum Split-16 Threshold
CMOS fabrication process 90 nm, 8M 65 nm, 7M 65 nm, 7M
Level of parallelism partial-parallel partial-parallel full-parallel
Bits per message 5 4 5
Logic utilization 50% 80% 97%
Total chip area (mm2) 14.5 5.35 4.84

Maximum iterations (Imax) 16 8 11
SNR @ BER = 10−7 (dB) 4.35 4.25 4.55

Supply voltage (V) - 1.2 0.7 1.3 0.7
Clock speed (MHz) 207 700 100 195 35
Latency (ns) - 137 960 56.4 314
Throughput @ Imax (Gbps) 5.3 14.9∗ 2.1∗ 36.3 6.5
Throughput with ET† (Gbps) - 47.7 6.67 92.8 16.6
Throughput per area (Gbps/mm2) 0.36 8.9 1.2 19.1 3.4

Power (mW) - 2800 144 1359 62
Energy per bit with ET (pJ/bit) - 58.7 21.5 15 3.7

Table 4.4: Comparison of the Split-16 Threshold decoder with published LDPC decoder
implementations for the 10GBASE-T code.
† ET stands for “early termination”. * Throughput is computed based on the maximum
latency reported in the paper.

CHAPTER 4. SPLIT-ROW THRESHOLD DECODING METHOD 68

4.4.6 Comparison with Other Implementations

The Split-16 Threshold MinSum decoder post-layout simulation results are com-

pared with recently implemented decoders [41], [84] for the 10GBASE-T code and are sum-

marized in Table 5.4. Results for two supply voltages are reported for the Split-16 decoder:

a nominal 1.3 V and 0.7 V, which is the minimum voltage that can achieve the 6.5 Gbps

throughput required by the 10GBASE-T standard.

The partial parallel decoder chip [84] fabricated in 65 nm and consists of a two-

step decoder: MinSum and a post-processing scheme which lowers the error floor down

to BER = 10−14. The sliced message passing (SMP) scheme in [41] is proposed for Sum

Product algorithm and divides the check node processing into equal size blocks and perform

the check node computation sequentially. The post-layout simulations for a partial-parallel

decoder are shown in the table.

Compared to the two-step decoder chip [84], the Split-16 decoder is 1.1 times

smaller, has 1.9 times higher throughput and dissipates 3.9 times less energy, at a cost of

0.3 dB coding gain reduction. Compared to the sliced message passing decoder [41], Split-

16 is about 3 times smaller and has 6.8 times higher throughput with 0.2 dB coding gain

reduction.

4.5 Summary

In this chapter, we gave a complete, detailed and unified presentation of Split-

Row Threshold which utilizes a threshold enable signal to compensate for the loss of min()

inter-partition information in Split-Row. It provides at least 0.3 dB error performance

improvement over Split-Row with Spn = 2. Details of the algorithm with a step-by-step

matrix example along with BER simulations are given.

The architecture and layout of five full-parallel LDPC decoders for 10GBASE-T

using MinSum Normalized and MinSum-Split-Row Threshold methods in 65 nm CMOS are

presented.

Post-layout results show that when compared with MinSum Normalized, Split-16

Threshold has 2.6× higher logic utilization, is 4.1× smaller, has a clock rate and throughput

CHAPTER 4. SPLIT-ROW THRESHOLD DECODING METHOD 69

3.3× higher, is 4.8× more energy efficient, and has an error performance degradation of

0.23 dB with 11 iterations. At 1.3 V, it can attain up to 92.8 Gbps and at 0.7 V it can

meet the necessary 6.4 Gbps throughput for 10GBASE-T while dissipating 62 mW. In

comparisons to other published LDPC chips, Split-16 can be up to 3× smaller with 6.8×

more throughput and 4.2× lower energy consumption.

70

Chapter 5

Adaptive Wordwidth Decoder

In order to achieve additional power savings this chapter introduces an adaptive

wordwidth algorithm that takes advantage of data input patterns during the LDPC de-

coding process, along with an architecture and final post-layout implementation to increase

energy efficiency by minimizing unnecessary bit toggling in Split-Row Threshold while max-

imizing BER performance. We first overview power reduction methods and present some

preliminary investigation for the proposed algorithm.

5.1 Power Reduction Methods

5.1.1 Early Termination

For a basic message-passing algorithm, simulation can be used to determine a

predefined set of iterations for a range of expected SNRs. However, a more efficient method

is to determine if the decoder has converged to a valid code word by estimating the variable

node outputs to a binary code word (V̂), and checking if all parity check constraints,

H · V̂ T = 0, are satisfied at the end of each iteration. This is also referred to as syndrome

checking. Once convergence has been verified, the decoder can terminate early. Several

methods are proposed to efficiently implement this early termination [18, 67, 66].

LDPC codes, especially high rate codes, converge early at high SNR [77]. Because

the majority of frames require only a few decoding iterations to converge, by detecting

early decoder convergence, throughput and energy can potentially improve significantly

CHAPTER 5. ADAPTIVE WORDWIDTH DECODER 71

while maintaining the same error performance. When satisfied, early termination occurs

and the message is considered error-free since parity among the rows of H has been met.

Energy is then reduced because less iterations are needed to decode a block (i.e., lower

average iteration).

5.1.2 Voltage Scaling

In order to save power and energy the most effective technique is voltage scaling.

In general static voltage scaling is employed and set by the application requirement. Results

show that efficiency is improved by 3 to 4× [55]. So far, dynamic voltage scaling (DVS)

has been proposed at the decoder level [6, 75, 74], where the majority of the decoder is in

a single adaptive voltage domain.

For the Split-Row Threshold 10GBASE-T compliant decoder, even with the worst

case number of iterations required to decode one block of bits, the minimum voltage is

0.7 V in 65 nm CMOS [55]. For most cases, near-threshold operation is not advisable in

nanometer technologies due to increased susceptibility to variations and soft errors [20], and

so any further energy savings using voltage scaling will reduce the functional integrity of

the decoder’s circuits. Another difficulty is that most DC-DC converters take microseconds

to settle to a different voltage (20 mV per µsec [75]), which is unacceptable for > 1 Gbps

communication standards (e.g. a 10GBASE-T decoder will process over 3000 blocks per

µsec). An alternative is to use voltage dithering to create virtual voltages from quantized

voltage levels [30], but settling time and effectiveness of such policies are highly dependent

on the control algorithm, application, and environment [72].

5.1.3 Switching Activity Reduction

Because decoders exhibit a lot of switching activity due to their largely computa-

tional nature, we can decrease power by lowering the effective capacitance, Ceff . For full

parallel architectures, this was done through the Split-Row implementations which reduced

overall hardware complexity, and thus eliminated interconnect repeaters and wire capaci-

tance. For partial parallel architectures, wordwidth reduction using non-uniform quantiza-

tion has been used to reduce the amount of information needed in check node processing

CHAPTER 5. ADAPTIVE WORDWIDTH DECODER 72

������
��	� � � �

� ���

� ���

��

��
���

��

��
���

�	

��
��������	�

��

��������

Figure 5.1: Single cycle message passing datapath with variable node processor (Wc = 6)
in partial detail.

and memory storage requirements (thus also reducing the SRAM capacitance as well) [58].

However, conversion steps are needed to do variable node computation in the original wider

wordwidth.

Implementing non-uniform quantization to full parallel architectures may result in

more cost than benefits. Conversion steps across all communication links adds hardware

between every check and variable node. Since memory is not a large part of such archi-

tectures, this method does not save on memory area. In contrast, communication links

make up the majority of the area, and routing reduction methods such as bit-serial [18],

where messages are transmitted serially or Split-Row techniques result in further reduction

in routing congestion than non-uniform quantization methods. Moreover, applying both

Split-Row algorithm and non-uniform quantization techniques is likely to worsen BER per-

formance. As an alternative, rather than statically fixing the wordwidth at run time we will

introduce an adaptive wordwidth datapath power reduction algorithm to reduce switching

activity for a full parallel decoder.

5.2 Adaptive wordwidth Decoder Algorithm

The datapath wordwidth of the decoder directly determines the required memory

capacity, routing complexity, decoder area, and datapath critical path delays. Moreover,

it effects the amount of switching activity on wires and logic gates, and thus affecting the

power dissipation.

A simplified block diagram of a single cycle datapath is shown in Fig. 5.1. With

CHAPTER 5. ADAPTIVE WORDWIDTH DECODER 73

the Split-Row Threshold architecture, the check node processor logic generally has lower

message activity than that of the variable node processor due to its reduced hardware.

The figure shows some of the variable node details such as the summations and a final

subtraction. For the (6,32) (2048,1723) 10GBASE-T code, variable node processors take

seven inputs: six inputs from the messages passed by the check node processors as well as

the original received data from the channel (λ). The number of inputs results in a large

datapath due to the wordwidth growth in additions and the fact that there are 2048 variable

node processors.

Therefore, our proposed algorithm adapts the wordwith datapath of variable node

processing which has a larger effect in message activity reduction. The algorithm switches

between two modes: a Low Power Mode and Normal Mode. In Normal Mode a full 6 bit

computation is done while Low Power Mode performs a reduced wordwidth computation

in the variable node processing.

5.2.1 Preliminary Investigations

Let the variable node messages β1, β2, ..., βWr be the inputs to a check node Ci.

Since variable node massages are initialized with channel information (assuming α messages

in Eq. 2.3 are initially zero), for BPSK modulation and an AWGN channel their distribution

at the first iteration is:

PV (x) =
1√

2πσ2

(
e
−(x−1)2

2σ2 + e
−(x+1)2

2σ2

)
(5.1)

where σ2 is the variance of the channel noise.

For iterations > 1, the variable node messages in MinSum Normalized are approx-

imated with Gaussian distributions [10]. Similarly, in Split-Row Threshold, variable node

messages can be fitted with the sum of two Gaussian distributions, and a very good agree-

ment (R-square = 0.99) was achieved for the fit. Therefore, the β distribution at iteration

l can be described as:

PV (xl) =
1√

2πσ2l

(
e
−(xl−µl)

2

2σ2
l + e

−(xl+µl)
2

2σ2
l

)
(5.2)

CHAPTER 5. ADAPTIVE WORDWIDTH DECODER 74

For this distribution, the probability that a variable node message β has a magnitude less

than a given value D is:

P|β|<D =
1

σl
√

2π

∫ +D

−D
e
−(x−µl)

2

2σ2
l dx (5.3)

Thus assuming β1, β2, ..., βWr are i.i.d., the probability that at least one input of the check

node Ci has a magnitude less than D is:

P (∃ βi ∈ {β1, β2, ..., βWr} | |βi| < D) =
(

1− P|β|<D
)Wr

(5.4)

In MinSum Normalized and Split-Row Threshold, for each check node if there

exists one input, β, whose magnitude is less thanD, then applying Eqs. 2.6 and 4.4, the other

Wr − 1 outputs of the check node (α messages) have absolute values less than D×Sfactor

after being normalized with Sfactor. Thus if the probability from Eq. 5.4 is high for a

particular D, we should expect a large concentration of α ∈ [−D×Sfactor,+D×Sfactor],

which we call Threshold Region. This is implied in Fig. 5.2, which plots the distribution of

α for different iterations of MinSum Normalized at SNR = 4.4 dB, with D = SMS = 0.5.

In this SNR, the probability from Eq. 5.4 is 90%–80% for iteration 1 through 3 for MinSum

Normalized, and as it is shown in the figure, the majority of α values at those iterations are

within the region ≡ [−0.25,+0.25],

The probability from Eq. 5.4 in Split-Row Threshold is plotted in Fig. 5.3 for

SNR = 3.4 dB through 4.4 dB and iterations 1,2 and 3, where D = T = 0.25. As shown

in the plot, the probability value of P (∃ βi ∈ {β1, β2, ..., βWr} is 90%–75% for SNR ranges

between 3.4–4.1 dB. For SNR > 4.2 dB the probability is 75%–60% for iteration 3.

As expected, Table 5.1 shows the percentage of α ∈ [−Sfactor×T,+Sfactor×T]

in Split-Row Threshold decoding for a large number of decoding iteration at SNR = 3.6 and

4.4 dB. The table also shows that for SNR = 3.6 dB and through iteration 7, 93% down

to 80% of all α values are in the Threshold Region. For a high SNR value of 4.4 dB and

through iteration 3, 90% down to 66% of α values are in the region. Most blocks converge

beyond five iterations at SNR ≥ 4.4 dB.

CHAPTER 5. ADAPTIVE WORDWIDTH DECODER 75

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5
x 10

5

Check Node Output Values

N
um

be
r

of
 C

he
ck

 N
od

e
O

ut
pu

t V
al

ue
s

Iteration 1

Iteration 2

Iteration 3

Figure 5.2: An overlay of check node output (α) distributions using MinSum Normalized
over many iterations, at SNR = 4.4 dB, where Sfactor = 0.5.

3.4 3.6 3.8 4 4.2 4.4
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

SNR (dB)

P
ro

ba
bi

lit
y

D
en

si
ty

 F
un

ct
io

n

Iteration 1
Iteration 2
Iteration 3

Figure 5.3: The pdf of variable node outputs to be less than a predefined threshold (D =
T = 0.25), for a large range of SNR values at iterations 1 through 3. Data are obtained for
(6,32) (2048,1723) 10GBASE-T code using Split-Row Threshold decoding for 1000 blocks,
and applying Eq. 5.4.

CHAPTER 5. ADAPTIVE WORDWIDTH DECODER 76

−1 −0.5 0 0.5 1
0

5

10

15
x 10

5 Iteration 1

Checknode Output Values

N
um

be
r

of
 C

he
ck

no
de

 O
ut

pu
ts

(a)

−1 −0.5 0 0.5 1
0

5

10

15
x 10

5 Iteration 2

Checknode Output Values
N

um
be

r
of

 C
he

ck
no

de
 O

ut
pu

ts

(b)

−1 −0.5 0 0.5 1
0

5

10

15
x 10

5 Iteration 3

Checknode Output Values

N
um

be
r

of
 C

he
ck

no
de

 O
ut

pu
ts

(c)

Figure 5.4: Check node output (α) distribution in the first three iteration of Split-Row
Threshold decoder for (2048,1723) LDPC code at SNR = 4.4 dB, where T = S = 0.25.

CHAPTER 5. ADAPTIVE WORDWIDTH DECODER 77

For Split-Row Threshold, if there exists an input in a partition whose absolute

value is smaller than T , then the Threshod en signal is asserted high and is globally sent

to other partitions. Therefore, the check nodes in other partitions set their minimum

(MinSpi from Eq. 4.4) to T , if their local minimum was larger than T . Due to this key

characteristic and applying Eq. 4.4, check node messages (α) are largely concentrated at

±T × Sfactor. This is shown in Fig. 5.4 which plots the α distributions in Split-Row

Threshold at SNR = 4.4 dB for the first three iterations.

At low iteration counts and low SNR values, since most α messages lie within the

Threshold Region the inputs to the variable node processors can be represented by less bits.

This implies that variable node additions can be done in smaller wordwidths, allowing us

to adaptively change the wordwidth of the variable node processor depending on SNR and

iteration count in order to reduce the final energy per bit without losing significant error

correction performance.

5.2.2 Power Reduction Algorithm

Given that variable node input wordwidths can be reduced without losing sig-

nificant information at low SNR values and also at low iteration counts in high SNRs,

we propose a Low Power Mode operation for the decoder which significantly reduces the

switching activity of the variable node processors in the following: After check node pro-

cessing, we chop or saturate α such that it is within the Threshold Region for when the

current iteration count, Iteration, is less than a set Low Power Mode iteration max count

Iteration SNR = 3.6 dB SNR = 4.4 dB

1 93% 90%
2 90% 78%
3 87% 66%
4 86% 61%
5 85% 55%
6 83% -
7 80% -

Table 5.1: The percentage that |α| ≤ (Sfactor × T) condition is met in 1000 sets of input
data for two SNR values: 3.6 dB and 4.4 dB. For SNR=4.4 dB, most block converge at
iterations > 5

CHAPTER 5. ADAPTIVE WORDWIDTH DECODER 78

(Low Power Iteration). Three methods are explored which have different BER perfor-

mance, convergence behavior and hardware complexity. All three methods try to remap

all α into the Threshold Region. In Method 1, we saturate α values outside the Thresh-

old Region into [−T × Sfactor,+T × Sfactor]. In Method 2, we set all α magnitudes to

T × Sfactor, because the majority of them are concentrated at T × Sfactor value. In

Method 3, we only keep the minimum number of LSB bits that can represent the values

within the Threshold Region (in other words, the α MSBs are chopped). These methods

are described in Algorithm 2.

A qualitative perspective shows that Method 1 has the best error performance since

it preserves any α already within the Threshold Region and also maps α values regularly.

Method 2 offers a simple hardware solution at the cost of losing some information for

α ∈ (−T × Sfactor,+T × Sfactor), but it has a high reduction in bit toggling (to be

explained in Sec. 5.3). For Method 3, its benefit comes from the compromise between the

hardware cost of Method 1 and a better error correction performance than Method 2 (even

though the α values are irregularly mapped).

By reducing the information range of α into the Threshold Region, the required

datapath wordwidth is reduced and thus variable node computation can be done with less

switching activity in Low Power Mode. The challenges come from implementing a low

overhead flexible datapath as well as deciding when to switch out of Low Power Mode such

that the final convergence does not take much more iterations than running completely

in Normal Mode. Algorithm 3 describes the complete Split-Row Threshold Low Power

decoding process.

For our 10GBASE-T decoder implementation, the decoding message wordwidth is

chosen to be 6 bits in Normal Mode. During Low Power Mode, for Methods 1 and 3, the 6-bit

input additions in variable node are reduced into 3-bit input additions, while in Method 2, it

is reduced to 1-bit input additions (see Sec. 5.3). In order to simplify hardware and further

reduce the toggling, the variable node final subtractions (see Eq. 2.3) can be bypassed

during Low Power Mode without causing a significant distortion of β messages. This is

CHAPTER 5. ADAPTIVE WORDWIDTH DECODER 79

Algorithm 2 Split-Row Low Power Threshold Algorithm — Check Node Processing
for Spk = 1, 2, . . . , Spn do

for i = 0, 1, . . . ,M − 1 do

for all j′ ∈ VSpk(i)\j do

if Lowpower flag = 0 then

MinSpk =



 Min1i , if j 6= argmin(Min1i)

Min2i , if j = argmin(Min1i)
; if Min1i < T and Min2i < T (5.5a)

 Min1i , if j 6= argmin(Min1i)

T , if j = argmin(Min1i)
;

if Min1i < T and Min2i > T

and Threshold en = 1
(5.5b)

T ;
if Min1i > T and Min2i > T

and Threshold en = 1
(5.5c)

 Min1i , if j 6= argmin(Min1i)

Min2i , if j = argmin(Min1i)
;

if Min1i > T and Min2i > T

and Threshold en = 0
(5.5d)

αij:Spk = Sfactor ×
∏
j′

sign(βij′)×MinSpk (4.4a)

else

Min′Spk =



Method 1:


Min1i , if j 6= argmin(Min1i)

Min2i , if j = argmin(Min1i)
;if Min1i < T and Min2i < T

T ; if Min1i > T and Min2i > T

(5.6a)

Method 2: T (5.6b)

Method 3: do Eqs. 5.5a, b, c, or d then
(
MinSpk mod T

)
(5.6c)

αij:Spk = Sfactor ×
∏
j′

sign(βij′)×Min′Spk (4.4b)

end if

end for

end for

end for

CHAPTER 5. ADAPTIVE WORDWIDTH DECODER 80

Algorithm 3 Split-Row Low Power Threshold Algorithm
Require: λ, i.e. channel information

Iteration = 1

while H · V̂ T 6= 0 do

Lowpower flag = (Iteration ≤ Low Power Iteration)

for j = 0, 1, . . . , N − 1 do

if Lowpower flag = 0 then

i′ ∈ C(j)\i

else

i′ ∈ C(j)

end if

for all i′ do

βij = λj +
∑
i′

αi′j (2.3)

end for

end for

do Algorithm 2

Iteration = Iteration+ 1

end while

CHAPTER 5. ADAPTIVE WORDWIDTH DECODER 81

−10 −5 0 5 10
0

2

4

6

8

10

12
x 10

4

Variable Node Output Values

N
um

be
r

of
 V

ar
ib

al
e

N
od

e
O

ut
pu

t V
al

ue
s

Split−Row Threshold

Method 1 (Saturation)

Figure 5.5: Variable node output (β) distributions for Split-Row Threshold and Method 1
at iteration 4 with SNR = 4.2 dB.

.

shown in Fig. 5.5 which compares the β distributions for 10GBASE-T code using Split-Row

Threshold and modified version with Low Power Mode using Method 1 at iteration 4 at

SNR = 3.8 dB. As shown in the figure, the distributions are closely matched.

Figure 5.6 illustrates the BER performance of the 2048-bit 10GBASE-T code using

Split-Row Threshold for only Normal Mode operation (Low Power Iteration = 0), and

adaptive low power operation using Method 1, 2, and 3 when Low Power Iteration varies

between 3 to 6. The figure also shows that Method 1, 2, and 3 have nearly the same bit

error performance. They also perform very closely to Split-Row Threshold in only Normal

Mode, with a 0.06–0.1 dB decrease at BER = 10−7 when Low Power Iteration = 3. With

Low Power Iteration = 6, this SNR gap increases to 0.15–0.2 dB.

CHAPTER 5. ADAPTIVE WORDWIDTH DECODER 82

3.2 3.4 3.6 3.8 4 4.2 4.4 4.6
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR (dB)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

All Normal Mode
Method 1, 3iter
Method 2, 3iter
Method 3, 3iter
Method 1, 5iter
Method 1, 6iter
Method 2, 6iter
Method 3, 6iter

Figure 5.6: Bit error performance of the 2048 bit 10GBASE-T code using Split-Row Thresh-
old (only Normal Mode, i.e. Low Power Iteration = 0), and Split-Row Low Power Thresh-
old with Method 1, 2, and 3 when Low Power Iteration varies from 3 to 6.

5.3 Architecture Design

The single pipeline block diagram for the proposed full parallel Split-Row Thresh-

old decoder for 10GBASE-T code with 16 partitions is shown in Fig. 5.7. In each partition,

there are 384 check processors (each takes 2, i.e. Wr/N = 32/16, β inputs), and only 128

(N/Spn = 2048/16) variable processors. The Sign and Threshold en passing signals are

the only wires passing (serially) between the partitions which are generated in the check

node processors in parallel. The Lowpower flag global signal is sent to every block and

sets the operation mode to either Normal Mode or Low Power Mode (see Algorithm 3).

5.3.1 Check Node Processor

The check node processor implementation is shown in Fig. 5.8 and consists of two

parts:

1. Split-Row Threshold Implementation

2. Low Power Mode Implementation

CHAPTER 5. ADAPTIVE WORDWIDTH DECODER 83

����

����

������

��	

���
�

���
�

���
���

	��
���

	��
�

	��
�

 �

��
���

���
�

���
�

���
���

	��
���

	��
���

	��
���

 �

��
���

������

����
�

������

��	

���
�

���
�

���
���

	��
����

	��
����

 �

��
����

	��
����

�������

�������

�������

��	

�������

������������

�������

����

�������

������������

�������

����

�� !� ���"�#�

Figure 5.7: Architecture diagram of the full parallel Split-Row Low Power Threshold
10GBASE-T decoder.

CHAPTER 5. ADAPTIVE WORDWIDTH DECODER 84

�
�
��
�
�
�
��
	
�

	
�

�

�
�
��
�
�
�
��
	
�

	
�

�
��

	
�

�
�
��
�

�
�
��
�

�
��

	
�

�

�
�
��
�

�
�
��
�

�
��

	
�
�
��

�
��

	
�
�
�

�
��

�
�
�
�
�	

�
�

�
��

��
�
�

�
�

�
�

�
�
	
�

�
�
��
�
�	
�
�

�
�
��
�
�	
�
�

�
�
��
�
�
�
��
	
�

	
�

�
�
��
�
�
�
��
	
�

	
�

�

�
�
��
�
�
�
��
	
�

	
�
�
��

�
�
��
�
�
�
��
	
�

	
�
�
�

�
�

�
�
��

	

�
��
�
	

�
�
��

�
�
�
��

�
�
��

�
�
�
��

�
�
�
�
�
�
�	

�
�

�
��

��
�
�

�
�
�
�
�

�
�
�
�
�

�
��

	

�
�

�

�
�

��

�
��

	
�

�
��

	
�

�

�
�
��
�

��
�
�
��
�
�
�
��

��
�
��
�
�
�
��

��

�
�
��
�
�	
�
�

�
�

��
�

�
�
��

�
�

�
�
�
�
�
�
�
�	
��

�

!
�
��

�
	

�
�

�
��

��
�
�

�
�
�
�
	�

�
��

�
�

�
�

�
�
��

	

�
��
�
	

�
�
��

�
�
�
��

�
"

�
�

�
��

��
�
�

�
�
�
�
	�

�
��

�
�

�
�

�
�

!
�
��

�
	�

 �

��

�

�

�
#�
�
�

�
�
��

�
�
	�

	!
�

�
��

��
��
�
�
"#

��

$�
�
�
�%

	�
$
"%

	�
%
&
%
'
%
�
%
�
%

�
�
�
�
$

�
�
	
�

�
%
�
%

�
�

�
�
��

�
�
	�

#

�

�
#�
�
�"
(
"�
�

�
�
��

�
�
	&

#

�

�
#�
�
�"
(
"�
%
�
%

�
�

�
��

�
�

�

�
#�
�
�

Figure 5.8: Check node processor design for Split-Row Low Power Threshold decoder. In
α Adjust block (shaded box), αk (k = 1 or 2) is shown as a 6 bit binary Sb4b3b2b1b0 and
αadjust is computed according to low power Methods 1, 2, and 3.

CHAPTER 5. ADAPTIVE WORDWIDTH DECODER 85

��

��

��

��

��

��

�

�

�

�

	
��
�
������

��

�

�

�

�

�
�

�����	
�

�

	
��
�
������

�

�

�� ��

�
�

	
��
�
������

�

������	
�

�

�

�

�� �����	
�

�

�

�

���
�����	
�
���
�����	
�

�����	
�

�	���
����

�	���
��

����	

�����������

��	��	��������

����	

���������

��	��	��������

�����	
�

�	���
����

�	���
��

����	

�����������������

��	��	��������������������

����	

���������������

��	��	������������������

Figure 5.9: Variable node processor design for Split-Row Low Power Threshold decoder.

These are described in the next two minor sections.

Optimized Split-Row Threshold

The first step includes three nearly-parallel building blocks: Threshold en out

Calculation, Sign out Calculation and α Calculation. In each partition, the β inputs are

compared with the threshold, T . If a β is smaller than T the Comp signal is asserted high.

Then in the Threshold en out Calculation block, Comp signals along with Threshold en in

from one neighboring partition generate the Threshold en out signal which goes to the other

neighboring partition. Meanwhile in the Sign out Calculation block, the sign bits of two

β inputs in each partition are XORed with Sign in bit from one neighboring partition to

generate the Sign out signal which is sent to the other neighboring partition.

For a two-input check node processor, the magnitude computation of the Split-

Row Threshold algorithm in the α Calculation block is optimized as follows. Instead of

finding Min1 and Min2 of the inputs first and then comparing them with T , the inputs

CHAPTER 5. ADAPTIVE WORDWIDTH DECODER 86

are directly compared with T and the generated α output is based on the other β input

or T using Select α signals (the minimum of two numbers over a subset, excluding one

of them is the other one). The final sign bit of each output is generated by XORing the

Sign in bits from two near neighboring partitions and the sign bit of the other β input.

This logic simplification results in a 17% reduction of gate area compared to a previous

implementation [55]. The next stage is Sfactor multiplication. As mentioned before,

Sfactor is chosen to be 0.25 which can be implemented with a simple shift.

Low Power Mode Implementation

This step (shown as the Mode Adjust block in Fig. 5.8 includes a multiplexer which

selects the appropriate message (α or αadjust) based on the status of the Lowpower flag

global signal. For the three different low power method implementations, which are shown

in the shaded box on the right, several logic optimizations are made to minimize the hard-

ware. In order to shutoff the toggling of unused bits in Low Power Mode, they are kept

zero (their initial value). For our 6 bit wordwidth implementation the Threshold Region

([−0.0625,+0.0625], for T = Sfactor = 0.25) can be implemented with three bits. There-

fore, in Sb4b3b2b1b0 format (S is the sign bit) 1, b4b3b2 are zero in Low Power Mode. However,

to eliminate the extra logic to perform the sign extensions in the variable node processor,

where the 3 bit additions in Low Power Mode are handled by 6 bit additions, the three zero

MSB bits are swapped with LSB bits (i.e. αadjust becomes Sb1b0000 instead of S000b1b0.

This results in approximately 5% gate count reduction per variable node processor.

In Method 1 (α saturation to [−0.625,+0.625]), α is adjusted based on Eq. 5.6a.

This can be easily implemented using the Comp and Threshold en signals, which determine

whether |α| > T × Sfactor = 0.625. (Note that the saturated values of +0.0625 is 000010

and -0.0625 is 111110 in 2’s complement binary format.) If α is outside Threshold Region,

αadjust (after bit swapping) always becomes S10000. This is one of the key advantages

of choosing T = Sfactor = 0.25 in our implementation. If α is inside Threshold Region,

αadjust becomes Sb1b0000. Overall, α bit toggling is reduced to at most three bits.

1 1.5 fixed-point format.

CHAPTER 5. ADAPTIVE WORDWIDTH DECODER 87

Check Processor Variable Processor

Design Mode Adjust Synth. Area Mode Mode Synth. Area
- (µm2) Adjust 1 Adjust 2 (µm2)

Original – 3644 – – 1200
Method 1 8 MUX + 6 AND + 4 OR 4193 8 MUX 18 AND 1270
Method 2 8 AND + 2 OR 3835 5 MUX + 2 AND 12 AND 1258
Method 3 4 MUX + 6 AND 4068 8 MUX 18 AND 1270

Table 5.2: Comparison of hardware increase in check processor and variable processor with
synthesis area for the three low power “Methods”. (For Original none of these methods are
applied.)

In Method 2, which implements Eq. 5.6b, all α outputs are set to ±T ×Sfactor =

±0.0625. Therefore, αadjust always becomes S10000, regardless of its input magnitude. Thus

in addition to reducing the gate count in Method 1, Method 2 reduces the α bit toggling to

only one bit.

In Method 3, which implements Eq. 5.6c, only the first two LSB bits are kept

along with the sign bit. The two LSB bits are then shifted to the b4b3 positions and αadjust

becomes Sb1b0000, and bit toggling is reduced to three bits.

5.3.2 Variable Node Processor

The block diagram of variable node processor is shown in Fig. 5.9, which imple-

ments Eq. 2.3 in Algorithm 3. The key benefit of Low Power Mode operation is in the

variable node processor, where all addition datapath wordwidths are reduced by 3 to 5 bits

(depending on the “Method” of implementation), which results in 35%–47% reduction in

switching activity for the majority of the variable node processor. This wordwidth reduction

is applied to all 2048 variable processors in the decoder.

Two adjustments (conversion steps) are performed to make the variable node pro-

cessor operate correctly in both Normal Mode and Low Power Mode. Mode Adjust 1 is

made before adding the sum of six α values to the channel information, λ, which shifts the

addition result bits back to their original LSB positions. (Recall that α bits were shifted

3 positions to the left at the end of check node processing—applies to all low power “Meth-

ods”. Mode Adjust 2 is made in the subtraction stage, where α bits are kept zero (their

CHAPTER 5. ADAPTIVE WORDWIDTH DECODER 88

2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR (dB)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

Floating point
Fixed point 6−bit
Fixed point 5−bit
Fixed point 4−bit

Figure 5.10: Bit error performance of (6,32) (2048,1723) 10GBASE-T LDPC code using
Split-Row Threshold decoding in floating point and fixed point with different wordwidth
quantizations.

initial value) in order to bypass the subtraction in Low Power Mode.

5.4 Design of CMOS Decoders

To further investigate the impact of the proposed decoder on the hardware, we

have implemented three full parallel decoders using Method 1, 2, 3 for the (6,32) (2048,1723)

10GBASE-T LDPC code in 65 nm, 7-metal layer CMOS.

5.4.1 Design Steps

In order to design the proposed decoder using Split-Row Threshold with an adap-

tive wordwidth, these key steps are required:

1. Choosing the number of partitioning (Spn), Threshold (T), and Sfactor values: It

is shown that the routing congestion, circuit delay, area and power dissipation re-

duces as the number of partitions increases with a modest error performance loss [55].

The Threshold (T) and Sfactor which directly effect the error performance are found

through empirical simulations. For the 10GBASE-T decoder design, Spn is set to

CHAPTER 5. ADAPTIVE WORDWIDTH DECODER 89

−1 −0.5 0 0.5 1
0

2

4

6

8

10

x 105

Check Node Output Values

N
um

be
r

of
 C

he
ck

 N
od

e
O

ut
pu

t V
al

ue
s

2 bits

3 bits

4 bits

Figure 5.11: Check node output (α) distribution using Split-Row Threshold decoder for
(2048,1723) LDPC code, which are binned into discrete values set by a 6-bit (1.5 format)
quantization. The 3-bit subset can cover all values within the Threshold Region. Data are
for SNR = 4.4 dB and iteration = 3, where T = Sfactor = 0.25.

16 and the closest fixed-point values for T and Sfactor which attain a near optimum

floating-point performance are both 0.25.

2. Number of supported wordwidths: As discussed in Section 5.2, when using Split-

Row Threshold, check node messages (α) are largely concentrated at ±T × Sfactor

at low iteration counts and low SNR values, (e.g. more than 80% for 10GBASE-T).

Therefore, it naturally makes sense to define two regions, where one region represents

α values in ±T × Sfactor which we call Threshold Region or Low Power Mode region

and the other which represents the majority of α values and we call Low Power Mode.

As long as there is no significant region in the distribution of α values, increasing the

number of regions (more wordwidth representation selection) is not efficient due to

the large hardware overhead and error performance loss of introducing another mode

into all check and variable node processors. For example, if we want to add one more

region it requires an additional global signal to choose between regions. It also adds

additional comparators to select the region (mode) that alpha can fit in and requires

us to increase the size of the muxes to choose between the outputs.

3. Normal Mode wordwidth selection: This is the major datapath width of the decoder

CHAPTER 5. ADAPTIVE WORDWIDTH DECODER 90

and is chosen to optimize the error performance with minimum hardware. Figure 5.10

shows the bit error performance of (2048,1723) 10GBASE-T LDPC code using Split-

Row Threshold for floating point and fixed point with 6-bit, 5-bit and 4-bit quanti-

zation. As shown in the plot, the minimum wordwidth which attains the optimal bit

error performance is 6 bit, therefore k = 6 for our implementation.

4. Low Power Mode wordwidth selection: This is the subset of Normal Mode word-

width where the Threshold Region (±T ×Sfactor) values can be represented. For the

10GBASE-T code, the Threshold Region is within ±T × Sfactor = ±0.0625. There-

fore, its values in 6-bit (1.5 format) quantization are: -0.0625, −0.03125, 0, +0.03125

and +0.0625. These values can be represented with a 3-bit subset. Figure 5.11

shows the check node output (α) distribution using Split-Row Threshold decoder for

(2048,1723) LDPC code which are binned into discrete values set by 6-bit (1.5 for-

mat) quantization. The 3-bit subset can cover all values within the Threshold Region.

Representation with less bits, such as a 2-bit subset that is shown in the figure, will

miss some values of the Threshold Region. Also there is no benefit if we use a 4-bit

subset because the additional values represented by the 4-bit subset are not within

the Threshold Region. Therefore, d = 3 for our implementation.

5.4.2 Synthesis Results

The amount of hardware overhead to implement these three low power “Methods”

is shown in Table 5.2. Among them, Method 2 has the least hardware increase, which

is a 5% increase in check node processor and variable node processor area compared to

Split-Row Threshold (which has none of the methods applied). Method 1 has the largest

hardware overhead due to the added Muxes and gates for saturation implementation with

a 15% increase in check node processor area and a 6% increase in variable node processor

area compared to the original design.

CHAPTER 5. ADAPTIVE WORDWIDTH DECODER 91

Figure 5.12: Post layout view of the proposed low power decoder with Method 2.

5.4.3 Back-end Implementations

Method 1, 2 and 3 decoders are implemented using STMicroelectronics LP 65 nm

CMOS technology with a nominal supply voltage of 1.2 V (max. at 1.3 V). We use a

standard-cell RTL to GDSII flow using synthesis and automatic place and route to imple-

ment all decoders. The decoders were developed using Verilog to describe the architecture

and hardware, synthesized with Synopsys Design Compiler, and placed and routed using

Cadence SOC Encounter. Each block is independently implemented and connected to the

neighboring blocks with Sign and Threshold en wires.

To generate reliable power numbers, SoC Encounter is used to extract RC delays

using the final place and route information and timing information from the standard cell

libraries. The delays are exported into a “standard delay format” (SDF) file. This file is

then used to annotate the post-layout Verilog gate netlist for simulation in Cadence NC-

Verilog. This generates a timing-accurate “value change dump” (VCD) file that records

the signal switching for each net as simulated using a testbench. The VCD file is then fed

back into SoC Encounter to compute a simulation-based power analysis. This analysis is

performed for 100 test vectors for each SNR.

The chip layout of Method 2 is shown in Fig. 5.12. A summary of the post-layout

results for the low power proposed Method 1, 2, and 3 decoders, when Low Power Iteration =

CHAPTER 5. ADAPTIVE WORDWIDTH DECODER 92

Normal Mode Method 1 Method 2 Method 3

Final area utilization 95% 95% 96% 96%
Core area (mm2) 5.27 5.27 5.10 5.20
Maximum clock frequency (MHz) 178 178 185 182
Average Power @Worst case freq (mW) 1396 1215 1172 1196
Throughput @Imax (Gbps) 24.3 24.3 25.25 24.8
Energy per bit @Imax (pJ/bit) 57 50 46 48

Table 5.3: Comparison of three proposed full-parallel decoders with the proposed low
power Methods 1, 2, and 3 implemented in 65 nm, 1.3 V CMOS, for a (6,32) (2048,1723)
LDPC code. Maximum number of iterations is Imax = 15. Power numbers are for
Low Power Iteration = 6. Normal Mode: Method 1 with Low Power Iteration = 0

6, are summarized in Table 5.3. For comparison a Method 1 decoder only running in Normal

Mode is included in the table.

5.4.4 Results and Analysis

Due to the nature of Split-Row Threshold algorithm, which significantly reduces

wire interconnect complexity, all three full parallel decoders achieve a very high logic uti-

lization, 95%–96%. In this case synthesis results have a good correlation with the layout

increases. For instance, as shown in Table 5.3, the decoders in Methods 1, 2, and 3 occupy

5.10–5.27 mm2. Method 2, which has the minimum number of added gates (see Table 5.2),

has the smallest area among the three. Conversely, Method 1 has the most, and Method 2

is in between the other two. Also, results show that the critical path in general is about

equal (implementations are optimized for area with circuit delay a less priority). Method 1

has a 2%–3% greater critical path delay than the other decoders due to the increased path

delays through the additional MUXes and AND/OR gates.

The table also summarizes the power results for the case that decoders in three

methods are kept in Low Power Mode for 6 iterations and Normal Mode for 9 iterations

out of a total Imax = 15 iterations. Energy data are reported for 15 decoding iterations

without early termination at SNR = 3.6 dB. Under these conditions, Method 2 has the

smallest energy dissipation per bit, 46 pJ/bit which is 20% lower than running only with

Normal Mode. Overall, the average power among the three methods is 1172–1215 mW,

CHAPTER 5. ADAPTIVE WORDWIDTH DECODER 93

All Normal All Low Power Adaptive
0

500

1000

1500

A
ve

ra
ge

 P
ow

er
 (

m
W

)

 Variable Proc
Check Proc
Registers+ClkTree

Figure 5.13: Power breakdown for Method 2: Normal Mode only, Low Power Mode Mode
only, and adaptive mode (6 iterations with Low Power Mode and 9 iterations with Normal
Mode).

which is 181–224 mW lower than when running on only Normal Mode.

Figure 5.13 shows the power breakdown for Method 2 in Normal Mode only, Low

Power Mode only, and adaptive mode (Low Power Iteration = 6 out of 15 total iter-

ations). Shown are the power contributions from variable node processors, check node

processors, and the clk tree (including registers). By itself, Low Power Mode results

in 41% reductions when compared to Normal Mode only. For an adaptive mode where

Low Power Iteration = 6 iterations out of a total 15 iterations, this results in a net

improvement of 22% in average power. Therefore, it is important to realize the trade-

off between the amount of Low Power Mode Iterations versus the number of convergence

iterations (i.e. average iterations from early termination).

Low Power Iteration effects on energy gains since the desired BER performance

(depends on Imax as discussed later) and the convergence behavior (early termination and

average iterations) of the proposed decoders also depend on the Low Power Iteration. The

longer Low Power Mode is enabled, the longer it will take to converge, and as a result the

energy becomes dependent on both a tradeoff of the set Low Power Iteration and the final

CHAPTER 5. ADAPTIVE WORDWIDTH DECODER 94

2.2 2.6 3 3.4 3.8 4.2 4.6

10

20

30

40

50

60

SNR (dB)

A
ve

ra
ge

 E
ne

rg
y

pe
r

B
it

(p
J/

B
it)

 All Normal Mode
Method 1, 3iter
Method 2, 3iter
Method 3, 3iter
Method 1, 6iter
Method 2, 6iter
Method 3, 6iter

Figure 5.14: Energy per bit versus SNR for different low power decoder designs and different
Low Power Iteration, compared with a design only running in Normal Mode.

convergence iteration count. Figure 5.14 shows the energy consumption for Methods 1, 2,

and 3 when the the Low Power Mode is enabled for three and six iterations over a range

of SNR values: 2.2–4.6 dB. Notice that for Low Power Iteration = 6 the energy starts

to become worse for SNR ≥ 4.0 because of longer average convergence times (i.e. larger

average iterations).

5.4.5 SNR Adaptive Design

In Split-Row Threshold, a larger maximum number of iterations, Imax, can im-

prove bit error performance. This is shown by running on Normal Mode only while using

Imax = 25. In this case, BER performance of the proposed decoder is only 0.2 dB away

from MinSum Normalized at BER = 10−9 (Not a significant BER improvement is observed

for Imax > 25). Although higher maximum iteration count has almost no effect on the av-

erage iterations at high SNRs, it increases the average iterations at low SNRs [82] (more of

the channel information is corrupted beyond the ability for LDPC to correct), which results

in higher energy dissipation. Given the fact that running in Low Power Mode at low SNRs

CHAPTER 5. ADAPTIVE WORDWIDTH DECODER 95

0 20 40 60 80 100
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Energy per bit (pJ/bit)

B
E

R

SNR=4.6 dB

SNR=3.0 dB

SNR=4.0 dB

Imax 25 All Normal Mode
Imax 15 Method 2, 6 Iter

Figure 5.15: Bit error rate versus energy per bit dissipation of two decoders for different
adaptive decoder settings to meet the 10GBASE-T standard throughput (dependent on the
worst case Imax and maximum frequency at 0.87 V).

results in larger energy savings it is more beneficial to use a larger Low Power Iteration

with lower Imax. Conversely, we can use only Normal Mode with a higher maximum iter-

ation count to get the BER required at high SNR with lesser energy penalties as compared

to operating the decoder with a large Low Power Iteration.

These scenarios are illustrated in Fig. 5.15 where the bit error performance versus

energy per bit dissipation of the proposed decoder with Method 2 is shown under two

conditions:

1. Adaptive mode operation with Method 2, Low Power Iteration = 6, and Imax = 15.

2. The decoder runs in only Normal Mode, and Imax = 25.

Given the worst case Imax = 25 and a 10GBASE-T LDPC decoder throughput of 6.4 Gbps,

both designs are set to 0.87 V and compared with early termination enabled. As shown in

the figure, when BER > 10−4 (implying a low SNR) the energy dissipation of Method 2

decoder is about 20%–50% lower than that of the decoder in Normal Mode at the same

CHAPTER 5. ADAPTIVE WORDWIDTH DECODER 96

BER. However, when the BER < 10−6 (SNR > 4.0 dB), the decoder at Normal Mode

attains greater than an order of magnitude improvement in BER at nearly the same energy

per bit dissipation.

Therefore, using an efficient SNR detector circuit, we can switch between different

modes at SNR = 4.0 dB. Similar to [75], the proposed SNR detector compares the number of

unsatisfied checks with a checksum threshold at the end of the first iteration, and estimates

the SNR range. For the 2048 bit 10GBASE-T code, it was found that a checksum threshold

of 91 after the first iteration can estimate if the SNR is larger or smaller than 4.0 dB with

a probability of being 89% true. By using this detection scheme the Low Power Mode

iteration count and Imax can be adjusted. The SNR detector circuit requires only one

additional comparator in the early termination circuit.

5.4.6 Comparison with Others

The post-layout simulation results of the proposed wordwidth adaptive decoder us-

ing Method 2 are compared with recently implemented decoders [41, 73, 47, 82] for 2048 bit

LDPC codes and are summarized in Table 5.4. The 10GBASE-T code is implemented

in [73, 41, 82]. Results for two supply voltages are reported for a Method 2 decoder: 1.3

and 0.7 V. (Note that at 0.7 V, for Imax = 15, the 10GBASE-T required throughput is

met.) The supply voltage can be lowered to 0.6 V based on a previously fabricated chip

measurements [71]. At this voltage, the decoder throughput is 9.3 Gbps (greater than

6.4 Gbps required for 10GBASE-T) while dissipating an average power of 31 mW.

The sliced message passing (SMP) scheme in [41] is proposed for Sum Product

algorithm and divides the check node processing into equal size blocks and perform the

check node computation sequentially. The post-layout simulations for a 10GBASE-T partial

parallel decoder are shown in the table. The multi-rate decoder in [73], supports RS-

LDPC codes with different code lengths (1536–3968 bits) through the use of reconfigurable

permutators. The post layout simulation results of a 10GBASE-T decoder are reported in

90 nm CMOS in the table. The partial parallel 2048-bit decoder chip is fabricated in 180 nm

CMOS. The decoder which supports turbo-decoding massage passing (TDMP) algorithm

CHAPTER 5. ADAPTIVE WORDWIDTH DECODER 97

L
iu

[4
1]

U
en

g
[7

3]
M

an
so

u
r

[4
7]

Z
h

an
g

[8
2]

T
h
is

w
o
rk

T
ec

h
n

ol
og

y
90

n
m

,
8M

90
n

m
18

0
n

m
65

n
m

,
7M

65
n

m
,

7M
A

rc
h

it
ec

tu
re

p
ar

ti
al

p
ar

al
le

l
p

ar
ti

al
p

ar
al

le
l

p
ar

ti
al

p
ar

al
le

l
p

ar
ti

al
p

ar
al

le
l

fu
ll

p
ar

al
le

l
S

ch
em

e
S

M
P

S
h
u

ffl
ed

M
P

D
T

D
M

P
T

P
M

P
S

p
it

-T
h

re
sh

ol
d

C
o
d

e
L

en
g
th

20
48

15
36

-3
96

8
20

48
20

48
20

48
E

d
g
es

12
28

8
76

80
-2

38
08

-
12

28
8

12
28

8
C

o
d

e
R

at
e

0.
84

0.
79

-0
.9

3
0.

5
0.

84
0.

84
B

it
s

p
er

m
es

sa
ge

5
-

-
4

6
L

o
gi

c
u

ti
li

za
ti

on
50

%
-

50
%

80
%

96
%

C
h

ip
ar

ea
(m

m
2
)

14
.5

4.
41

14
.3

5.
35

5.
10

M
ax

.
it

er
a
ti

o
n

s
(I
m
a
x

)
16

8,
4

16
8

15
S

N
R

@
B

E
R

=
1
0
−
7

(d
B

)
4.

35
4.

2,
4.

57
4.

1
@

10
−
5

4.
25

4.
45

S
u

p
p

ly
vo

lt
ag

e
(V

)
-

1.
0

1.
8

1.
2

0.
7

1.
3

0.
7

C
lo

ck
sp

ee
d

(M
H

z)
20

7
30

3
12

5
70

0
10

0
18

5
40

M
ax

im
u

m
L

at
en

cy
(n

s)
-

-
-

13
7

96
0

81
37

5

T
h

ro
u

g
h

p
u

t
@
I
m
a
x

(G
b

p
s)

5.
3

4.
85

,
9.

7
0.

40
0

14
.9
∗

2.
1∗

25
.2

6
5.

4
T

h
ro

u
gh

p
u

t
w

/
E

T
.

(G
b

p
s)

-
4.

85
,

9.
7

6.
4

47
.7

6.
67

8
5
.7

1
8
.5

T
h

ro
u

g
h

p
u

t
p

er
A

re
a

(G
b

p
s/

m
m

2
)

0.
36

11
,

22
-

8.
9

1.
2

1
6
.8

3
.6

P
ow

er
(m

W
)

-
85

5
78

7
28

00
14

4
14

06
89

E
n

er
g
y
/b

it
w

/
E

T
.

(p
J
/b

it
)

-
17

6,
88

-
58

.7
21

.5
1
6
.4

4
.8

T
ab

le
5
.4

:
A

co
m

p
a
ri

so
n

o
f

th
e

p
ro

p
o
se

d
ad

ap
ti

v
e

d
ec

o
d

er
u

si
n

g
th

e
w

or
d

w
id

th
ad

ap
ti

v
e

M
et

h
o
d

2
d

ec
o
d

er
w

it
h

re
ce

n
tl

y
p

u
b
li

sh
ed

L
D

P
C

d
ec

o
d

er
im

p
le

m
en

ta
ti

o
n

s.
*
T

h
ro

u
gh

p
u

t
is

co
m

p
u

te
d

b
as

ed
on

th
e

m
ax

im
u

m
la

te
n

cy
re

p
or

te
d

.

CHAPTER 5. ADAPTIVE WORDWIDTH DECODER 98

supports multiple code rates between 8/16 and 14/16. The partial parallel decoder chip [82]

is fabricated in 65 nm and consists of a two-step decoder: MinSum and a post-processing

scheme which lowers the error floor down to BER = 10−14.

Compared to the sliced message passing decoder [41], the proposed wordwidth

adaptive decoder is about 3× smaller and has 6.8× higher throughput with 0.2 dB coding

gain reduction. Compared to the two-step decoder chip [82], the proposed decoder has 1.7×

higher throughput and dissipates 3.57 times less energy, with the same area at a cost of

0.2 dB coding gain reduction.

5.5 Summary

As high throughput LDPC decoders are becoming more ubiquitous for upcoming

communication standards, energy efficient low power decoder algorithms and architectures

are a design priority. We have presented a low cost adaptive wordwidth LDPC decoder algo-

rithm and architecture based on the input patterns during the decoding process. Depending

on the SNR and decoding iteration, different low power settings were determined to find

the best tradeoff between bit error performance and energy consumption. Of the three low

power wordwidth adaptive methods explored one implementation had a post-layout decoder

area of 5.10 mm2, while attaining a 85.7 Gbps throughput with early termination while dis-

sipating 16.4 pJ/bit at 1.3 V. Compared to another 10GBASE-T design with similar areas

in 65 nm and operating at 0.7 V, we achieved nearly 2× improvement in throughput, and

thus meeting the 6.4 Gbps required by the standard. Energy efficiency was over 3.5× better

with only 0.2 dB loss in coding gain. This loss compares favorably with the non-uniform

quantization bit reduction technique.

99

Chapter 6

Conclusion and Future Directions

6.1 Conclusion

Message-passing LDPC decoding algorithms and architectures are introduced which

significantly reduce processor logical complexity and local and global interconnections. The

methods are specially well suited for long-length regular block-structured codes with high

check node degrees.

The proposed Split-Row and Multi-Split architectures break check node proces-

sors into multiple blocks whose internal wires are all relatively short. These blocks are

interconnected by a small number of nearly zero-length “sign” bit wires. This results in

denser, faster and more energy efficient circuits. Compared to MinSum Normalized and

SPA decoding, the error performance loss of the methods is about 0.35–0.65 dB depending

on LDPC code and the level of partitioning.

Split-Row Threshold which utilizes a “threshold enable” signal to compensate for

the loss of min() inter-partition information in Split-Row provides at least 0.3 dB error

performance improvement over Split-Row. The optimal threshold (T) and correction factor

(Sfactor) values are found empirically at the point where the bit error rate is minimum for

a large range of SNR values. With Split-Row Threshold higher levels of partitioning are

possible with SNR loss of 0.05-0.3 dB, when compared to MinSum Normalized. Theoretical

and post-layout implementation analysis show that Split-Row Threshold can reduce routing

congestion by a factor of 1/
√
Spn, where Spn is the number of partitions.

CHAPTER 6. CONCLUSION AND FUTURE DIRECTIONS 100

Five full-parallel LDPC decoders compatible with the 10GBASE-T standard are

implemented using MinSum Normalized and Split-Row Threshold algorithms with different

levels of partitioning. All decoders are built using a standard cell design flow and include

all steps through the generation of GDS II layout in 65 nm CMOS. A decoder with 16-way

partitioning occupies 4.84 mm2 with a final post-layout area utilization of 97%, and operates

at 195 MHz at 1.3 V with an average throughput of 92.8 Gbps with early-termination

enabled. It achieves improvements in area, throughput and energy efficiency of 4.1x, 3.3x,

and 4.8x respectively, compared to a MinSum Normalized implementation, with an SNR

loss of 0.25 dB at BER = 10−7.

For additional power saving, an adaptive wordwidth decoding algorithm is pro-

posed which switches between a 6-bit Normal Mode and a reduced 3-bit Low Power Mode.

The method reduces the unnecessary bit toggling while maximizing the bit error perfor-

mance in Split-Row Threshold decoding with a modest hardware increase. The length of

time that the decoder stays in a given mode is based on power and BER requirements and

received SNR. Different Low Power Mode algorithm implementations are explored. In one

implementation, signal toggling of variable node processing inputs is reduced to a single

bit. Further power savings are achieved with voltage and frequency scaling. At 0.6 V, a

5.10 mm2 low power decoder attains throughput of 9.3 Gbps (greater than 6.4 Gbps required

for 10GBASE-T standard) and dissipates an average power of 31 mW.

6.2 Future Work

LDPC codes are appearing in an increasing number of applications, which have

strict power and throughput constraints than the current generation and require very good

error performance. On the other hand, the benefits of straightforward CMOS scaling has

been slowed down as the supply voltage, capacitance and global wire delay will hardly

decrease in future deep-submicron technology. Thus, it is critical to have a technique which

provides regularity and reduces design dependencies on low-level optimizations in order to

achieve the high throughput and high energy efficiency requirements of future applications.

The Split-Row Threshold technique presents an algorithmic and architectural solution that

CHAPTER 6. CONCLUSION AND FUTURE DIRECTIONS 101

can be compatible with both future LDPC codes and submicron CMOS technology and

can be extended for a wide range of applications. The additional requirements for some of

these applications are reconfigurability for different code size/rates, support for irregularly

structured codes and low error floor.

The high throughput and energy efficiency of the proposed method can be ap-

plied in the next generation of wireless communications systems. These systems usually

require reconfigurability, variable high data rate and high energy efficiency. One of the

key kernels of such systems is LDPC code which will be widely used in emerging wireless

standards. One example is wireless high definition video transmission (WirelessHD) in the

60 GHz frequency band, which achieves a raw airlink data rate of 2.2 Gbps and decod-

ing throughput of 1.6 Gbps [48]. Another example is the next generation of WiMAX for

4G (IEEE 802.16m) [1]. The standard requires irregular LDPC codes and must support

code size/rate reconfigurability. Although reconfigurability of decoder was not addressed in

this work, Split-Row Threshold architecture can simplify the switch-network interconnect

overhead that is often used in the current reconfigurable LDPC decoders. This work used

regular block-structured and quasi-cyclic codes which makes the number of connections per

split equal. The irregular partitioning results in unequal routing congestion reduction in

subblocks of Split-Row Threshold.

LDPC codes have received a lot of attention in hard disks with magnetic recording

channels. Recent advances in magnetic recording are aimed at densities up to 2 Terabits

per square [33]. To achieve such a high density with high system reliability, powerful

coding schemes with efficient hardware implementations are required. Although there is

no standard for magnetic recording hard disks, they demand high code rate, low error

floor, and high decoding throughput [87, 23, 24, 35]. For example, magnetic recording

Read channels use LDPC code lengths of 4608 to 36,864 bits and require a throughput

beyond 5 Gbps [33, 68]. In order to make Split-Row Threshold useable in hard disks, the

investigation of error floor in Split-Row Threshold is essential.

The low power proposed design can be extended to wireless medical technology in

biomedical implanted devices [86] where long battery life is critical (10 µW to 10 mW [8]).

Wireless medical technologies have created opportunities for new methods of preventive

CHAPTER 6. CONCLUSION AND FUTURE DIRECTIONS 102

care using biomedical implanted and body-worn devices. The design of the technologies

that will enable these applications will demand a unique set of requirements focused on low

cost, low area, ultra-low power and very reliable designs. Although biomedical devices do

not require long distances (less than 10 m) and high throughput communication, they are

highly constrained by limited energy resources. This is especially true for implanted devices

where battery replacement may not be feasible. Using error correction improves the error

performance and thus helps lower the transmit power to achieve a certain SNR. The key

challenge is that both encoder and decoder circuit power dissipation must be ultra low to

meet the implant transmit power requirements [29]. While an uncoded system can be used

for uplink distances less than 0.5 m, a short length LDPC code using low power Split-Row

Threshold can be efficient at distances of 4 m through 10 m usage.

103

Bibliography

[1] Amendment text proposal on rate compatible LDPC-convolutional codes. http://

www.ieee802.org/16/tgm/IEEEC802.16m-09/0339.

[2] G.hn/G.9960. next generation standard for wired home network.
http://www.itu.int/ITU-T.

[3] IEEE 802.16e. air interface for fixed and mobile broadband wireless access systems.
ieee p802.16e/d12 draft, oct 2005.

[4] IEEE P802.3an, 10GBASE-T task force. http://www.ieee802.org/3/an.

[5] T.T.S.I. digital video broadcasting (DVB) second generation framing structure for
broadband satellite applications. http://www.dvb.org.

[6] E. Amador, R. Knopp, V. Rezard, and R. Pacalet. Dynamic power management on
LDPC decoders. In ISVLSI 2010, IEEE Computer Society Annual Symposium on
VLSI, July 2010.

[7] A. Blanksby and C. J. Howland. A 690-mW 1-Gb/s 1024-b, rate 1/2 low-density
parity-check code decoder. JSSC, 37(3):404–412, March 2002.

[8] A. Chandrakasan et al. Ultralow-power electronics for biomedical applications. Annual
Review of Biomedical Engineering, pages 247–274, April 2008.

[9] M. Chao, J. Wen, et al. A triple-mode LDPC decoder design for IEEE 802.11n system.
In ISCAS, pages 2445–2448, May 2009.

[10] J. Chen, A. Dholakia, E. Eleftheriou, and M. Fossorier. Reduced-complexity decoding
of LDPC codes. IEEE Transactions on Communications, 53:1288–1299, August 2005.

[11] J. Chen and M. Fossorier. Near optimum universal belief propagation based decoding
of low-density parity check codes. IEEE Transactions on Communications, 50:406–414,
March 2002.

[12] L. Chen, J. Xu, I. Djurdjevic, and S. Lin. Near-shannon-limit quasi- cyclic low-density
parity-check codes. IEEE Transactions on Communications, 52:1038–1042, 2004.

[13] X. Chen, J. Kang, S. Lin, and V. Akella. Memory system optimization for fpga-based
implementation of quasi-cyclic ldpc codes decoders. Circuits and Systems I: Regular
Papers, IEEE Transactions on, PP(99):1 –1, 2010.

[14] Y. Chen and K. Parhi. Overlapped message passing for quasi-cyclic low-density parity
check codes. IEEE Transactions on Circuits and Systems I, 51:1106–1113, 2004.

BIBLIOGRAPHY 104

[15] F. Clermidy, C. Bernard, R. Lemaire, J. Martin, I. Miro-Panades, Y. Thonnart,
P. Vivet, and N. Wehn. A 477 mW NoC-based digital baseband for MIMO 4G SDR.
In Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE
International, pages 278 –279, February 2010.

[16] Y. Dai, N. Chen, and Z. Yan. Memory efficient decoder architectures for quasi-cyclic
LDPC codes. IEEE Transactions on Circuits and Systems I, 55:2898 – 2911, October
2008.

[17] A. Darabiha, A.C. Carusone, and F.R. Kschischang. A 3.3-Gbps bit-serial block-
interlaced Min-Sum LDPC decoder in 0.13-um CMOS. In IEEE Custom Integrated
Circuits Conference, pages 459–462, 2007.

[18] A. Darabiha, A.C. Carusone, and F.R. Kschischang. Power reduction techniques for
LDPC decoders. JSSC, 43:1835–1845, August 2008.

[19] I. Djurdjevic, J. Xu, K. Abdel-Ghaffar, and S. Lin. A class of low-density parity-check
codes constructed based on reed-solomon codes with two information symbols. IEEE
Communications Letters, 7:317–319, 2003.

[20] R.G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge. Near-
threshold computing: Reclaiming moore’s law through energy efficient integrated cir-
cuits. Proceedings of the IEEE, 98(2):253 –266, February 2010.

[21] M. Fossorier. Quasi-cyclic low-density parity-check codes from circulant permutation
matrices. IEEE Transaction Information Theory, 50:1788–1793, August 2004.

[22] M. Fossorier et al. Reduced complexity iterative decoding of low-density parity check
codes based on belief propagation. IEEE Transactions on Communications, 47:673–
680, May 1999.

[23] R. Galbraith and T. Oenning. Iterative detection read channel technology in hard disk
drives. Hitachi white paper, Nov 2008.

[24] R.L. Galbraith, T. Oenning, M. Ross, B. Wilson, I. Djurdjevic, and Jihoon Park.
Architecture and implementation of a first-generation iterative detection read channel.
Magnetics, IEEE Transactions on, 46(3):837 –843, March 2010.

[25] R. G. Gallager. Low-density parity check codes. IRE Transaction Info.Theory, IT-
8:21–28, January 1962.

[26] K. K. Gunnam et al. Decoding of quasi-cyclic LDPC codes using an on-the-fly com-
putation. In 40th Asilomar Conference on Signals, Systems and Computers, pages
1192–1199, October 2006.

[27] Yang H. and W. Ryan. Low-floor decoders for ldpc codes. Communications, IEEE
Transactions on, 57(6):1663 –1673, June 2009.

[28] D. Hocevar. A reduced complexity decoder architecture via layered decoding of LDPC
codes. In Sips, pages 107–112, October 2004.

[29] K. Iniewski. VLSI Circuits for Biomedical Applications. Artech-House, 685 Canton
Street, Norwood, MA, USA, first edition, 2008.

BIBLIOGRAPHY 105

[30] T. Ishihara and H. Yasuura. Voltage scheduling problem for dynamically variable
voltage processors. In ISLPED ’98: Proceedings of the 1998 international symposium
on Low power electronics and design, pages 197–202, New York, NY, USA, 1998. ACM.

[31] ITRS. International technology roadmap for semiconductors, 2007 update, interconnect
section. Online. http://www.itrs.net/reports.html.

[32] J. Kang et al. A two-stage iterative decoding of LDPC codes for lowering error floors.
In Globecom, pages 1–4, 2008.

[33] K.K.Gunnam et al. Next generation iterative LDPC solutions for magnetic recording
storage. In ACSSC, pages 1148–1152, October 2008.

[34] Y. Kou, S. Lin, and M.P.C. Fossorier. Low-density parity-check codes based on finite
geometries: a rediscovery and new results. IEEE Transactions on Information Theory,
47(7):2711–2736, 2001.

[35] E.M. Kurtas, A.V. Kuznetsov, and I. Djurdjevic. System perspectives for the applica-
tion of structured ldpc codes to data storage devices. Magnetics, IEEE Transactions
on, 42(2):200 – 207, February 2006.

[36] L. Lan, L. Zeng, Y.Y. Tai, L. Chen, S. Lin, and K. Abdel-Ghaffar. Construction of
quasi-cyclic ldpc codes for awgn and binary erasure channels: A finite field approach.
Information Theory, IEEE Transactions on, 53(7):2429 –2458, July 2007.

[37] Z. Li, L. Chen, L. Zeng, S. Lin, and W.H. Fong. Efficient encoding of quasi-cyclic
low-density parity-check codes. Communications, IEEE Transactions on, 54(1):71 –
81, January 2006.

[38] T. Limberg, M. Winter, M. Bimberg, R. Klemm, E. Matus, M.B.S. Tavares, G. Fet-
tweis, H. Ahlendorf, and P. Robelly. A fully programmable 40 gops sdr single chip
baseband for lte/wimax terminals. In Solid-State Circuits Conference, 2008. ESSCIRC
2008. 34th European, pages 466 –469, September 2008.

[39] S. Lin and D. J. Castello Jr. Error Control Coding. Prentice Hall, Upper Saddle River,
NJ, USA, 2nd edition, 2004.

[40] C. Liu, S. Yen, et al. An LDPC decoder chip based on self-routing network for IEEE
802.16e applications. JSSC, 43:684–694, March 2008.

[41] L. Liu and C.-J. R. Shi. Sliced message passing: High throughput overlapped decoding
of high-rate low density parity-check codes. IEEE Tran. on Circuits and Systems I,
55:3697 – 3710, December 2008.

[42] R. Lynch et al. The search for a practical iterative detector for magnetic recording.
IEEE Transactions on Magnetics, 40(1):213–218, January 2004.

[43] D. J. MacKay. Good error correcting codes based on very sparse matrices. IEEE
Transactions on Information Theory, 45:399–431, March 1999.

[44] D.J.C. MacKay. Information Theory Inference and Learning Algorithms. Cambridge
University Press, Cambridge, UK, 3rd edition, 2003.

BIBLIOGRAPHY 106

[45] D.J.C. MacKay and R.M. Neal. Near shannon limit performance of low density parity
check codes. Electronics Letters, 33(6):457–458, March 1997.

[46] M. Mansour and N. Shanbhag. Turbo decoder architectures for low-density parity-
check codes. In Globecom, pages 1383–1388, November 2002.

[47] M. Mansour and N.R. Shanbhag. A 640-Mb/s 2048-bit programmable LDPC decoder
chip. JSSC, 41:684–698, March 2006.

[48] F. Mlinarsky. Wireless HD video: Raising the throughput bar. Wireless Net Designline,
Feb 2008.

[49] T. Mohsenin and B. Baas. Split-Row: A reduced complexity, high throughput LDPC
decoder architecture. In ICCD, pages 13–16, October 2006.

[50] T. Mohsenin and B. Baas. High-throughput LDPC decoders using a multiple Split-Row
method. In ICASSP, volume 2, pages 13–16, 2007.

[51] T. Mohsenin and B. Baas. Trends and challenges in ldpc hardware decoders. In
Signals, Systems and Computers, 2009 Conference Record of the Forty-Third Asilomar
Conference on, pages 1273–1277, November. 2009.

[52] T. Mohsenin and B. Baas. A split-decoding message passing algorithm for low den-
sity parity check decoders. Journal of Signal Processing Systems, February 2010.
10.1007/s11265-010-0456-y.

[53] T. Mohsenin, D. Truong, and B. Baas. An improved Split-Row Threshold decoding
algorithm for LDPC codes. In ICC, 2009.

[54] T. Mohsenin, D. Truong, and B. Baas. Multi-Split-Row Threshold decoding imple-
mentations for LDPC codes. In ISCAS, May 2009.

[55] T. Mohsenin, D. Truong, and B. Baas. A low-complexity message-passing algorithm for
reduced routing congestion in ldpc decoders. Circuits and Systems I: Regular Papers,
IEEE Transactions on, 57(5):1048–1061, May. 2010.

[56] T. Mohsenin, P. Urard, and B. Baas. A thresholding algorithm for improved Split-Row
decoding of LDPC codes. In Signals, Systems and Computers, 2009 Conference Record
of the Forty-Third Asilomar Conference on, 2008.

[57] E. Morifuji et al. Power optimization for SRAM and its scaling. IEEE Transactions
on Electron Devices, 54(4):715–722, April 2007.

[58] D. Oh and K. K. Parhi. Nonuniformly quantized min-sum decoder architecture for
low-density parity-check codes. In GLSVLSI ’08: Proceedings of the 18th ACM Great
Lakes symposium on VLSI, pages 451–456, New York, NY, USA, 2008. ACM.

[59] N. Onizawa, T. Hanyu, and V.C. Gaudet. Design of high-throughput fully parallel ldpc
decoders based on wire partitioning. Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, 18(3):482 –489, March. 2010.

[60] Steven Pope. Look for power tradeoffs in 10GBASE-T ethernet. Online, January
2008. http://www.eetimes.com/design/power-management-design/4005683/Look-for-
power-tradeoffs-in-10GBASE-T-Ethernet.

BIBLIOGRAPHY 107

[61] J. M. Rabaey, A. Chandrakasan, and B. Nikolić. Digital Integrated Circuits - A Design
Perspective. Prentice-Hall, New Jersey, USA, 2nd edition, 2003.

[62] T. Richardson. Error floors of LDPC codes. In Allerton, October 2003.

[63] T. Richardson and R. Urbanke. The capacity of low-density parity check codes under
message-passing decoding. IEEE Transactions on Information Theory, 47:599–618,
February 2001.

[64] P. Saxena, N. Menezes, P. Cocchini, and D.A. Kirkpatric. Repeater scaling and its
impact on cad. Computer-Aided Design of Integrated Circuits and SYstems, IEEE
Transactions on, 23(4):451–463, April 2004.

[65] P. Saxena, R. S. Shelar, and S. S. Sapatnekar. Routing Congestion in VLSI Circuits.
Springer Science, NYC, NY, USA, 1st edition, 2007.

[66] X. Shih, C. Zhan, et al. An 8.29 mm2 52 mW multi-mode LDPC decoder design for
mobile WiMAX system in 0.13 CMOS process. JSSC, 43:672–683, March 2008.

[67] Yang Sun and J.R. Cavallaro. A low-power 1-gbps reconfigurable ldpc decoder design
for multiple 4g wireless standards. In SOC Conference, 2008 IEEE International, pages
367 –370, September 2008.

[68] W. Tan. Design of inner ldpc codes for magnetic recording channels. IEEE Transactions
on Magnetics, 44:217–222, January 2008.

[69] R. M. Tanner. A recursive approach to low complexity codes. IEEE Transactions on
Information Theory, 27:533–547, 1981.

[70] R. M. Tanner et al. LDPC block and convolutional codes based on circulant matrices.
TIT, 50:2966–2984, December 2004.

[71] D. Truong et al. A 167-processor computational platform in 65 nm CMOS. IEEE
Journal of Solid-State Circuits (JSSC), 44(4):1130–1144, April 2009.

[72] D. N. Truong and B. M. Baas. Circuit modeling for practical many-core architecture
design exploration. In Design Automation Conference (DAC), 2010 47th ACM/IEEE,
pages 627–628, June 2010.

[73] Y.-L. Ueng, C.-J. Yang, K.-C. Wang, and C.-J. Chen. A multimode shuffled itera-
tive decoder architecture for high-rate rs-ldpc codes. Circuits and Systems I: Regular
Papers, IEEE Transactions on, PP(99):1 –1, 2010.

[74] W. Wang and G. Choi. Speculative energy scheduling for ldpc decoding. In Quality
Electronic Design, 2007. ISQED ’07. 8th International Symposium on, pages 79 –84,
March 2007.

[75] W. Wang, G. Choi, and K.K. Gunnam. Low-power VLSI design of ldpc decoder using
DVFS for AWGN channels. In VLSI Design, 2009 22nd International Conference on,
pages 51 –56, january 2009.

[76] R. Wilson. 10GBase-T: Is it really coming this time? Online, August 2009.
http://www.edn.com/article/459408-10GBase T Is it really coming this time .php.

BIBLIOGRAPHY 108

[77] E. Yeo and B. Nikolic. A 1.1-gb/s 4092-bit low-density parity-check decoder. In Asian
Solid-State Circuits Conference, 2005, pages 237 –240, November. 2005.

[78] Y.Sun and J.R.Cavallaro. A low-power 1-Gbps reconfigurable LDPC decoder design
for multiple 4G wireless standards. In SOC Conference, pages 367–370, 2008.

[79] H. Zhang, J. Zhu, et al. Layered approx-regular LDPC code construction and en-
coder/decoder design. IEEE Transactions on Circuits and Systems I, 55:572 – 585,
March 2008.

[80] J. Zhang and M. P. C. Fossorier. A modified weighted bit-flipping decoding of low-
density parity-check codes. IEEE Communications Letters, 8:165–167, March 2004.

[81] K. Zhang, X. Huang, and Z. Wang. High-throughput layered decoder implementation
for quasi-cyclic ldpc codes. Selected Areas in Communications, IEEE Journal on,
27(6):985 –994, August 2009.

[82] Z. Zhang, V. Anantharam, M.J. Wainwright, and B. Nikolic. An efficient 10GBASE-
T Ethernet LDPC decoder design with low error floors. Solid-State Circuits, IEEE
Journal of, 45(4):843 –855, April 2010.

[83] Z. Zhang, L. Dolecek, et al. Lowering LDPC error floors by postprocessing. In Globe-
com, pages 1–6, 2008.

[84] Z. Zhang et al. A 47 Gb/s LDPC decoder with improved low error rate performance.
In Symposium on VLSI Circuits, pages 22–23, 2009.

[85] Z. Zhang, A. Venkat, et al. Quantization effects in low-density parity-check decoders.
In ICC, pages 6231–6237, 2007.

[86] B. Zhen et al. IEEE body area networks and medical implant communications. In
ICST, March 2008.

[87] H. Zhong et al. Area-efficient min-sum decoder design for high-rate quasi-cyclic low-
density parity-check codes in magnetic recording. IEEE Transactions on Magnetics,
43:4117–4122, December 2007.

