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Abstract

Video encoding has become an integral part for everyday computingtélevisions and computers
to portable devices such as cell phones. Achieving high quality resolwiemlimnited bandwidth
has lead to the development of the H.264 video standard providing greateidieg performance.
In this work an H.264 baseline video encoder is presented on a fine drEiTecore programmable
processor allowing for greater flexibility and parallelization. The encqauesented is capable of
encoding QCIF-resolution video at 1.00 GHz while dissipating an averag8®mW, and CIF-
resolution at 1.20 GHz while an average of 787 mW. The Asynchronotes/Af Simple Proces-
sors (AsAP) platforms provides a new method of coding over a large nuaflsémple processors
allowing for a higher level of parallelization than digital signal proces§bfP) while avoiding the

complexity of a fully application specific integrated circuit (ASIC).
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Chapter 1

Introduction

1.1 Goals of Parallel Video Encoding

Demand for high quality video has become increasingly important in todayistgdmom
standard applications such as television broadcasting to streaming videzssl yihones. Video is
often stored or transmitted prior to use, because of bandwidth limitations keowiEleo must be
encoded for efficient transmission/storage. The computational complédthisgrocess has led to
many different solutions with application specific processors having gtezess. Programmable
solutions though flexible are not able to handle the computational load rdcanghave focused
on smaller applications. To achieve high quality video encoding on a smaligsmogable chip,
task and data level parallelism must be exploited at a fine grained level. dlefthis project
is to develop a real-time H.264 video encoder with performance comparahplioation specific

processors and the flexibility of programmable processors.

1.2 Project Contributions
Research contributions of this project include:
e An MPI-C Baseline H.264 video encoder
¢ Areal-time H.264 baseline video encoder on a asynchronous array oesmmgressors

e Thorough performance analysis for parallelization of a H.264 encoder
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e Thorough processor analysis for a large fine grained application

1.3 Organization

The remainder of this paper is divided as follows. Chapter 2 providesia baerview
of video encoding and the H.264 video standard. Chapter 3 deals witbgsiag platforms used
for video encoding specifically the asynchronous array of simple gemrs proposed for this im-
plementation. Chapter 4 discusses some tools, methodologies, and pitfalialtel paogramming.
Chapter 5 presents the proposed implementation. Results, analysis, andrisompwith other

encoders are given in chapter 6. Chapter 7 concludes the paper wglbjtities for future work.



Chapter 2

Overview of Video Encoding and the

H.264 Standard

Encoding a video sequence has always been a challenge due to thexigngfleom-
pressing then reproducing an exact copy of the original file again. épittture size increases the
problem becomes even greater, requiring more data to be compressesgantaeamount of time.
The H.264 standard [2] provides new encoding techniques yieldingegreampression and higher
quality. The standard itself does not present an encoder or decodardyntax that must be met
to ensure that an encoded video stream can be decoded on a H.264 ooogtiader. Hence the
syntax given in the standard is defined for the decoding process aadcader must essentially
produce that same syntax.

The H.264 Standard is a joint development of the Moving Picture Expertisg3dMPEG)
and the Video Coding Experts Group (VCEG) released by the Intern&fi@@communication
Union (ITU) Telecommunication Standardization Sector (ITU-T) as H.2@4Rart 10 of MPEG-4.

2.1 General Video Encoding Concepts

Video sequences are a series of still pictures (referred to as fraoragtirs point forward)
that are flashed at a high rate to give the impression that objects in the piatereoving. In most
applications this requires approximately 25 frames per second (fpsauBe®f the high sampling

rate, the difference between each successive frame is relatively sexade fif only the difference
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Frames Per Second Seconds Between Frames
(frame rate)

20 0.05
25 0.04
30 0.03

Table 2.1: Time interval for various frame rates

Video Length 1080p 720p SDTV CIF
(WxH in pixels) | (1920x1080)| (1280x720)| (720x480)| (352x288)
1sec 0.19 0.08 0.03 0.01
1 min 11.20 4.98 1.87 0.82
1 hour 671.85 298.60 111.97 49.27

Table 2.2: Size of uncompressed video in gigabytes @ 30fps and 24-blitdamth

between each frame is encoded the transmitted data is fairly small in comparidwn ddginal
video. Increasing the frame rate (number of frames per second) caideran illusion of nearly
continuous motion but would requires greater encoder/decoder pefme to provide real time

video.

2.1.1 Digital Video

Video is stored digitally then converted for viewing, however storing ravewigvould
require an enormous amount of space as shown in Table 2.2. To stadawrsegment of standard
definition quality video would require 47 regular DVDs! To compress vidéuge parameters are

often looked at:

e temporal sampling: frame rate - how often is a frame sampled from a videeseg®

e spatial sampling: pixels - what is the number of pixels used to represemfraace?

¢ pixel depth: bits - how many bits are used to represent each pixel?
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L—
L+
L= Spatial Samples

Temporal Samples

Figure 2.1: Temporal and spatial sampling

Format Horizontal x Vertical Pixels per Frame Ratio of Pixels per Frame
Resolution (4:2:0 Format) Compared to SDTV
Sub-QCIF 128x96 12288 .02:1.0
Quarter CIF 176x144 38016 .06:1.0
CIF 352x288 152064 25:1.0
4CIF (SDTV) 704x576 608256 1.0:1.0
720p 1280x720 1382400 23:1.0
1080p 1920x1080 2073600 34:1.0

Table 2.3: Sample of various frame sizes

2.1.2 Video Format

Various video formats are used depending on the quality of the video deedwller
formats are more compact and require less space to store but do nadepk@ry high quality
resolution; larger formats allow for more detail but require more storageesgand consequentially
more computational power to encode. The Common Intermediate Format (@iFnaaller ones
are commonly used for streaming type applications, such as mobile devicés.isA€ften used
for standard definition televisions (SDTV) and DVD-videos, and 72@ (ihes of progressively
scanned data) or 1080p is commonly used for High Definition (HD) qualityovidable 2.3 and
Fig. 2.2 give a comparison of some common video formats, larger ones@varnske possible simply

by increasing the horizontal and vertical resolution of each frame.
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Figure 2.2: Different frame sizes for digital video [1]

RGB

The pictures in Fig. 2.2 are shown in black and white where each spatiales&mpp-
resented by one value giving the brightness of the pixel. To represétimages at least three
values are required per pixel. One of the common methods of represensngptor space is the
RGB format where Red, Blue, and Green are each represented Imyorieer giving the brightness

desired, when combined together these three primary colors can crgaithancolor.

YCbCr (YUV)

Another common format YCbCr(commonly referred to as YUV) takes adgantd the
fact that the human eye is more sensitive to brightness than color, that vtice slight changes
in light and dark easier than different shades of a color. In RGB foemah color is represented
equally, to get every pixel in color requires 3 values per pixel. In the Yidkmat the bright-
ness/luminance (luma) is separated from the color (chroma) so that eadle caven a different
weight. One variable (Y) determines the luminance component, and two varidlaed V give the
chrominance of each pixel. The conversion between RGB and YUV focarabe done using the

simplified equations (2.1) recommended by the ITU-R.



2.1. GENERAL VIDEO ENCODING CONCEPTS 7

R =Y +1.402Cr
G =Y —0.344Cb — 0.714Cr

B=Y + 1.772Cb (2.1)

Sampling Formats

Various sampling format for YUV give different weights to the luma and ofeacom-
ponents. Full sampling (referred to as 4:4:4) gives equal weight to &étrgimilar to RGB, this
format requires 3 values to represent each pixel. The 4:2:2 formas ¢imechroma components
half the weight of the luma components. For each 4x4 block of luma pixelshtieena component
is represented with the same weight in the vertical direction but half the wigighe horizontal
position, that is every other column is represented with both luma and chramaooents, and the
intermediate columns are only represented by luma components. The 4:4:Lahfodmats are
generally used for high quality color videos. The more popular 4:2:0 foused in this paper gives
chroma one quarter the resolution of the luma component. As shown in Fig),2&( each 4x4
block of luma pixels there is only one U and V component. Also note that the mimglecheme

for 4:2:0 does not necessarily correspond to representations amctiatie

2.1.3 Macroblock Partitioning

In sampling video frames, pixels are grouped into blocks of 16x16 to fonrmaeroblock.
Figure 2.6 shows the partition of macroblocks on a CIF video frame. Engaslidone on a mac-
roblock basis with macroblock 0 in the top left corner and the last macroldfottie bottom right.
For the 4:2:0 format, each 16x16 (256 pixels) luma macroblock corresporta/o 8x8 (64 pixels)
chroma block. Within each macroblock the pixels are ordered starting wittx iddie the top left

corner and 255 in the bottom right corner.

2.1.4 Encoding Motion

Between each successive frame there is relatively little differences in mdkienerally

it is from either the camera panning/moving or from some object/person movigg2.7 shows
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o oj o o o o
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i . Cb sample
O O O O O o
® ® ® @ © @ ©
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4:2:0 sampling 4:2:2 sampling
(a) 4:2:0 format (b) 4:2:2 format
® @ @ @
@ @ @ @
4:4:4 sampling

(c) 4:4:4 format

Figure 2.3: Various video sampling formats [1]

Figure 2.4: Y component of YUV picture
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(a) U Componentin YUV (b) V Componentin YUV

Figure 2.5: U and V Components of YUV picture

Figure 2.6: Macroblocks partition of 16x16 pixels in CIF frame
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(b) frame 1 (c) frame 1 - frame O

(d) Y component of differ{e) U component of differ{f) V component of difference

ence ence

Figure 2.7: Difference between two frames

two successive frames with the bright spots in Fig. 2.7(c) showing theeliffe. To determine the
difference between each frame, each macroblock (16x16 squaneetd)ds compared to a similar
area in a previous frame to find the closest match. One method is to overlaydhedgions then
do direct subtraction to find the sum of absolute differences (SAD) fair plosition, the current
macroblock is then moved one pixel in any direction and the SAD is recalcul@isck this is done
a certain number of times, the position with the minimum SAD is chosen to be enc&iece
there is little motion between frames due to the high frame rate, the search argareally be
limited to a small area. If two frames are uncorrelated (have no similarities) tiev@@ihbe much
greater, this will only generate more data to be encoded but will not dfiecaccuracy/quality of

the decoded picture.

2.2 Overview of H.264

The H.264 standard defines a syntax for decoding a compressed vidég work an
encoder perspective will be taken. The encoding process should thatdacoding process as close

as possible to ensure quality video compression and decompressiondé&ilad explanation of
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Figure 2.8: General H.264 encoder path [1]

the decoder please refer to the standard [2].

2.2.1 Encoding Path

Figure 2.8 shows the main functional blocks that are generally included i2@4Htom-
pliant encoder. The encoder provides multiple paths for encoding degeon which mode is
chosen, for the baseline encoder only two paths are available.

The top blocks in figure 2.8 make up the forward/encoding path, while therbdthocks
represent the reconstruction path for reference frames. The iRpytcontains the frame to be
encoded, macro blocks to be encoded are sent to the intra or inter prediattules. After intra or
inter prediction, a predicted macroblock (P) is formed and subtracted theroriginal input (Fn)
to form (Dn) the difference macroblock. The difference macroblockes integer transformed and
guantize to produce a set of transform coefficients (X). The transtarefficients are then entropy
encoded and sent out.

The reconstruction path is formed from the transform coefficients (Xrgo being
entropy encoded. They are scaled and inverse transformed to prodoonstructed difference
macroblock (Dn’) which are then added to back to the prediction macrol§l®cko from the re-
constructed macroblock (uFn’). For display purposes, the recomsttunacroblock is also goes

through a filter to remove any differences introduced in the quantizatiosealihg process.
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2.2.2 Profiles

The H.264 standard supports three types of profiles: baseline, maiexterted. In the
baseline profile intra (1) slices and inter (P) slices, entropy encodingorigegt-adaptive variable-
length coding (CAVLC), slice groups, and redundant slices are stgghdntra frame are produced
from data in the current frame only, inter frames are produced fromiquely encoded frames.
The main profile also supports B frames/slices which are predicted frompetiious and future
frames as well as other methods for optimizing coding. The extend profigm&s switching |
and P frames for more efficient switching between frames as well as gtierization methods.
Figure 2.9 shows a visual representation of the differences and simildr@iesen the three types
of profiles. A new commonly used set of parameters is referred to as thstramed baseline
profile which includes only the options that are overlapped between a#l inadiles, specifically,
| slices, P slices, and CAVLC, this allows for a simpler encoder/decodes Work deals with the
baseline profile, specifically the constrained baseline options and will bagdied in the section
below, for a more detailed description of the main and extended pleaseadifier standard [2] and

Richardson [1].

2.2.3 Intra Prediction

In intra prediction the current macroblock is encoded using only the prsljieencoded
macroblocks in the same frame. The first frame for every video sequeusebe intra coded since
there are no previous frames that can be used as reference. ledliation is also commonly used
when switching video sequences where there is little to no correlation betiveéames.

Since encoding is done in order from the top left corner to the bottom rigimtee, the
macroblocks directly above and to the left are generally available for cosgpa Because of
the high correlation between neighboring macroblocks in a frame, a faidyrate prediction can
be made to predict the current macroblock. Intra prediction supports6léwacroblock partition
and 4x4 macroblock partition for the luma components, the 16x16 modes aeeatjg used for
homogeneous areas where there is relatively little difference such askgrband, the 4x4 block
mode are used in areas of greater detail such as facial features. &db and 4x4 prediction

are computed then compared, the best prediction (minimum SAD) mode is theofsém be
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Figure 2.10: Prediction modes for intra 16x16 macroblock partition [1]

encoded. A predicted value for each pixel is first determined depermdirige mode, this value is

then subtracted from the current pixel to get the residue which will bedet:

16x16 Prediction

In intra 16x16 luma prediction, four modes are possible, vertical, horitobta, and
plane. All four modes are computed to determine the closes match (least aofa@sidue -
minimum SAD), the best mode is then chosen for comparison with intra 4x4 lundéicpoa. In
vertical prediction, the predicted value is taken from the last row of theraalbmacroblock (H),
shown in Fig. 2.10, hence for every pixel in that column the same predictiee vs used. In
horizontal prediction, the predicted value is taken from the right most cohfrtive left neighboring
macroblock in the same row (V), as with vertical prediction, the same predietee is used for
the entire row, and is subtracted from the current pixel. In DC predicti@average of last row of
the above macroblock and the right most column of the left macroblock vétieg)are taken to
be the predicted value, if either of above or left data is unavailable, tligcpee value for that side
is take to be ibit,depth-l) (for a bit depth of 8, this is 128), hence this mode can alwaysdxbfor
prediction. In DC prediction mode, the same predicted number is used fontine lslock. In plane
mode a linear plane function is generated from the upper and left samplag) (lvith different

predicted values depending on the location.

4x4 Prediction

In intra 4x4 luma prediction the four modes from intra 16x16 prediction asdable as

well as five additional modes. The 16x16 macroblock is divided into fowsrand four columns
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Figure 2.11: Partition for intra 4x4 macroblocks

producing 16 blocks 4 pixels tall by 4 pixels wide as shown in Fig. 2.11. Hs mmode for each
4x4 block is first determined, once this is done the total SAD for all 16 blackscompared with
the 16x16 prediction mode to determine the best one. Values used fortpedire computed from
either the above and left macroblock if the current 4x4 block lies on aa @agcks 0-3, 4, 8, or 12),
and within the same macroblock for the other 4x4 blocks. The modes avaitatpeeiction are
shown in Fig. 2.12. Vertical, horizontal, and DC modes are computed in a similamenas intra
16x16 mode. For the remaining modes the predicted value is extrapolatedifeotop, left, and

top-right pixels. For a more detailed description of these modes pleas¢a¢e H.264 Standard.

Chroma Prediction

Intra chroma prediction is done independent of the luma prediction but with simddes
to intra 16x16 prediction numbered differently. In DC prediction, the chrbioak is divided into
a total of four 4x4 blocks and predicted in a similar manner to intra 4x4 bloaksvith different

constraints on which side (H) or (V) is chosen for the prediction valueadeleefer to standard for
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Figure 2.12: Prediction modes for intra 4x4 macroblock partitions [1]
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Figure 2.13: Intra prediction chroma modes [1]

a more detailed description of how the predicted value is determined.

Encoding Prediction Modes

The prediction mode for each macroblock and 4x4 block if used must alsertbécsthe
decoder in order to reproduce the current frame. In intra 4x4 predictieere is a high probability
that the prediction modes for adjacent (above and left) blocks are similae wutihent one. Based
on this the encoder and decoder can calculate the most probable modiiraf.clh the predicted
mode for coding is the same as the one used, a flag is asserted and oniyismedded to signify

this, if a different mode is used the flag is de-asserted and the encodirggused must be sent.

2.2.4 Inter Prediction

In inter prediction macroblocks are predicted from previously encodmud, using the

reconstructed frame data from the encoder rather than the original datavide the closest match
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Figure 2.14: Macroblock partitions for motion estimation [1]

to the data used by the decoder. Four macroblock partitions are availalégioprediction given
in Fig. 2.14(a), if an 8x8 block mode is chosen, each 8x8 block can ltleefed partitioned as
shown in Fig. 2.14(b). An example of how different partitions may be anémsea frame are shown

in Fig. 2.15.

Motion Estimation

In motion estimation a search window of 3x3 macroblocks (48x48 pixels) is ofted,
the current block is moved within the search window to find the best match loylatng the
resulting residue. Once the best matching block is found a set of motion sdotahat block is
calculated by taking the difference in position of the current block in thexéravith the position
of the chosen block in the reference frame, this provides directions éadélcoder to find the best

matching position. The search is repeated for the other block modes anesthenie is chosen.
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Figure 2.15: Sample macroblock partition for ME [1]

Encoding Motion Vectors

Motion vectors are encoded similarly to prediction modes in intra 4x4 prediclibere
is a high correlation between neighboring blocks since objects that mowralignconsists of
groups/block of pixels, hence motion vectors are predicted from theeableft, and above-right
set of motion vectors. If the blocks chosen are of similar size, Fig. 2.5@)s which ones are
used for prediction. If the neighboring blocks are of different sig&s, 2.16(b) shows which blocks
are used for prediction under certain conditions, please refer to theasth{2] as to when which
blocks are used. The neighboring motion vectors are used to generegdietgd motion vector
which is used to subtract the current motion vector from to produce a matictorvdifference that

is encoded and sent.

2.2.5 Integer Transform and Quantization

To further reduce the number of bits required for representation, ttierelifce mac-
roblock is integer transformed and quantize. Prior to the integer transéach macroblock is

reordered and data is sent according to Fig. 2.17 regardless of veuitiion mode is used. If intra
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Figure 2.17: Block order for integer transform and CAVL®} [

16x16 prediction is used, an additional block is sent containing the DGiadeets (first pixel of

each 4x4 block) prior to the rest of the data, hence 25 blocks are &ttt than 24 in the normal
case. In H.264, three types of transforms are used, a Hadamard fo€theefficients used in intra
16x16 prediction, a Hadamard transform for the DC chroma coefficierdsmynmacroblock, and

DCT based integer transform for the remaining residue data.

4x4 Residual Transform & Quantization

Blocks 0-15 and 18-25 first undergo an integer transform that udgsraeger arithmetic
(additions and shifts) which allows the decoder and reconstruction pa#iptoduce the data with
100% accuracy. The quantization/scaling process however is nolelessnd introduces minor
errors in the reconstruction of data. The reconstruction path howebeiligo mirror the decoding
path, thus the same error is introduced in both sides and will yield the samietfmedor the
following blocks. The DC coefficients for the chroma components, blo6kentl 17 are taken after
this transform and quantization process. The DC coefficients for intxd@L&node are bypassed
directly to the Hadamard transform though.

The forward integer transform is done using equation (2.2) where kesepts the 4x4
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input block to be transformed and Y is the resulting transform. For a fuiVdon of this equation

please refer to Richardson [1].

- - -1 1 1 1 1 - -1 2 1 1 -
Y 2 1 -1 =2 X 1 1 -1 -2

B 1 -1 -1 1 1 -1 -1 2
I | _1 -2 2 —1_ I | _1 -2 1 —1_

(2.2)

After the integer transformed, the coefficients are quantize to furtherceethe energy
needed to send/store the residual data by rounding. The roundingfasmped by equation (2.3)
whereY;; is the input after the integer transformed, is the resulting output, the MF (multiplica-
tion factor) is derived in tables within the H.264 standard and f is definedjbsteon (2.5) for inter
prediction and equation (2.6) for intra prediction. The quantization paraf@i in equation (2.4)
is in the range of 0-51 and the floor function is the matlab rounding functiaryinvg the QP varies

the resolution of the encoded values and the amount of work neededddestite remaining data.

|Zij| = (|Yij| * MF;; + f) >> qbits

sign(Zsj) = sign(Yij;) (2.3)
gbits = 15+ floor(QP/6) (2.4)
f = 2% /6 :inter prediction (2.5)
f = 243 /3 :intra prediction (2.6)

4x4 DC Transform & Quantization

If the selected encoding mode is intra 16x16 the luma DC coefficients (fiedticents
for every 4x4 luma block) are sent directly to a Hadamard transforrngbyeequation (2.7) and

guantize by using equation (2.8). The inpXit,C' is from the original 4x4 inputYpC' is the
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transformed output, and, C is the quantize output. Qbits and f are defined as beforeldng o

is the MF coefficient in the (0,0) position from the tables used in equation (2.3)

_ _ _1 1 1 1 11 - —1 1
YpC 1 1 -1 -1 XpC 1 1
B 1 -1 -1 1 1 -1
I | _1 -1 1 —1_ I | _1 -1

1 Zpcupyl = (Ypegs| * MFoo +2f) >> (gbits + 1)

sign(Zpj)) = sign(Yp(ij))

2x2 Chroma DC Transform & Quantization

2.7)

(2.8)

The chroma DC coefficients are first transformed using equation (2.2t to another

Hadamard transform for further transform and quantization. The ¢oefficients for Cb and Cr

are transformed separately using equation (2.9) and are quantize gsiatioe (2.10). Constants

MFy 0, f, and gbits are defined as before.

| Zop)| = (Yol * MFoo +2f) >> (qbits + 1)

Sig”(ZC(z'j)) = Sign(YO(ij))

(2.9)

(2.10)
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2.2.6 Reference Frame Reconstruction

After the forward encoding process data is passed to both the entragpgemnand ref-
erence frame reconstruction block. The chroma DC coefficients andlifxd6 DC coefficients
are first inverse transformed and re-scaled then re-inserted bacth@itaespective blocks before
being inverse transformed again. For details and the equations usetdmstruction please refer

to Richardson [1]. The reconstructed data is then stored and usedtfointra and inter prediction.

2.2.7 Entropy Coding

After undergoing integer transform and quantization, the residue datae#&urther en-
coded using a context-adaptive variable-length coding method whichddkastage that there are
mostly zeros, the number of non zero coefficients for neighboring blacksorrelated, most of the
non-zero data is either positive or negative one, and that coefficiksisrd¢o the DC value (closer
to the beginning) are generally higher. The prediction modes (intra predjaimd motion vectors

(inter prediction) however do not have these properties and are eilegl Exp-Golomb coding.

Exp-Golomb Coding

Exp-Golomb coding is used for encoding the prediction modes in intra predictiotion
vectors in inter prediction and the block patterns for intra and inter prediclitwe following ref-
erences tables are partially shown in this text, complete tables can be fouredHh2®4 standard
section 9.1.1. Intra and inter prediction modes are predicted using undigpe@olomb codes in
Table 2.5. Motion vectors are first mapped to code numbers using Tablesp.ththcode words are
encoded using Table 2.6.

In encoding macroblocks, some blocks after the transform and quantizatioess con-
tain only data with value zero, these blocks do not need to be entropyethosahg the CAVLC but
can be signaled using the coded block pattern. The coded block patteBroit feeld with the first
four bits used to represent an 2x2 region of the macroblock (4 8x8 ¥jotflall the data within that
block is zero then the corresponding bit is set to zero else it is set to tvedast two bits are used
to show the three possibilities for both chroma blocks this is shown in Tableré,tbe codeNum

is obtained it is coded using Table 2.8 which correspond to the bit stringsie Zb.
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codeNum| syntax element value
0 0
1 1
2 -1
3 2
4 -2

Table 2.4: Signed Exolomb code table

Bit string | codeNum inter mode
1 0 16x16
010 1 16x8
011 2 8x16
00100 3 8x8 w/ sub partition
00101 4 8x8 w/o sub partition

Table 2.5: Explicit Exp-Golomb code

Bit string form | Range of codeNum

1 0

01Xy 1-2
001X, Xy 3-6
0001X: X5 Xy 7-14

Table 2.6: Prefix and suffix for codeNum

bit field description
5.4 00: All Chroma Data 0
01: DC=0,AC!=0
10: DC 0, AC!=0
0: Block =0
1: Block =0

O Fr N W

Table 2.7: Coded block pattern for intradx4 modes
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codeNum coded block pattern
Intra4x4, Intra8x8| Inter

0 a7 0
1 31 16
2 15 1
3 0 2

Table 2.8: CodeNum for block patterns

CAVLC Components Description
coeff toden Encodes the number of non-zero and trailing one coefficients per block
trailing_onesign flag Encodes the sign of the trailing ones per block
level Encodes the magnitude and sign of the remaining non-zero coeffigients
total zero Encodes the number of zero coefficients after the first non-zero numbe
run_before Encodes the number of zeros before each non-zero coefficients

Table 2.9: CAVLC components

Context Adaptive Variable Length Coding (CAVLC)

The CAVLC process does not take data in raster scan order (top lefittmnb right) but
in zig zag order as shown in Fig. 2.18, data is however encoded in theseeweler, starting at the
end and working back up. First the cagfiken (non-zero coefficients and trailing ones) for the 4x4
block is determined and encoded using tables. The sign of each trailingposiéive or negative
ones that occur at the end of the zig zag scan before any other noneasdficients) is then encoded
and sent. The level (sign and magnitude) of the remaining non-zeroaierts are then encoded.
Finally the number of zeros before the first non-zero coefficient aadchtimber of zeros between
each non-zero coefficient is encoded and sent. For a more detailaiptiea of the CAVLC along

with the tables please refer to Zhibin’s [3] research work.

Encoding coefftoken

The coefftoken encodes the number of total non-zero coefficients in each 4xk,bloc
this can range from 0-16. The number of trailing ones is limited to three peblock, all other

trailing ones after that are considered as normal non-zero coefficiEhésencoded value is based
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start
G

9]
end

Figure 2.18: Zig zag scan order for CAVLC [1]

on 4 look up tables depending on the number of non-zero values in the amaleft blocks.
Because the decoder cannot know the number of non-zero codffizighe current block this value
is predicted from surrounding previously encoded blocks, as the nuaib®n-zero coefficients

increases different tables are selected.

Encoding trailing _one sign_flag

After integer transform and quantization, many of the remaining coefficaets/- 1 and
0’s. Trailing ones are counted in reverse zig-zag scan order anthare/- 1's before any other
non-zero coefficients are encountered. Up to 3 +/- 1's are countiedittsg ones and only the sign

needs to be encoded and can be done with just one bit, 0 - negativesitivgpo

Encoding levels

The level for each remaining non-zero coefficient (in reverse zigezder) is encoded in
two parts, the suffix (0-6 bits) and a prefix. The values for the preftksffix vary depending on
the previously encoded values for the current block. Please refebsestion 9.2.2.1 of the H.264

standard for a detailed description of the level parsing process.

Encoding total_zero

The total number of zero coefficients before the first non-zero coeffi (normal zig-zag

order) is also encoded using a table, by doing this any zeros precedifigstmon-zero coefficient
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NAL Unit Octet (bit) Description
7:3 NAL Unit Type
2:1 NAL Reference Id (NRI)
0 Forbidden Bit, always 0

Table 2.10: Bit field for NALU

will not need to be encoded.

Encoding run_before

The number of zeros before each non-zero value is also encodedentorreconstruct
the residual data block. Starting in reverse zig-zag scan order, theamahberos is encoded. The
encoded value changes based on the number of zeros remaining arst the laf zeros before the

last coefficient does not need to be encoded since we already kndetaheumber of zeros.

2.2.8 Network Abstraction Layer

Once the residue data, prediction modes, and motion vectors have beeleémicey are
added to the network abstraction layer to be sent the encoder. The ketigtraction layer (NAL)
contains vital information for the decoder to decode and reproduce thmalrvideo sequence.
Each video sequence is started with a picture parameter set (PPS) tteabsamformation for the
rest of sequence. This is followed by the sequence parameter set WBIRA contains data on
variables specific the frames in this sequence, and finally before emtle fs sent, a slice header
(SH) is sent with relevant data for the current frame. Each PPS, 3l H is signaled in the bit
sequence by a NAL unit which contains a start code, block type, and da& bit fields for the
NALU is given Table 2.10, for a complete listing of the values and functionggleafer to table 7-1

of the H.264 standard.
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Picture Parameter Set

profile_idc

constrainedsetQflag
constrainedsetlflag
constrainedset2flag
constrainedset3flag
reservedzera4bits

levelidc

segparametessetid

log2_ max frame numminus4
pic_ordercnt.type

log2_ max pic_ordercntlIsb_minus4
num.ref_frames

gapsin_frame numvalue allowedflag
pic_width_in_mbs minus1
pic_heightin_mapunits minus1
framembsonly_flag

direct 8x8.inferenceflag
frame.croppingflag
vui_parametergpresentflag

Table 2.11: PPS fields

Sequence Parameter Set
pic_parametessetid
seqgparametessetid
entropycoding modeflag
pic_order presentflag
numslice groupsminusl
num.ref_idx_10_active minusl
num.ref_idx_11 activeminusl
weightedpredflag
weightedbipred.idc
pic_init_gp_minus26
pic_init_gs.minus26
chromagp.index offset
deblockingfilter_controlLpresentflag
constrainedntra_predflag
redundanipic_cnt presentflag

Table 2.12: SPS fields
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Slice Header

first mb_in_slice
slice.type
pic_parametersetid
framenum

idr_pic_id
pic_ordercntlIsb
no_outputof_prior_flag
long term.referenceflag
slice gp_delta

Table 2.13: SH fields

29
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Chapter 3

Processing Platforms Used for Video

Encoding

Various platforms have been used for video processing with varyindtse§ he platform
spectrum ranges from general purpose computers to chips built spdygifior video encoding,
depending on the application performance needed, different platfansh@sen. This chapter

looks at some the various platforms used for video encoding and présemisposed platform.

3.1 Related Work in H.264 Processing

Previous implementations of H.264 video encoders have been done iy alebavels.
Encoders on general purpose (GP) processors have beengknyawthe golden model for compar-
ison and development. General purpose processors howevertabla®o meet the constraints of
real-time video encoding and is used primarily as a reference point. Multimegieocessors have
also been used for video encoding, these however have focusedadlersframe sizes, generally
CIF and below with high power consumptions making them not as desirabletabpmapplications.
ASIC have managed to provide low power real time video encoding, howewe these processors
are application specific, they cannot be easily modified for future implemengatioother config-
urations. Section 3.1.1 presents implementations on GP processors, setitopr8sents solution

on DSP chips, and section 3.1.3 presents ASIC implementations.
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GP Processing Platform
Processor Type Intel Xeon w/ HT
Number of Processors 4
Threads 8
Speed 2.8GHz
L2 Cache 256 KB
L3 Cache 2MB
Performance 4.6 frames/s (CIF

Table 3.1: Performance of H.264 Video encoder on Intel Quad CoweBsor [4]

DSP Processing Platform
Processor | Intel PXA27x

Speed 624 MHz
Accelerator | Intel MMX (64-bit SIMD)
Memory

Performance 49 frames/s (QCIF Average

~—'

Table 3.2: Performance of video encoder on Intel DSP platform [5]

3.1.1 Video Encoding on General Purpose (GP) Processors

The H.264 video encoder is implemented in software for general purposegsors,
Chen and others [4] looks specifically at optimizing an encoder on Intefgilin 4 processor.
Because of the complexity of the encoding process their implementation wasudorg proces-
sors with multi-threading capabilities using software optimization to speed up ticegs by 4.6x
over traditional SIMD implementations which provide approximately 1 frame/€f6rresolution

sequences.

3.1.2 Video Encoding on Digital Signal Processors (DSP)

Digital signal processors have provided more promising results with fésteughput.
Wei and others [5] has implemented a real time H.264 video encoder on ARXAR7x processor
used on the HP IPAQ hx4700 PDA which includes Intel's Wireless MMX tettgy for multimedia
acceleration yielding an average of 49 frames/s for CIF-resolutionesegs using a QP value of

28.
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ASIC Processing Platform

Technology .180 um CMOS
\oltage 1.8V

Core Area 7.68 x4.13 mrA
SRAM 34.72 KB
Performance 81 MHz

(SD 720x480) 581 mW
Performance 108 MHz
(720p 1280x720) 785 mW

Table 3.3: Encoder performance on ASIC Platform [6]

3.1.3 Video Encoding on Application Specific Integrated Ciraits

ASIC have by far provided the best performance compared to other imptatians,
Huang and others [6] have implemented a chip consisting of five major bltueg€r/Fractional

ME, Intra Prediction, Entropy Encoding, and Deblock Filtering), to panfoeal-time 720p encod-

ing.

3.2 Proposed H.264 Video Encoder Platform

The proposed architecture for this video encoder is an asynchr@ammysof simple pro-
cessors (AsAP) [7] specifically the second generation AsAP2 desélbp the VLSI computation
lab at the University of California Davis. This platform allows for a highlygikel implementation

over a small area, using little power with performance scalability.

3.2.1 General Overview of ASAP2 Architecture

The AsSAP array has 167-processors, with 3 dedicated processofsT computation,
Viterbi coding, and motion estimation. There are also 3 shared memory batileslzttom of the

array each containing 16KB of memory. Some key features of the AsA¢epsors are:

e each processor is small, containing only 128 word of instruction and 12&sx6 data mem-

ory
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Figure 3.1: General layout of ASAP array

e each processor has 4 links in each direction for nearest neighbdomedistance communi-

cation

e each processor has 2 inputs with dual-clock FIFO's [8]

e each processor’s voltage and frequency can by dynamically scalegtimization

3.2.2 Dynamic Voltage and Frequency Scaling (DVFS)

Each processor in the AsAP array can be independently frequeatsdsitom 10MHz

to 1.2GHz as well as choose from either of two voltage radildd,;,, andV dd,,,,) [9] allowing

for performance optimization and reduced energy consumption for cotigne#y less intensive

workloads. The ability to have each processor configured indepépdgiows for higher perfor-

mance in bottle-necks areas in the encoding path and less wasted enéttgyrandules. Because

of the instruction and data memory constraints of ASAP many processotsedefor routing or

long distance connections only, these processors can be set to legaeificies and voltages to

minimize power consumption.
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Frequency| Voltage| Power
12GHz | 1.3V | 62mW
1.07GHz| 1.2V | 47.5mW
66 MHz | .675V | .608 mW

Table 3.4: AsAP power measurements for various voltage and frequendigurations

3.2.3 Memory Architecture

Each processor has 128 words of instruction memory for programming2thdord data
memory for storage, a 27 word dynamic configuration memory is also availablesé as pointers
and setting input output configurations. The data memory (DMem) is a singkd@®RAM 16-bits
wide by 128 words. The memory space is replicated allowing for memory siéoesvo operands
in a single cycle. The three shared memory (16 KB each) [10] at the botttime processor array
can be accessed by two processor each for additional storage gstecontains a single ported

16-bit x 8KWord SRAM with single cycle read and writes.

3.2.4 Processor Interconnect

Each processor has 8 links as shown in Figure 3.2, the links are indeyi@idbe core
so they can configured for long distance communication (bypassing tle¢. cdwo dual clock
FIFOs can connect any of the 8 links to the core for input data. The cdaek FIFO’s allow
each core to run at a separate frequency and still be able to communicateasftlother. Each
FIFO is 64 words deep with a stall signal to tell the communicating processen ths full.
The link directions are signified by north, east, south, west, and up, ,deftnright. For long
distance communication, compass direction outputs can talk to any other codigasi®n, and
any direction output can be connected to another (north and connemtitto Isut not down). The
input direction to each processor is statically configured during progragmmuhile the output

direction can by dynamically switched during run-time.

3.2.5 Motion Estimation Accelerator

Motion estimation is a highly computational task and has been implemented as aterdw

processor on AsAP. The motion estimation accelerator (MEC) [11] allows for communication
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Figure 3.4: block diagram ME accelerator on ASAP2

with two neighboring processors for control. The block diagram for the ACC is given in Fig-
ure 3.4. The accelerator has its own memory for storing the current mackobnd search window

allowing for faster computation.

General Architecture

After the ME_ACC loads the required current and reference data, a set of sgaitetins
is loaded along with the block size used for prediction and the start signalMEhACC will then
return the SAD value for that search position to the neighboring proggh&can be continued by
sending a continue signal or abort signal once the neighboring mocestermines that a sufficient

match has been found.

Dedicated Memory

The ME.ACC has two dedicated memory banks one for storing the current mackobloc
and one for storing the reference search window. The current olacto memory consist of 2

banks, each 8 8-bit words wide, and with 16 rows, allowing for one @6racroblock. The refer-
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ence memory contains 8 banks each 8 8-bit words wide with 64 rows allowirigsfmacroblocks
(4x4 macroblocks). The extra row and column in the reference memorgeased for pre-loading
of memory to hide latency. For a more detailed description of the memory archéqiaase refer

to Gouri's thesis [11].

Programmable Search Algorithm

The search area and pattern in the MEC are user defined allowing for different types of
searches such as full search, 4-step, diamond as well as any custgsmltie accelerator currently
allows for 4 sets of search patterns, each with 64 different programrsabheh locations. During
run time the desired search pattern is selected by writing to a register, theetifethe search

pattern are then incremented by writing to the NIONT register.
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Chapter 4

Parallel Programming Tools

A high level C H.264 video encoder was first developed as a refenemciel for the
AsAP implementation using the message passing interface (MPI). Due to théexaynpf parallel
programming a MPI wrapper was used and is discussed in the following sedii® next section

deals with issues in converting the MPI/C program to assembly for ASAP.

4.1 Message Passing Interface (MPI)

The message passing interface is a specification for an application pnogmg interface
(API) allowing multiple computers to commute with each other while running a singlgram.
However, programming with the MPI syntax can be confusing and time congwsitine many of
the commands required are simply for communication protocols. Two tools leavedeveloped by
Paul and Eric [12] to make this process easier. The first is a MPI wragbjpgving the programmer

to essentially use C, and the second is a mapping tool for a visual connetparallel programs.

4.1.1 Parallel C/MPI Wrapper

The MPI wrapper allows the programmer to write in C with a few key words &sig+
nating different nodes such as begin, end, ibuf, and obuf. Once ttwel€is written a script goes

through and add the necessary instruction for making the code compatilale k6P| simulator.
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4.1.2 AsAP Arbitrary Mapping Tool

The arbitrary mapping tool allows the programmer to visually see the connedtioeach
parallel program block and connect them making the communication betWeeksteasier. The
tool also follows the AsAP model and can propose a mapping algorithm fopimgthe programs
onto an AsAP chip. Here since the programs are written in C and not asseh#bjyrimary use of
the tool was for a visual mapping of the C blocks.

Figure 4.1 shows the encoder modules in C and Fig. 4.2 shows the low |@gglgsors
that model those same processors in ASAP assembly. An example mappirg®piocessors to
the AsSAP chip is shown in Fig. 4.3, in this implementation however a hand mappirsgedsfar
simplicity. Because the encoder is programmed in parts, using the mappingveyl tieme a new
processors is added, would require the programmer to go back anchandecall the processor
coordinates by hand. A comparison of the hand mapped encoder to fhesptbmapping from the

tool is given in the analysis section.
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Figure 4.1: Communication links for reference C model in ASAP arbitrary rimgpiool

(IdN) 3OVHHTLNI ONISSYd IOVSSIN T'h

ev



44

X
)

<

[/
N

J
%]
X
\
/

H
...w
i

%

[
il
/]

]

i

|
n
%

iy
N

7] NG
LA
Yiaweny

e

i
e

N
Y
U e

CHAPTER 4. PARALLEL PROGRAMMING TOOLS

RND
a-v il

b
)

Figure 4.2: Communication links for ASAP processors in ASAP arbitrary nmapiool



4.2. PARALLEL PROGRAMMING 45
4.2 Parallel Programming

Because programming on AsAP is considerably different than C or traditassembly
this section talks about the methodologies used in programming, what hadiarged and altered,
what was harder, what was improved, and what are some of the commiieims/pitfalls that were

encountered in programming this video encoder.

4.2.1 Methodology

Two main differences in programming AsAP vs. other chips or using MPI isite of

the instruction/data memory available and the input limits per processor.

Limited Data Memory - Processors

Video encoding is a highly memory intensive process, from the sheer stheooghput
needed for standard quality video to the memory reference neededddiciion, the 128 data
memory posed as a great challenge. Because there is only 128 16-d& wiomemory, even
if the macro block data is packed, it would not fit onto a single processbmanuld have to be
split into at least two, with the luma data packed (two pixels per word) into omeegsor and the
chroma data into another processor. Even so that leaves no memory ledtlimth processors for
variables using in calculations, hence the memory processors would haeeseparate from the
computational processors. Data is accessed by using the dynamic catidigunemory (DCMem)
to determine where in the processor the data resides and passes it aloeg.nWre data space is
needed (but significantly less than that provided by the big memories) multiptegsors can be

connected in a loop to form a FIFO like buffer.

Limited Instruction Memory

The small instruction memory available for each processor is fairly adedorasimple
tasks, however to perform more computationally intensive task, the pregnad to be split up into
smaller blocks. This creates more parallelism if the program can be brgkémauch a manner
that both blocks can be executed at the same time. The challenge is to fintdrga&thg points in

the program where branching off to another processor would retittiecoverhead because certain



46

CHAPTER 4. PARALLEL PROGRAMMING TOOLS

led

10 20 30 40 50 50 70 50 50 100
> | | l—
Router 434 _dc_pre Router | 434 _ac_resd Router aLtcprea Router o num_costt| cauc_router Router
01 1 21 31 a1 51 5 n 51 o 101 11
l— —>
| intra_router | intra_router | intra_router  intra_router a_axd_vert a_4xa_resdu a_v_pred o pcoviscan . cauiq_scan: a_sign_1s level_code
3
02 12 22 32 12 52 6 2 02 0 102 12 122
> >
Router intra_routerd\ 4 intra router]\ 4 intra_router] Router Router Router abred_she tumb2 \| o si0 001 »_zio|zaq2 o total_zero Router | non zero_ry
03 13 23 33 43 53 63 s s o 103 113 123
e—>] > e > >
ointra_y2 Router ofintramem el { intra_router o tnd_pore Router ahpred | afrednnzchifa [agfhpreat| [aaxafprear| o cavic_router Router o_cavle_out
04 14 \ 24 34 a4 54 64 74 84 94 104 114 124
l— Ny > > - e l—
o_dummy o intray1 156 ac Router washon | diexsresah  hasaspreat  ddotarecend  §1sne preaf \  cac_rouier Router level_code Router
os 1 2 3 as \\ o 7 o 0 10 s 125
acury data_collectdr Router _mb_reques a_intra_ctrl b out_router a 16116 0t Roler _16x16_quan] a_intra_cocr acocracz | out router
0s 16 25 36 46 56 66 76 55 os 106 116 126
| l— le— l— l— h
arefco arefc1 a_main_ctrl \ tter_mb_request Router a_recon_mb Peeresad lo_idct fresdu ,_idct_reorde] a_ifict o recon_routerL a_cher_dc acbfr v
l \ T | I
07 17 27 37 \ a7 57 67 77 — 97 107 117 127
N L —
aretys aretc2 aretcs a_inter_ctn aredrect hoctrowerd  dasadresab  booct foutert] atest generathr 4 resal conedt Router asps pos lacocr resud
T l “ T T v
08 18 28 38 18 5s o8 78 08 os 108 118 128
e—] > > ) le— le—>]
aretys aretys aretcs ami et »_ciac_sad Router a2 »_242_quant x2_dequar] scofect2 | arpis_chroma_stea A ener feorad Roler
T T T A
10 30 19 5o 6o 7 09 0 100 19 129
le—]| le—]| l—] . |
aretys aretyo | ofinter_foo_aa atsd_ac a_ap_table Router dct_generade N[ acotects o det_resdu) ash o_frtro_nfode_p
1 ! l ! | N 1 | |
110 210 510 510 s10 710 810 s10 1010 1110 1210
le— —> —>
aretya arety Router o_temp_hold ot a st oc2 o ocrescate| o chic_reorder rdsau [a_act resan| b out routerd o bue
T l + T 3
en 2 s a1 s o 2 8L s 1011 wn 21
le—| le—>| —> —> | | — — le—>|
aretys aretyz a_calc_mv_2 a_calc_my Router Router Router Router Router Router Router o nter_mv_pre

o

Figure 4.3: Proposed mapping of processors from AsAP arbitrary mgppol.
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control information and data would be needed by both/multiple processerserély it is safe to go
to a different processor once you have exited all conditional loopsdirguf statements because
there would generally be less data overlap and only a few control vakess to be passed along

with what was recently computed.

Limited Inputs

Perhaps the biggest difference in programming in AsAP is the limited numbepofsn
to both the chip and each individual processors. The AsAP2 chip Hgoa external input and
output for off chip communication thus not suitable to control flow operatiohsre the input
depends on the output. Because of the limited memory on board the curcerdgfarence frames
cannot be stored on chip and must be stored off chip in the FPGA, wheocagsor needed a
macroblock, it would send a request signal. Since there is only one othputequest signal and
encoded video output must both share this, requiring that control biteiete the FPGA for
determining where each output should be routed.

Having only two inputs per processor core posed an even greaterriallBecause of
the limited instruction memory, many of the modules had to be broken up to smaller grzaitat
some later point combined again to re-construct the data as shown in Faj). A&imilar problem
is where each processor now also requires inputs from multiple sowsa®an in Fig. 4.4(b). The
biggest challenge however is when there is data and control depeesiéetween the processors
as shown in Fig. 4.5, each processor not only needs to communicate witbrttiel@and memory
processors, but also pass along data amongst themselves.

In general, three different solutions were used depending whicherotype was en-
countered and what conditions/constraints were needed. For probikeensblution in Fig. 4.6(a)
is simple and sufficient, using additional processors for routing, adda@puts together two at a
time until all of them could be combines, similar to building a multiple input AND gate foory
two input AND gates. The only constraint is that the data flow must be kndwghainput would
data appear at first and how many data points should be taken from gadhtaonensure proper
data flow. Solution 2 can also be used to solve either problem 1, 2, and\8evdofor solving
problem 3, this method requires all the above processors to stall while wntidgta to return for

the requesting processor below it. Interrupts cannot be used sineeateepnly two inputs so it
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cannot be determined if the data was requested by the current prooess@ below it. Adding in
the extra word for control is possible, but now generates the probleswtad instructions used for
checking the condition every time a new data is received. Since AsAP dossipport traditional
interrupts, branch on empty FIFO conditions are used to avoid stalling.eTdrasich instructions
must be added often throughout the program to avoid stalling other marseshis would however
require additional instruction memory which is not readily available. Solutiomiist useful when
a program is split between multiple processors and one must stall while waitinigfa to be com-
puted by another processor that requires additional data that camstbried locally. An example
is when computing SAD values and the current macroblock data is storawbtimea processors.
The third solution provides a method for avoiding the latency of solution 2dmuires
3 times the number of processors. In Fig. 4.7 the data path up the computatiooessor are for
passing control information along as well as conditions or complete signalste® 1-3 are used
for sending request for data, router 1 is the problem, requiring 3 addltrmuters. Since router 1
already has two inputs from the requesting processor it cannot alsiveetata from the memory
processor, thus requiring routers 4-6 to send back the requestedraaiizrs 4-6 can also be used to
passing information from computational processors 1, 2, and 3 bedaastlinks are not available
as in solution 2. Since it is not known when a processor might requesttdgtaare also assigned

to requested data to determine which processor was the original requester

4.2.2 Pitfalls

The bulk of debugging time in programming AsAP has been centered arevathtkey

issues that were discussed above, primarily the program splitting anelgs@dntercommunication.

1/0 Mis-Match

Because of sheer size of the program, making sure that data is prdéegbe proper
order has been extremely difficult. The main processing block in videodemgds the 16x16 mac-
roblock, when data is passed between modules they must generally begether, and must all
be present before continuing, however because each macroblotkins 384 words they cannot

be stored on any single processor, to reduce the number of prosessat for simply storing data,
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when data is to be compared such as in comparing SADs for different mibgesomparing pro-
cessor must wait for all other to complete before continuing, this may canse grocessors to stall
in the process. To ensure that data is passed along correctly the simptestimare often used

rather than the most efficient algorithms.

Program Splitting Overhead

As mentioned above splitting programs to blocks that would fit inside eaclegsoc
requires a certain amount of overhead. It is often tempting to try and optinezsotie and try to fit
it to exactly 128 words, this however leaves no room for changes or ireprents. If anything needs
to be altered, the entire code must be re-written. The simplest solution is aftem, breaking up
the program while requiring additional overhead and added complexityt@epsor communication

allows for the most room for further improvements and additions and progcalability

Error Tracing

Error tracing in AsAP has proved to be rather difficult, because it is fieh@ossible to
tell directly which processor is causing the problem. Errors were ginehae to I/O mismatches
rather than computational problems. To solve this the program counter milsbked at for each

processor then matched to the instruction to determine the trace-back ptth &ror.
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Chapter 5

Implementation

Because of the complexity of video encoding and the H.264 standardll mspacts of
the standard are implemented in this work. Some key differences from theasthtihat are not
implemented in both the C model and AsAP version are sub-pixel interpolatioteingrediction,
inter prediction is limited to 1 reference frame, intra prediction is limited to 3 modes anly
no de-block filtering is implemented. Using a programmable platform howevewnslior these
additional function to be added at a later time. This chapter goes into moreafdta MP1 model

and AsAP implementation.

5.1 Parallel C Implementation

The parallel C implementation was developed following the guidelines from thdatz
[2] and the reference software JM version 12.1. In the C progrante @kept as simple as
possible using only standard functions and basic data elements such assratagd arrays for an
easy transition to assembly. Since there are no memory constraints in Crefittaference frame
data is stored locally. The .h264 bitstream output of this implementation is compaithlehe

reference JM decoder software and can be viewed on third party YielVing software.

5.1.1 General Overview

The main difference between the MPI model and the standard encoaern shGhapter 2

is that there is no de-block filtering. Because this version is used aganegemodel for developing
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Figure 5.1: H.264 encoder path for parallel C/MPI implementation

the AsAP implementation, it has not been optimized to exploit the parallel capalulitidse MPI

simulator, rather the code has been keep in an efficient and easy toaé&uganner.

5.1.2 Intra Prediction

For simplicity, only vertical, horizontal, and DC modes are used for both lurdzlroma
blocks, please refer to section 2.2.3 for a more detailed description of phedietion modes. The
best mode is chosen directly after computing the SAD for each block andipiitteger transform.
Prediction modes are computed as described before in section 2.2.3 aditesetty to the output.
Because there are no memory constraints all data is stored locally in this modytassed along
to neighboring blocks when complete. Latency is not a factor in this vergd®ADs for each

prediction mode are computed sequentially for easy coding.

5.1.3 Inter Prediction

Motion estimation on AsAP is done via an accelerator, since this is not modeledan C
simple full search algorithm is used with the smallest partition being 8x8 with nepattiiions.
Every position within the search window is calculated and compared with th@pgeposition to
determine the best match for that block. The MV is then saved along with its 8A@Mmparison
with other partition sizes. Inter prediction is done in two blocks where thelfiestk computes the

the SAD and motion vectors for each block partition and the second block, matimpensation
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computes the residue for each macroblock. In the motion estimation stageitheerdata is not
saved due to the large amount of space needed to store every posaible pasition when using
the full search algorithm and is recalculated in the motion compensation stagkctn modes for
inter prediction are encoded at the output prior to bit-packing using a tabExp-Golomb coding

since only a four modes are used.

Motion Vector Prediction

Once motion vectors have been computed for the current macrobloogdeigd motion
vector is computed as described in section 2.2.4 to get a difference motitor \@@ncode and
transmit. Motion vector prediction in this MPI model supports the 4 main block parsiticsed in
prediction only. Once the difference motion vector is computed, it is encodied) Exp-Golomb
coding as described in section 2.2.7 with the range of code numbers fif6 @lowing for mo-
tion vectors in the range of +/- 63, large enough to support any motion vémtaer 48x48 (3x3

macroblock) search window.

5.1.4 Integer Transform & Quantization & Entropy Coding

The integer transform, quantization, and entropy coding process is impledhas de-
scribed in section 2.2.7. Because they must be the mirror image of what isrusieel decoder
little flexibility is provided in encoding options. The transform and quantizati@megss is a direct
process where each block must wait till the preceding block is completeebedmtinuing and is

not parallelized in this implementation.

5.1.5 Network Abstraction Layer (NAL)

The NAL for the MPI-C implementation has been mainly hard coded since ordgelibe
encoder is implemented and many of the extra functions are not used. Bha8HPPS have been
entirely hardcoded with the exception of the picture width and height in thex®it® are computed
for every new sequence. The slice header has also been hardwitheékle exception of the slice
type, frame number, and QP value and is resent for every frame/slieeNAh module also packs

the output data into eight bit format to be stored in the .h264 bitstream file. Diadditwise into
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a large buffer, whenever the buffer contains more than 8-bits of datdirsh 8-bits to be stored are

sent out one word.

5.1.6 Reference Frame Reconstruction

Because our MPI simulator does not have the ability to read and write to anfitpeall
inputs must be previously stored in an data file. The reconstructed mackstdce stored within a

module and sent to the intra/inter prediction modules when requested.

Inverse Transform & Quantization

The inverse transform and quantization process is done after thertbtreamsform and
guantization, once complete they are re-ordered to match the original ni@akobapping and sent
to the reconstruction model. During the prediction process, the modes siddeevalues of the
predicted macroblock have been previously sent to the reconstructionlenadd are added with
the reconstructed residue values giving, a nearly duplicate copy ofri@al input, and exact

match the output of a decoder.

5.2 AsAP Implementation

Using the AsAP multi-core layout, the encoder can use implemented using adined)
sub-macroblock partition to exploit the greatest amount of parallelism. Usa@itPl code as a

reference module, the modules are further partitioned to individual psese

5.2.1 General Overview

For testing purposes and memory storage, the AsAP chip is attached to a%/otexrd
kit, which programs the ASAP chip upon power on and serves as main meAibcpmputation is
performed on AsAP however and the FPGA board is used mainly for I/Qur&i§.3 shows a high
level diagram of the main blocks in the H.264 encoder, these are similar lotke MPI imple-
mentation with the exception of the inter prediction module which consists of a mattonation

accelerator and a motion compensation module.
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Figure 5.2: Block diagram of FPGA and AsAP connections
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Figure 5.3: H.264 video encoder path for ASAP implementation
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Figure 5.4: Partition of H.264 modules on AsAP chip

5.2.2 Memory Organization

Three memory intensive task in the H.264 encoding process are the thaference
frame management, motion vector management, and non-zero coefficiergemaard. They arise
from the fact that encoding is based not only on the current macroblaickiso previously encoded

ones.

Current/Reference Frame Management

Each frame being encoded must be buffered to ensure that no data slcastise of the
size of a picture frame, this data is stored off chip in FPGA memory, this alsosftmviuture work
on larger than 1080p resolution pictures without any changes to the As#dPgms. After each
frame is encoded, it must also be saved for motion vector prediction in thdraeme. The FPGA
memory is divided into three banks as shown in Fig. 5.7. Bank 0 holds thentdrame, bank 1
holds the reconstructed current frame, and bank 2 holds the previmesipstructed frame. After
each frame the bank pointers are incremented so that the reconstruates thiat was in bank 1

now becomes the reference frame, data is read into bank 2, and thetrected data is in bank O.
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Figure 5.7: Current/reference frame managment of ASAP implementation

Macroblock Management

Within the FPGA memory, data is stored according to macroblocks as shown.if.Big
with luma data first followed by chroma data. When a data request is makedaly@8s of luma
and chroma data are sent at once. The only logic in the FPGA is a small meowrglter for
where data should be stored. This can be implemented by using simple courdepttvdck of the

start address for each macroblock.

Motion Vector Management

The H.264 standard supports sub-partitions of blocks for inter predijatiin two motion
vectors per block this becomes a possible maximum of 32 motion vectors wimgntiie smallest
partition size(16 4x4 blocks). For motion vector prediction the precedingafomacroblock mo-
tion vectors must be saved. For 1080p-resolution, this would be a maxim@&46fwords. For
simplicity all motion vectors for a macroblock are save even though only motictorgethat are on
the bottom of a macroblock are needed, hence the mode for each makrohlstalso be stored
adding an additional 120 word for 1080p support. The block mode and matictors are stored in
BigMem with the first 500 address allocated for block mode and the remaidihgss for motion
vector data. The motion vector data is addressed in increment of 32 wmndse the MV for the

first macroblock is stored starting at address 500 and the MV for maaioBlds stored starting at
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Figure 5.8: Orginization for macro block storage in memory

address 532 and so on.

Non-Zero Coefficient Management

Similarly to motion vectors, the number of non-zero coefficients must be peedin
the CAVLC using the above and left previously encoded data. Becaes€AWLC process is
performed on 4x4 blocks, at least 4x120 memory addresses mustdreaa$or a frame of 1080p
resolution requiring the use of BigMem. Because the needed addressispauch smaller than the
16 KB available, all the number of non-zero coefficients for each méacktbin a frame and stored

for easy addressing.

5.2.3 Control Logic

One of the greatest challenges of partitioning a program over sucheadegg is control-
ling the flow of data between processors. Ensuring that data is prebent needed, and buffered
when un-used is vital in preventing dead lock. Two main areas for colugat are macroblock

control and 1/0O operations for AsAP.
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Macroblock Control

Video encoding is done on a macroblock basis, however to ensure ttagd¢bding path
produces the same data as the encoding path, prediction can only beittopeswiously encoded
blocks. For intra prediction this requires each macroblock to go througmtteeprediction pro-
cess, integer transform, quantization, scaling, inverse transformgaondstruction before the next
macroblock can be predicted. At each step proper control informatioblmeysresent to ensure ac-
curacy. The chroma prediction process is much faster than luma prediciibihe predicted value
used must be buffered prior to being sent to the reconstruction blockeverg a dead lock situation
at the integer transform. Because input FIFOs to each processarlg@lonords deep and chroma
data is 128 words for both Cb and Cr components, the chroma predictioegzars will halt and
not send data to the integer transform while waiting the reconstructiongsoct complete. How-
ever the reconstruction processor must wait for inverse transforratedbdfore reconstructing the
reference frame thus causing a dead lock situation.

Basic macroblock and frame information is also sent along at each stagsui® extcu-
racy and increase code reuse. Parameters such as frame width, faghg macro block width
(frame width /16), macro block number, encoding mode (intra/inter), blockenadd macNo %
macWidth (macro block number mod macro blocks width) are used at nearly sege and trans-
mitted to save limited IMEM having to used to recompute these values. Many porsasn start
some initial computation without all of the current data being present, thisvewequires that the
control information be broadcasted to many processors via long distagcednnects creating an

additional mapping issue.

External Memory Request & NAL

Because AsAP has only one input and one output link for communication veitRRIGA,
both macroblock requests and the encoded .h264 bitstream must come é&samtle output. For
this the protocol in Table 5.1 is used. On the FPGA side a small block must afged®nt to parse
the data depending on the control bits, this however is rather simple ancge@onb in a few lines
of code. The protocol given will work with frame sizes up to 1080p, Imelythis however each

request will need to consist of multiple 16-bit words in order to provideresking for a greater
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Bit Field | Field Name | Description

15:14 Control Bits | 00: Write to output, payload contains H.264 output
01: Read from memory bank 0

payload contains macroblock number requested
10: Read from memory bank 1

payload contains macroblock number requested
11: Write to memory bank 2, payload contains pixel data
13:0 Payload For control bits 00 and 11: only bits 7:0 are used
For control bits 01 and 10

13:0 are used to request up to macroblock number 1023

Table 5.1: Output format for ASAP H.264 video encoder

Data_In — ——» Resdu

Intra

Control_In ——— o iction

Request/ o | ., Predicted

Complete MB MB

Figure 5.9: High level diagram of intra prediction in ASAP

number of macroblocks.

5.2.4 Intra Prediction

The intra prediction process although generally used only once peesegonstitutes
a rather large amount of computation. Figure 5.9 shows a high level blogkadiafor the intra
prediction module. Datan and controlin contain information for the current macroblock being
predicted, the requestlB signal is for requesting neighboring macroblock used for predictldre
residue output goes to a re-ordering processor for the integer tramgfrocess and the predicted

macroblock goes to the reconstruction processor to be added to thatrebed residue data.
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Figure 5.10: Block diagram of Intra prediction in ASAP

Parallelized Luma Prediction

Luma prediction can be done for both 16x16 and 4x4 blocks modes at e taae,
furthermore each prediction mode can also be done in parallel. In this impleinerdagrocessor
holds the current data to be predicted which is read by all processmg pieediction. Figure 5.10
shows how these blocks can be divided into parallel task. Each poydess a local copy of the

above and left macroblock and accesses the current data througled sietwork.

When mapped to individual processors, half the processors ardarsediting as shown
in Fig. 5.11. As explained in chapter four these routing processorsgrgred to over come the
input limitation of each processor and to limit the number of processors baieg ior memory
storage. Here two processors are used to store luma data (256 8-dg)wihis can be done in

one processor if data is compacted to 16-bit words, however two mokeare used to reduce
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addressing complexity.

Parallelized Chroma Prediction

Similar to luma prediction chroma prediction can also be parallelized as shown . E
Because there are only 64 Cb and 64 Cr data only one processor sthieedtorage while 3 are
used for computation. To reduce the number of routing processoredgeddta is automatically
sent to the DC mode computation processors for computing the SAD for ead amad requested
individually on the second pass for computing residue. In the first palysGb data is used for
computing the prediction mode. In the second pass both Cb and Cr areousesidue calculation.
Since chroma prediction is much smaller and faster than luma prediction the extrasgudy the

chroma prediction processors to compute the SAD first then residue thiedstime is acceptable.

5.2.5 Inter Prediction

Inter prediction is a computationally intensive task that is done on the majoritsiroifs/slices.
To provide higher throughput ASAP uses a programmable motion estimatietesator for this. A

high level diagram of the MEACC interface with neighboring processors is shown in Fig. 5.13.

Search Window Management

The MEACC is capable of holding a 4x4 macroblock region for the search window.
speed up the prediction process however only a 3x3 search windoveds e fourth column
can be used to pre-load data for the next prediction cycle, howevedthressing scheme for this
becomes rather complex and is not easily done in a single processoraere search window
is loaded from main memory for every macroblock. Although this is time consuntiatjpws for
much simpler code. Each macroblock when read into theA@E is also stored locally on one of

11 processors so that only 3 new macroblocks need to be read in frormmeaiory.

Diamond Search Algorithm

A modified diamond search algorithm is use for all block sizes. The modifiextitig

uses only 5 search points as opposed to the nine points generally testdd,rapeated 4 times
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Figure 5.15: Diamond search pattern for motion estimation

to find the best match. Although this process is not as accurate as a fullriasearch the only
drawback would be slightly higher entropy values to be encoded. Thisisrgkty not significant
unless there is a great difference in motion between frames, generally jbdtynaf a frame is

constant or near constant.

Residue Calculations

Once the best set of motion vectors are computed, they are sent to aerealdulation
processor. The data used for this prediction is read from the 11 mosethat hold a mirror copy
of the MEAACC memory. A block diagram of this can be seen in Fig. 5.16 along with the AsAP

layout is shown in Fig. 5.17.

5.2.6 Integer Transform & Quantization & Entropy Coding

Integer transform and quantization are done in similar fashion to the MPI-d&hvath
the exception that the integer transform path is replicated once with eachagét half of the
blocks to be encoded. Figure 5.18 shows the block diagram for this an8.Efyshows the proces-

sor layout.
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Figure 5.19: Layout of integer transform and CAVLC modules on AsAP

5.2.7 Network Abstraction Layer (NAL)

The NAL layer is handled by the processor network in Fig. 5.20. The #gorfor each is
again similar to the MPI-C model with the exception of the final processor whia$t also handle

macroblock request signals.

5.2.8 Reference Frame Reconstruction

Reference frame reconstruction is done similarly to the reference MPIl-dehyaredicted
data is added to re-scaled transformed data and sent to main memory fgestéigure 5.21 shows

the high level block diagram where Fig. 5.22 shows the AsAP layout.
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Chapter 6

Results and Analysis

Initial results for the implemented H.264 encoder are gathered from simulatitreo
AsAP chip in SimVision and NCVerilog. Results and data for analysis are gathising assembler
functions that were able to measure the energy, traffic, and activityobf p@cessor. Section 6.1
presents the metrics used for testing and analysis, section 6.2 gives arisompud the encoder

with other implementations, and section 6.3 gives an analysis of the encottex ASAP chip.

6.1 Metrics for Testing and Analysis

For an accurate analysis of the encoder on the AsAP chip, the followingcseaive been

considered:

e Program Size: The program size (instruction memory) and data memorcbfoeemputa-
tional and routing processor has been collected for analysis. Porsegsich are solely used

for long distance interconnects have been ignored.

e Energy: The energy of each processors is measured. The eneaguraments consists of
the average power per cycle of the MAC, ALU, Branch, FIFO read/yatel NOP/stall as
measured in lab. In simulation, as each instruction is processed, thepmordisg average
energy is added to the total. The activity of each processor is also estadd used for an

estimate of the energy consumption.

e Speed: The speed of each processors is initially set to the maximum fagteget the
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highest performance. For minimum energy consumption, the energy lofpeacessor can be

scaled later.

e Communication: Links between every processors will be analyzed for ¢beimunication

distance and average throughput.

Accuracy

The encoded data is compared to the reference output of the MPI-Ct dotaccuracy.
For smaller frame sizes the .h264 output bitstream can also be decodedthasiatgrence software
JM, and compared using Elecard YUV viewer. Because of the encottjegtam implemented,
the encoder is nearly data independent. In intra prediction regardlédss ioput data, all processors
doing prediction will execute the same set of instructions except for theepsor calculating the
chosen prediction will repeat its calculation again. Although a differentemmody be chosen every
time, the number of instruction repeated in any of the processors is very simi¢awill yield
the same approximate power. In inter prediction, the_IMEC will undergo the same number of
iterations every time, the only variance will be in the motion vector prediction.dmrtbtion vector
prediction depending on the mode, different conditions are taken butuimder of instructions
per condition is approximately equal and will have little effect on the ovecalligacy. Simulation
setup time is not a factor for intra prediction, at the start of every macrahtoe pipeline will be
empty because prediction cannot start until the previous prediction is ctanpssentially starting
over every time. In inter prediction, the only overlap of computation betweeamobbocks is in the
integer transform and CAVLC phases, both of which are much shortktesms power consuming
than the prediction process thus will not have a significant effect artsesTo account for this

though a much longer simulation time is used so that this small factor can be edenaiy

Video Sequences (Size and Length)

Because of the limitation of the simulator, representative macroblocks aserchand
the results are interpolated for the entire frame. The average time for a Inh@ckdo be encoded
is calculated from the time it is requested to the time the reference frame is complatech

prediction and from the time requested to when the MEC completes the search pattern for inter
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prediction. This is then multiplied by the number of macroblocks per frame tordetierg the

number of frames per second the encoder is capable of for the gagneincy and voltage.

6.2 Performance Comparisons

Performance comparison is broken down into two categories, intra framlgster frames,
in each situation the simulated results of a few macroblock are used to interfimatata for each
frame. Two different comparison are given depending on the frams,siemeral purpose and pro-
grammable processors are compared for smaller frame sizes only sincertoeance of these
types of platforms do not allow for encoding of larger frame sizes. Siate id only presented for
a few frame sizes, the number of frames per second has been interdolatedious other frame
sizes for comparison based on the number of macroblocks that can béeeinper second. The
operation frequency has been kept the same as in the original implement&time ASICs are
built specifically for encoding and have been optimized only, know datesented. The reported
memory size is for internal memory only, depending on the platform, the ercoday also use
additional off-chip memory, please refer for the references for a rdetailed description of each.
Power is also only reported for larger frame sizes since no powerfemata is given in other
implementations for small frame sizes for comparison.

The encoder has also been implemented on the AsAP chip with bit accuraés \esu
compared to AsAP simulation and MPI simulation. Table 6.1 gives the maximumefinegand
encoded frames per second achieved with each given voltage andtbgpomding power values.
Results of the encoder implementation on-chip is consistent with per-poyge=$ormance of the
AsAP2 chip as presented in the IEEE Journal of Solid-State Circuits wittvarfi@or exceptions
[7]. The single processor speed when running at .675 V was 66 MHA&GHz at 1.3 V. The
performance increase is not linear though, at speeds beyond 1 GHrerflormance increase begins
to level off, possibly due to power grid noise and velocity saturation in thieede The max speed
achieved in the H.264 encoder at 1.3 V was about 800 MHz, approxima@éBpaeduction in speed
but with linear increases in performance as voltage is increased. Védaictioss may be contributing
to the lower performance, most notably the stress on the power grid fromimy 115 processors

simultaneously as opposed to a single processor. The encoder paréerarad behavior though are
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Voltage | Max Frequncy Intra Inter Power Power
V) (MH2) fps (QCIF) | fps (QCIF) | Intra (mW) | Inter (mW)
0.8 172 19 95 108.8 365.1
0.9 295 33 160 213.6 452.6
1.0 410 49 233 419.0 662.3
1.1 539 66 324 696.3 908.4
1.2 651 82 427 802.7 1059
1.3 798 96 478 947.5 1189

Table 6.1: Performance of H.264 video encoder on AsAP2 chip

expected and consistent with single processor measurements. The maxiequenty achieved
increases linearly with increases in voltage as seen in the single protestdor frequencies below
1 GHz. The power measurements for the encoder are also within 30% ofgketed power when

the measured per-processor power is multiplied by the number of acticegwors in the encoder.
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.
Platform Intel Xeon [4] | Intel PXA27x [5] | ADSP-BF561 [13]| ARM [14] | ASIC [15] | ASIC [6] | AsAP AsAP 8
(4 cores) (2 cores) 1136J-S intra inter :§U
Technology (CMOS) 90nm - - - 180nm 180nm 65nm 65nm )2>
Area (mn?) - 26.78 - - 31.72 27.1 | 1887 | 192 2]
Internal (KB) 256 KB (L2) - 328 - 34.7 64000 16 32 8
Memory 2MB (L3) %
QCIF (fps) 184+ 49 218* 15 - - 41 216 %
Frequency 2.8 GHz 624 MHz 600 MHz 69 MHz - - 1.2GHz| 1.2 GHz 8
CIF (fps) 4.6 12.25* 54 * 3.75* - - 10 54 5)
Frequency 2.8 GHz 624 MHz 600 MHz 69 MHz - - 1.2GHz| 1.2 GHz
ACIF (fps) - - 13.6* - 30 - 2 135
Frequency - - 600 MHz - 81 MHz - 1.2GHz| 1.2 GHz
Power (mW) - - - - 581 - 702 955
720p (fps) - - 6* - 30 - - 5.94
Frequency - - 600 MHz - 108 MHz - - 1.2 GHz
Power (mW) - - - - 785 - - 955
1080p (fps) - - 2.7* - - 25 - 2.64
Frequency - - 600 MHz - - 200 MHz - 1.2 GHz
Power (mW) - - - - - 1219 - 955

Table 6.2: Comparison of H.264 Encoders * These value are interpolateddiven data based on the number of macroblocks that can be encoded
per second

18
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Custom Layout Mapping Tool
Number of Processors 115 147
Number of Memory Proc 33 33
Number of Routers 21 53
Computational Proc. 61 61
Long Distance Links 48 52

Table 6.3: Comparison of custom layout and proposed mapping from Asiifary mapping tool

6.3 Analysis

6.3.1 Chip Utilization

The current implementation uses 115 processors, 2 shared memories,camibtibn
estimation accelerator. The 115 processors do not include those uggdroiong distance com-
munication. Table 6.3 gives a comparison of overall processor nuntoetsss, and long distance
communication links between the current implementation and the proposed maspigghe ar-
bitrary mapping tool. Memory processors are counted as those thatlgrasau for storing data,
the only computational instructions within them are for address decoding thigynumber is the

same for both implementations and listed here for reference only.

6.3.2 Processor Energy

This section breaks down the energy used by the main blocks in the H.26degni the
intra and inter prediction process: prediction, integer transform, neéerenacroblock reconstruc-
tion, and CAVLC. The power numbers reported is the average energyple for each processors.
Based on this information it can be determined which modules should be tboader optimiza-
tion. Power estimates are based on the activity and average power pesgoo when running at
full speed as found in the AsAP2 JSSC paper [7]. The average goneach instruction is measure
in lab, in simulation, at every cycle the average power for instruction in thelipg are added up
and reported. The measurements are taken from the start of simulatiooafteguration time till
the end simulation.

The majority of power consumed during the encoding process is from #ukgbion pro-

cess, constituting approximately 60% of the total power.
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Operation Power (mW)
FIFO Read/Write 4.6
DMEM Read 13.0
DMEM Write 9.1
Nearest Neighbor Comm). 5.9
Long-distance comm. 12.1
Branch 27.2
MAC 53.3
ALU 48.5
NOP/stall 31.0

Table 6.4. Power consumption of various AsAP instructions as measuret) ustd for power
calculations in simulation

In intra prediction the majority of power is consumed in the routing proceshgrgo the
use of branch on empty FIFO instructions. During periods where no dat@sent, the program
counter continuously jumps between to instructions keeping the oscillatommnin other pro-
cessors, when idle and waiting for data, the oscillator is halted after a cacaiber of cycles and

energy is saved.

In inter prediction the power is consumed in the memory processors and metiorae
tion unit. Data is directly passed to the MECC for SAD computation but is also stored locally
in processors for residue calculation. Each processors holds data ffecked to 16-bits. In the
chain of memory processors, the first processors stores the firduB&6data and passes every-
thing else along, the second processors stores the second set of lamaadipasses everything else
along. Because of this, the earlier processors experience a heavidoad and thus more power.
Power for memory processors are generally constant across diffescroblocks because the same
number of writes and reads must be done every time. The residue calcyladicessors consume
relatively little power as compared to the memory processors because thepmhusompute the
index for where data is stored and do simple addition, however dependitigecdata and mode
chosen the activity and power consumption may be different. Thesegsarseare also idle most of
the time since the majority of time is spent in loading of the IMEC and the clocks can be halted.

Intra prediction has been parallelized for performance resulting in 9egemss for the
6 prediction modes computed. Since all luma prediction processors sharemaan set of data,

request are constantly made to the memory processors keeping the imndensemory control
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Figure 6.2: Power distribution for major blocks in inter prediction
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Figure 6.3: Average power and number of encoded frames per sesonfdequency at 1.3V on
AsAP2 chip

processor router active most of the time. Data is requested twice for tHe5 Idhd 4x4 modes,
once to determine the SAD for each mode than again to compute the actual 850was done
because the data memory for each processors is only 128 word anot caore both the current
data, variables needed for prediction, and the predicted data. It iswoot Which block/mode will

be chosen till all blocks/mode are computed, saving the predicted valuadbrveould consume

too much memory space.

Figure 6.10 shows the average power for processors in the recctistronodule for both
intra and inter prediction, one of the processors is shown as using ner p@eause it is only used
for intra 16x16 prediction (the test case here uses intra 4x4 predic@meehthis block is not used
and only passes data which consumes very little power compared to otleespons). In inter
prediction, because the prediction can continue once the SAD for eagblmiaak is computed, the

reconstruction module is used more often, however because data camesrfe source only, few
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routing processors are used which the primary power consumers in tagnetiction process.

The majority of power used for integer transform is in routing for the intradpstion
mode, inputs are constantly scanned for which type of intra prediction magsets The actual
transform processors have been optimized by Zhibin [3] thereforsuroimg very little power. The
amount of time that these processors are active is also very small wheramie the entire
encoding process hence they are idle most of the time.

The CAVLC used in this work has also been previously optimized by Zhibingd@ine
changes were make to the prediction processes for non zero codffi@snlting in the much larger
power consumption. The power for each processor is data depemulgater, so for another input
sequence the power difference may also be different. These poosess) be optimized by either

code scheduling to reduce the number of no-ops used or DVFS.

Energy Overhead of Switching I/P Frames

The energy overhead associated with switching frame types is negligibke thieonly
difference would be that the SPS and PPS need to be resent which mesudigerage power of 129
uW for that processor. The only control change would be an addit®tiakes of code inside the
main control processor which is negligible. This low switching cost is possixtaudse the header

information is hardcoded and do not need to be recomputed.

6.3.3 Processor Utilization

Processor utilization is presented as the percentage of time the prodessxirge, stalling
(when oscillator is on or off combined) on input, stalling on output, and stallingaops. The ac-
tivity tracks closely with those of the power plots. The stall on no-ops caglibenated through
code scheduling to hide latencies. By analyzing the stall on inputs/outpuksS D&lues can be cal-
culated for maximum utilization. The majority of stalls occur on reads where datad previous
processor is needed, this arises from the fact that during intra prediegioh macroblock must be
predicted, computed, transformed, and reconstructed before thenaexvblock can begin. These
long periods of stalling generally do not consume too much power becagiggdbessor oscilla-

tors are halted after a certain period, the exception again are routinggs@s which continuously
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Figure 6.14: Average Activity of processors used in inter prediction

branch between a few no-ops and branch on FIFO instructions. Thraador the x-axis for these

plots correspond to the same functions as those shown for the power plots.

During the reconstruction phase, although the inverse transform ggds@lso done on
a 4x4 block basis, they must be reordered prior to being transformedghésn in Fig. 6.15, the
first few processors hold the DC data and must wait for the forward éntegnsform process to
complete before starting, showing the stall on input. Once this is complete, #séntransform

process is fairly simple consisting of mainly adds and shifts resulting in the majdtitpye waiting

for more inputs.

Because the integer transform and CAVLC process are quick compatkd prediction
process, the majority of time is spent idle waiting for more data to encode. Fonmaxoptimiza-

tion these blocks are important, but the focus should be on the predictiokstficst because they
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are bottle necks using the majority of encoding time.

Optimization

Because of the low activity of the processors, the majority of power is wasteycling
on empty cycles. For the power optimization the voltage and frequency bfpgacessor can be
scaled for efficiency. Original measurements are taken with the chip rgmaifull power at 1.3V
and 1.2 GHz, using this activity number, the frequency is scaled for eaxdegsors for greater
utilization. Reducing the frequency by a factor of 2 increases the acti¥itiyad processors by a

factor of 2. To achieve maximum efficiency the frequency can be scalethy multiple, in this
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(a) Average activity of intra prediction processors prior to frequestaling
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Figure 6.18: Comparison of average activty before and after frexyuszaling for intra prediction

example though only factors of two are used. Each processors i€fiegis scaled until the new

activity is greater than 110%.

Using the new activity and frequency for each processors, the vakagyaled. Because
only two voltage rails are available, operating frequency is used to detemtiigh voltage the
processors should used. The comparison frequency is determimedfrimum frequency at that
particular voltage. Power is then calculated using the voltage, frequandyew activity number,

as shown in Fig. 6.20, power is reduce by over 50%.
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6.3.4 Processor Memory Usage

This section presents the instruction data memory usage of the all the psce$se
majority of the processors average around 45 instructions and the mairutatiop processors av-
eraging around 100 instructions. A greater instruction memory block waddae the number of
processors required and increase the percentage of time that eachtatorpprocessor is active,
however much of this space might not be used because nearly half tespoos are used for routing
and memory purposes. Increasing the amount of code in each processoalso decrease through-
put due to less parallelization, but would also reduce the overhead efsgiitting. Many of the
processors in intra prediction if further divided would not provide adgliional speed up through
parallelization because of data dependencies. The dynamically cobligureemory (DCMem)
count is only given for memory processors where they are used fopatation, DCMem registers
that are used for setting output directions and long distance communicatiootused.

The instruction count spread for integer transform and CAVLC ar&/faonstant because
the majority of processors are used for computation and few routing ggsoceare needed. These
processes are also done on a 4x4 block basis only so the amount afl @antralso be reduced
because data can be stored locally and passed along at every sthgeCRVLC even less variables
are needed for the actual computation but the majority of the instruction memasgdsor storing

look-up tables and checking previous encoding levels.

6.3.5 Communication

This section looks at the communication links used the ASAP processor$. liERds
assigned a number for reference only, this does not correlate with adylesoor functions. Link
length is measured by the number of processors between the beginnieg@dnunus 1, so a link
between two neighboring processors would have a length of one. Hrage/number of cycles
between writes is taken from beginning of simulation (after configuration) &lethd of simulation
and is used to calculate the average throughput. These throughput eatuealculated based on a
simulation running at 1.3V and 1.22 GHz. Max throughput is calculated frenatlerage number
of cycles between writes when stalling time is not included. These max valeaawnh greater

than the average throughput giving the approximate throughput whize.a€wo tables are given,
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Processor Imem Dmem DCMem |Processor Imem Dmem DCMem
data collector 46 6 - reorder resdu 2 35 128 7
main control 82 9 - QP table 46 118 -
redirect 38 5 - 4x4 transform 117 32 -
MB request 17 0 - 4x4 AC 1 44 75 -
intra control 95 7 - 4x4 AC 2 62 74 -
intra Cb/Cr mem 60 128 7 2x2 DC transform 85 70 -
intra Y mem 1 42 128 5 2x2 quantization 118 58 -
intra Y mem 2 47 128 5 16x16 DC transform 78 40 -
intra mem control 13 1 - 16x16 quantization 31 51 -
16x16 DC 117 78 - zig zag 2 83 40 -
16x16 resdu 70 128 7 temp hold 6 128 3
16x16 resdu 2 97 128 18 CAVLC scan 2 69 50 -
router 14 3 - data receiver 103 10 -
router 37 5 - luma nnz 2 72 24 -
reorder resdu 49 28 - luma nnz 1 127 48 -
intra resdu 31 128 8 Cb/Cr nnz 110 44 -
intra resdu 2 37 128 7 zig zag 1 79 35 -
test generator 113 89 - CAVLC scan 1 98 50 -
transform generator 37 9 - num coeff 75 119 -
16x16 H/V 127 51 - sign trailing 1's 115 89 -
4x4 DC pred 118 47 - router 21 10 -
4x4 DC resdu 102 49 - level code 1 71 50 -
4x4 vertical 116 55 - level code 2 121 44 -
4x4 horizontal 103 55 - total zero 56 124 -
router 15 3 - router 13 3 -
MB reconstruction 14 3 - non zero run 46 62 -
16x16 pred 1 40 128 5 router 25 5 -
16x16 pred 2 22 128 2 CAVLC out 44 14 -
4x4 pred 1 111 128 4 SPS/PPS 50 25 -
4x4 pred 2 92 128 4 SH 126 10 -
pred. collector 34 5 - intra pred mode 63 45 -
DC pred 24 18 - inter mv mode 90 45 -
vertical pred 22 18 - router 11 5 -
horizontal pred 17 18 - output 81 22 -
4x4 resdu 19 6 - inter control 115 25 -
Cb/Cr resdu 27 128 5 ME\ ACC control 106 40 -
router 21 1 - calc SAD 58 15 -
router 26 2 - calc MV 121 24 -
router 14 0 - calc MV mem control 38 20 -
router 17 0 - ref Y 0 45 128 5
router 18 1 - ref Y 1 46 128 5
router 26 1 - ref Y 2 46 128 5
router 18 1 - ref Y 3 46 128 N
router 15 0 - ref Y 4 46 128 5
router 16 3 - ref Y 5 46 128 5
chroma pred 41 128 2 ref Y 6 46 128 5
Cb/Cr H/V 127 59 - ref Y 7 46 128 5
Cb/Cr DC 112 62 - ref Y 8 46 128 5
Cb/CrDC2 121 54 - cur Y 46 128 5
16x16 dequant 77 50 - ref C 0 41 128 5
2x2 dequant 58 24 - ref C 1 41 128 5
AC rescale 94 65 - ref C 2 41 128 5
router 23 9 - ref C 3 41 128 5
router 19 2 - ref C 4 35 128 5
inverse transform 79 44 - calc inter MB 72 12 -
reorder 46 28 - inter resdu calc 124 10 -
reorder resdu 1 36 128 8

Figure 6.24: Number of instruction and data memory words used per pasedDynamic Mem-
ory (DC Mem) is only listed for memory processors where they are useddta storage and
computation.
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Processor Length |Average Max Processor Length |Average Max
Throughput |Throughtput Throughput |Throughtput

data collector 1 0.241 7.6 zig zag 2 1 12 505
main control 1 332 809.3) zig zag 1 1 12 510
main control 1 0.103 1.9] CAVLC data receiver 1 13.1 1200
MB request 1 0.0685 0.0695] CAVLC data receiver 1 0.37 52.1
redirect 1 64.3 186700] CAVLC data receiver 2 12.8 1200
intra control 1 6.6 105.1] Cb/Cr pred nnz 1 0.705 100
intra control 4 813 813] CAVLC scan 2 1 3.8 180)
intra control 9 22 37.9] CAVLC scan 2 2 6.5 314
intra control 3 0.103 2.2 CAVLC scan 1 1 7.4 316
intra control 1 22 37.9] CAVLC scan 1 3 2.1 88.9)
intramem Y 1 1 813 154900] CAVLC scan 1 1 39 165.2
intramem Y 2 1 98.2 98.6] num coeff 1 45 430.6
test generator 9 0.236 47.3] luma pred nnz 2 2 5.1 544
16x16 DC 1 14.8 109.1] luma pred nnz 1 2 0.994 65
16x16 DC 1 0.45 4.7] luma pred nnz 1 1 0.994 65
16x16 H/V 1 2 16.1| SPS/PPS 1 1.2 1200
Tx start 1 245 98600] sign 1's 1 9 449
Cb/Cr DC 1 83 117.6] sign 1's 2 7.4 368
QP table 1 243 1600] sign 1's 1 3.1 151
QP table 1 0.236 24.9] router 1 7.5 7000
4x4 AC 1 6 12.4 472.8] level code 1 1 8.5 393
4x4 AC 1 1 13 510} SH 1 2000 5200
2x2 DC HT 1 12.1 2200] intra mode pred 1 143.7 2300
2x2 DCHT 1 0.236 62.9| Inverse Tx reorder 1 8.2 443
reorder Cb/Cr 9 5.1 1600 AC rescale 3 0.0337 0.207]
4x4 DC pred 1 0.74 11.6] total zero 1 7.4 699
4x4 DC pred 1 24 37.1] total zero 2 3.1 250
4x4 horizontal 1 4.7 32| router 1 8.1 1200]
4x4 horizontal 1 0.461 3.3] level code 2 1 6.7 484
4x4 Tx 1 11.8 274.1{ router 1 4.6 1300]
4x4 Tx 2 12.3 284| MV pred 1 6200 17100
4x4 AC2 6 11.6 485] non zero run 2 7.4 420
4x4 AC 2 1 11.5 482| router 1 15.7 3900
2x2 quant 1 232 3500] CAVLC out 11 18.3 1700
2x2 quant 5 0.498 67.4] output 1 13.4 1400

Figure 6.31: Average and max throughput of major intra prediction commiimiclinks. Link
lenght is determined by the number of intersected processros minus 1.

one for intra and one for inter prediction.
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Processor Length |Average Max Processor Length |Average Max
Throughput [Throughtput Throughput [Throughtput

data collector 1 1.1 6.4 2x2 DC HT 1 0.193 35.8
main control 1 216 8900 4x4 Tx 1 10.7 276.3
main control 1 0.534 23.1 4x4 Tx 2 10.4 272.6
MB request 1 1.4 1.4 4x4 AC 2 1 10.3 465
ref Y 2 1 13.7 62.3 4x4 AC 2 6 10.3 465
refY 3 1 13.7 66.2 2x2 quant 1 20.7 2600
refY 6 1 13.7 81.7 2x2 quant 6 0.455 63.7
ref Y 7 1 13.7 88.6 zig zag 2 1 10.8 482.3
ref Y 8 1 13.7 96.7 zig zag 1 1 10.7 486.6
curY 1 13.7 106.6 data receiver 2 114 1000
refC2 1 13.7 153.4 data receiver 1 0.386 37.8
refC 3 1 13.7 179.6 data receiver 1 11.4 1000
request MB 9 1.4 2500 Cb/Cr pred nnz 1 0.649 99.6
redirect 1 2153 9300 CAVLC scan 2 1 33 185.4
refY 0 1 13.7 59.1 CAVLC scan 2 2 4.6 257.5
ref Y 0 1 18.5 61.4 CAVLC 1 5.4 261.7
refY 1 1 13.7 59.8 CAVLC 3 1.9 93.6
refY 4 1 13.7 70.7 CAVLC scan 1 1 3.5 172.3
refY 5 1 13.7 75.8 num coeff 1 4.1 415.1
router 1 0.338 15.1 luma pred nnz 2 2 43 511.8
refC 0 1 13.7 118.6 luma pred nnz 1 2 0.853 63.6
ref C 1 1 13.7 133.8 luma pred nnz 1 1 0.853 63.6
ref C 4 1 13.7 211.6 SPS/PPS 1 1.1 719
inter control 2 0.241 43 sign 1's 1 6.8 4443
inter control 1 0.265 4.8 sign 1's 2 5.4 352.1
inter control 1 133 3000 sign 1's 1 2.8 183
router 1 0.289 10.8 router 1 6.8 4100
test generator 8 0.434 54.1 level code 1 1 6.3 369.1
test generator 3 0.048 6 SH 1 2.7 4200
calc. resdu 9 13.7 389.1 resdu reorder 2 8.5 306
calc SAD 1 0.193 2.7 AC rescale 3 0.048 0.207
calc SAD 6 0.241 34 total zero 1 5.4 531
ME control 2 3.6 391.7 total zero 2 2.8 275.4
ME control 1 0.526 58 router 1 6.4 987.2
cale MV 17 0.193 1600 level code 2 1 2.1 440.6
Integer Start 1 20.5 8800 router 1 4.5 1100
QP table 1 20.6 1400 inter mv pred 1 0.338 399
QP table 1 0.338 249 non zero run 2 4.5 438
4x4 AC 6 11 455.8 router 1 13.1 2700
4x4 AC 1 11.8 488.6 CAVLC out 11 13.5 1300
2x2 DCHT 1 10.7 1800 output 1 15.8 1300
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Figure 6.32: Average and max throughput of major inter prediction commtimiclinks. Link

length is determined by the number of intersected processors minus 1.
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Chapter 7

Future Work and Conclusion

7.1 Architecture Enhancements for Parallel Programming

This implementation of the H.264 encoder has been highly parallelized for maximum
performance, however many of the techniques used are due to limitation iroitesping platform,
some enhancements are suggested for improving the parallel programmgeggrnd increasing

performance.

7.1.1 Multiple I/O Chips

The small and simple processor architecture of AsAP allows for the eatigaton of
many cores and low power advantages. Larger programs will be bountkinory issues however
and having multiple I/O ports for the chip will give much needed bandwidth eddae extra control
logic that was added to support dual output functions as well as longhdesteommunication.

Multiple I/O ports would also allow for multiple applications to run simultaneously.

7.1.2 Multiple Input Processors

As shown in the analysis, the majority of power is consumed through routouepsors,
this was necessary because only two inputs were available per proaessoould not be dynam-
ically configured. Increasing the number of inputs per processor wgrglatly reduce the number

of processors and power needed.
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7.1.3 Local Shared Memory

Many of the processors are used as shared memory for other ppesetese however
only provide small amounts of extra memory and when many are needed #ssdtrne is greatly
increased because the data must trickle through all the routing prosebsming small local shared
memories weather dedicated or processor configured would allow fer tasoughput and free up

more processors for other tasks.

7.2 Tool Enhancements for Parallel Programming

The majority of time spent in implementing this encoder was in the debug phaseideec
of the number of processors used (131) and the simulation time, this probedhe most difficult

task.

7.2.1 Arbitrary Mapping Tool For AsAP2

The mapping for this encoder has been hardcoded, using a tool similar soltiteary
mapping tool available for MPI-C and AsAP1 would greatly speed up thegssand reduce com-
munication connection problems. This would also allow for greater ease in yinglthis applica-

tion at a later point.

7.2.2 Analysis of I/0O Traffic

One of the most useful debugging tools was to look at the program ccamtestall sig-
nals for the input FIFOs and output in ModelSim. A tool that would allow fack®asy viewing
as well as flagging which processor caused the final stall signal (heeaie to occur would greatly
reduce debugging time. Another feature that would be helpful would bisddhave a few instruc-
tions in the processor causing the stall available to quick viewing. Often timesrtrewould be a

simple typo or branch error but would require a lot debugging time to manualtyede back.
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7.2.3 Enhanced I/O File Operations

The H.264 encoder has a feedback loop for storing the reconstruatgdsthce this is too
large to fit on AsSAP, it must be stored off chip. In simulation however this ispossible because
the input file used for reading cannot also be written to in the same instartoel that can provide

this function would improve the accuracy of testing and debugging.

7.3 Additional Encoding Functions on AsAP

The encoder presented has been simplified reducing the capabilities\amdaayges of the
H.264 standard. Future work in these areas would improve the compressiaquality of encoded

videos.

Intra Prediction

In intra prediction, only 3 modes are currently used, by using all availablgeson the
standard the entropy values of the encoded bitstream can be reduael.pidiction mode has
been implemented on either one or two processors, adding additional modeparate processors
should be fairly simple, the only problems would be with the shared memory waithereplicated

and mode decision which may need to be done on a separate processor.

Inter Prediction

One the advantages of H.264 over previous standards is the ability to ugmiated
samples. Because of the complexity of the motion estimation process only integples were
used in the MEACC. Fully supporting interpolated samples in the future will probably alsd tee
be done via an accelerator. A possible work around for this would ba gsgaller search window
and interpolate the samples outside of the WMEC and send them in as if they were part of the
window used by the accelerator. This process though would like inctbadatency of the encoder

significantly.
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Encoding With Slices

The H.264 standard also supports encoding using slices. The advarfittde is that
each slice of the picture/frame can be encoded independently (usingodgieevious matching
slices only). On AsAP these can be done in parallel increasing the thpatighe only limitation

would then be in hardware where each module would need to be replicated.

Support for HD-resolution

The algorithm presented can be optimized to support up to 720p real timarty £680p-
resolution (20fps) when using inter prediction. Initial calculations for théskesed off the number
of macroblocks that can be loaded for the MEC within a second. The current implementation
loads 10 macroblocks every time, this can be reduced to 4 macroblocksusynigthe previously
loaded ones however the control logic becomes more complicated sincddtrenoe blocks must

be stored in processors for residue calculation and do not providEgy indexing.

7.4 Conclusion

Here an H.264 compliant baseline encoder has been implemented in both ¥&h @n
programmable parallel processor. The AsAP implementation is shown to beacalohpin perfor-
mance to other DSP while achieving the low power capabilities of ASICs. Alysinaf perfor-
mance and chip usage is also given to provide a stepping stone for fubgrams and architectures
in parallel processing. In applications such as this, the primary sourpeveér consumption are
from the MEAACC and the shared memories, optimizing code for the computation procesiors w
not provide any significant reduction in power will only provide more she® more practical ap-
proach towards power might be to not use the MEC but implement the process using individual

processors, although this is much more complex, there is the possibility of @8 peduction.
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