
High Performance and Energy Efficient Multi-core Systems
for DSP Applications

By

ZHIYI YU
B.S. (Fudan University) June, 2000; M.S. (Fudan University) June, 2003

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Electrical and Computer Engineering

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Chair, Dr. Bevan M. Baas

Member, Dr. Vojin G. Oklobdzija

Member, Dr. Rajeevan Amirtharajah

Member, Dr. Soheil Ghiasi

Committee in charge
2007

– i –

c© Copyright by Zhiyi Yu 2007
All Rights Reserved

Abstract

This dissertation investigates the architecture design, physical implementation, re-

sult evaluation, and feature analysis of a multi-core processor for DSP applications. The

system is composed of a 2-D array of simple single-issue programmable processors in-

terconnected by a reconfigurable mesh network, and processors operate completely asyn-

chronously with respect to each other in a Globally Asynchronous Locally Synchronous

fashion. The processor is called Asynchronous Array of simple Processors (AsAP). A

6×6 array has been fabricated in a 0.18µm CMOS technology. The physical design con-

cerns timing issues for robust implementations, and takes full advantages of their potential

scalability. Each processor occupies 0.66 mm2, is fully functional at a clock rate of 520–

540 MHz under 1.8 V, and dissipates 94 mW while the clock is 100% active. Compared to

the high performance TI C62x DSP processor, AsAP achieves performance 0.8–9.6 times

greater, energy efficiency 10–75 times greater, with an area 7–19 times smaller. The system

is also easily scalable, and is well-suited to future fabrication technologies.

An asymmetric interprocessor communication architecture is proposed. It assigns

different buffer resources to the nearest neighbor interconnect and the long distance in-

terconnect, can reduce the communication circuitry area by approximately 2 to 4 times

compared to the traditional Network on Chip (NoC), with similar routing capability. A

wide design exploration space is investigated, including supporting long distance commu-

nication in GALS systems, static/dynamic routing, varying numbers of ports (buffers) for

the processing core, and varying numbers of links at each edge.

The use of GALS style typically introduces performance penalties due to addi-

tional communication latency between clock domains. GALS chip multiprocessors with

large inter-processor FIFOs as AsAP can inherently hide much of the GALS performance

penalty, and the penalty can even be driven tozero. Furthermore, adaptive clock and volt-

age scaling for each processor provides an approximately 40% power savings without any

performance reduction.

– iii –

Acknowledgments

I would like to thank all of the individuals who made this work possible.

I want to thank professor Bevan Baas, for his academic guidance and financial support.

His devotion and enthusiasm on research will effect me strongly in my future career. I want to thank

my dissertation reading committee members including professor Vojin G. Oklobdzija, professor

Rajeevan Amirtharajah, and professor Soheil Ghiasi, for their useful comments on my research. I

want to thank previous VCL group members including Michael Lai, Omar Sattari, Ryan Apperson

and Michael Meeuwsen. It was with them that I had a happy time when I first came to Davis,

and their efforts and contributions helped to make the AsAP project successful, which becomes the

strong basis of my dissertation. I want to thank current VCL group members including Eric Work,

Tinoosh Mohsenin, Jeremy Webb, Wayne Cheng, Toney Jocobson, Zhibin Xiao, Paul Mejia, and

Anh Tran; I always found I can learn something from them and they keep VCL group active.

I want to thank Intel Corporation, Intellasys Corporation, Xilinx, National Science Foun-

dation (grant No. 0430090 and CAREER Award 0546907), UC MICRO, ST Microelectronics,

SEM, SRC, and UC Davis Faculty Research Grant, for their generous financial donations to our

research. I also want to thank Artisan, MOSIS, and TSMC; it was with their help that we had a

successful fabrication of the AsAP chip.

I want to thank my family, my relatives and all of my friends. You might not know the

details of my research area, but the support and help I get from you all might be more important

than the pure academic help. It is because of you that I am a happy person and can keep pursuing

my dreams.

– iv –

Contents

Abstract iii

Acknowledgments iv

List of Figures viii

List of Tables xi

1 Introduction 1
1.1 Challenges. 2

1.1.1 High performance and energy efficiency 2
1.1.2 Future fabrication technologies .. 5

1.2 Solution — multi-core systems 6
1.3 Contributions . 8
1.4 Dissertation organization . .. 9

2 Architecture of the Multi-core System 11
2.1 Key features of the multi-core processor .. 11

2.1.1 Chip multiprocessor and task level parallelism. 12
2.1.2 Memory requirements of the targeted tasks 13
2.1.3 Simple single issue datapath . .. 14
2.1.4 GALS clocking style 15
2.1.5 Wires and on chip communication. 17

2.2 The AsAP processor system .. 18
2.2.1 Single AsAP processor design . .. 19
2.2.2 Inter-processor communication — Reconfigurable 2-D mesh network . . . 26

2.3 Application implementations and software. 29
2.3.1 Application implementations. 29
2.3.2 Software . 31

2.4 Related work .. 32
2.4.1 Traditional DSP processors. 32
2.4.2 Pioneering multiprocessor systems and multi-core processors 33
2.4.3 Modern multi-core systems . .. 36
2.4.4 Distinguishing multi-core processors 40

2.5 Summary 44

– v –

3 An Low-area Multi-link Interconnect Architecture 45
3.0.1 Background: traditional dynamic routing architecture 46
3.0.2 Background: static nearest neighbor interconnect. 47

3.1 Low-area interconnect architecture. 48
3.1.1 Asymmetric architecture .. 48
3.1.2 Theoretical analysis .. 50
3.1.3 Static routing vs. dynamic routing. 53

3.2 Design space exploration .. 56
3.2.1 Single port vs. multiple ports for the processing core. 56
3.2.2 Single link vs. multiple links . .. 59

3.3 Supporting GALS long distance communication 67
3.3.1 Source synchronization for long distance communication. 69
3.3.2 Care more about the clock delay, less about skew or jitter. 70

3.4 Implementation and results .. 70
3.4.1 Area. 71
3.4.2 Performance comparison. 72

3.5 Summary . 75

4 Physical Implementation of the GALS Multi-core Systems 77
4.1 Timing issues of GALS multi-core systems. 77

4.1.1 Inter-processor timing issues . .. 78
4.1.2 Inter-chip timing issues. 81

4.2 Scalability issues of GALS chip multiprocessors 82
4.2.1 Clocking and buffering of global signals 83
4.2.2 Power distribution . 84
4.2.3 Position of IO pins. 85

4.3 A design example — implementation of AsAP 85
4.3.1 Physical design flow. 86
4.3.2 Implementation for high speed. 88
4.3.3 Testing . 89

4.4 Summary . 90

5 Results and Evaluation of the Multi-core System 93
5.1 Area, speed, and power 93

5.1.1 Small area and high area efficiency. 94
5.1.2 High speed 96
5.1.3 High peak performance and low average power consumption 96
5.1.4 Result of communication circuitry. 98

5.2 High performance and low power consumption for DSP applications. 98
5.2.1 Performance scaling with the processor number. 102

5.3 Summary . 103

6 System Feature Analysis: GALS vs. Synchronous 105
6.1 Exploring the key GALS chip multiprocessor design options. 106

6.1.1 Clock domain partition of GALS chip multiprocessors. 106
6.1.2 Inter-processor network .. 107

6.2 Simulation platform — the GALS and non-GALS chip multiprocessors 108
6.3 Reducing and eliminating GALS performance penalties. 109

– vi –

6.3.1 Related work 109
6.3.2 Comparison of application performance: GALS versus synchronous. . . . 110
6.3.3 Analysis of the performance effects of GALS 111
6.3.4 Eliminating performance penalties 117

6.4 Scalability analysis of GALS chip multiprocessors 119
6.4.1 Auto generated clock trees for different sizes of chip multiprocessors . . . 119
6.4.2 The effect of clock tree on system performance. 121

6.5 Power analysis of adaptive clock frequency scaling. 123
6.5.1 Related work—adaptive clock scaling of the GALS uniprocessor 124
6.5.2 Unbalanced processor computation loads increases power savings potential 125
6.5.3 Finding the optimal clock frequency—computational load and position . . 126
6.5.4 Power reduction of clock/voltage scaling 127

6.6 Summary 128

7 Conclusion 131
7.1 Future work . .. 132

Glossary 135

Bibliography 139

– vii –

List of Figures

1.1 Power consumption of Intel microprocessors from 1970 to 2006 4
1.2 Wire delays (in FO4s) for fixed-length (1 cm) wires 5

2.1 Key features of AsAP and resulting benefits. 12
2.2 Multi-task application executing models. 12
2.3 IEEE 802.11a/g wireless LAN (54 Mbps, 5/2.4 GHz) baseband transmit path . . . 13
2.4 Area breakdown of four modern processors; memory occupying most of the area . 13
2.5 Block diagrams of synchronous and GALS tile-based chip multiprocessors 16
2.6 Somelinear pipelinedalgorithm models for DSP tasks and applications 18
2.7 Block diagram of an AsAP processor 19
2.8 AsAP 9-stage pipeline 20
2.9 Programmable clock oscillator. 21
2.10 Physical distribution of oscillator frequencies across different processors 22
2.11 Example waveform of clock halting and restarting 22
2.12 Relative instruction memory cost by usingembedded NOPinstruction 24
2.13 Comparison of three different addressing modes 26
2.14 Nearest neighbor inter-processor communication diagram. 27
2.15 Two strategies for communication in GALS systems 28
2.16 Block diagram of the dual-clock FIFO . .. 28
2.17 8 x 8 DCT implementation using 4 processors 30
2.18 JPEG encoder core using 9 processors 31

3.1 Interprocessor communication in NoC systems and a generalized NoC architecture 46
3.2 The concept and circuitry of the nearest neighbor interconnect architecture 47
3.3 The concept and circuitry diagram of the proposed communication architecture . . 50
3.4 Buffer stall probability (p) along with buffer size (N) 51
3.5 The overall system buffer stall probability along the buffer size ratio. 53
3.6 Diagrams of architectures with various numbers of input ports for the processing core 56
3.7 The latency of architectures with different numbers of ports for one-to-one comm . 57
3.8 The latency of architectures with different numbers of ports for all-to-one comm. . 58
3.9 The latency of architectures with different numbers of ports for all-to-all comm. . . 59
3.10 Diagram of inter-processor connection with one link at each edge. 60
3.11 Inter-processor connections with double links 61
3.12 Setup the interconnect path from point A to B 63
3.13 Inter-processor interconnect with three and four links. 64
3.14 layouts of seven processors with different communication circuitry. 65

– viii –

3.15 Comparing the processors with different communication circuitry. 66
3.16 The latency of interconnect architectures for one-to-one comm.. 67
3.17 The latency of interconnect architectures for all-to-all comm. 68
3.18 The latency of interconnect architectures for all-to-one comm.. 68
3.19 Synchronization strategies for GALS long distance communication 69
3.20 The relative communication circuit area of several interconnection architectures . . 71
3.21 The latency of different interconnect architectures for one-to-one comm. 72
3.22 The latency of different interconnect architectures for all-to-one comm. 73
3.23 Comparing the communication latency of three architectures. 73
3.24 The latency of application models uniformly combined by the four basic patterns . 74

4.1 An overview of timing issues in GALS chip multiprocessors 78
4.2 Three methods for inter-processor communication 79
4.3 Relative clock active time and communication power consumption. 79
4.4 Circuit for the Fig. 4.2 (b) inter-processor communication method. 80
4.5 Configurable logic at the inter-processor boundary 80
4.6 Inter-chip communication .. 82
4.7 Global signals controlled by a low-speed clock 83
4.8 An example power distribution scheme. 84
4.9 Pins connections between two processors vertically. 85
4.10 Pins connections between two processors horizontally. 86
4.11 Chip micrograph of a 6×6 GALS array processor 87
4.12 Hierarchical physical design flow of a tile-based GALS chip multiprocessor. . . . 88
4.13 A standard cell based back end design flow emphasizing the verification 89
4.14 Speed-up methods during synthesis and place and routing. 90
4.15 AsAP board and supporting FPGA-based test board. 91

5.1 Area evaluation of AsAP processor and several other processors. 94
5.2 Size of a single processing element in several chip multi-processor systems. . . . 95
5.3 Processor shmoo: voltage vs. speed. 96
5.4 Power and performance evaluation of AsAP processor and several other processors 97
5.5 Comparison of communication circuit of four chip multiprocessors. 98
5.6 Relative area for various implementations of several DSP kernels and apps.. . . . 100
5.7 Relative execution time for various implementations of several DSP apps 101
5.8 Relative energy for various implementations of several DSP apps. 101
5.9 Increase in system throughput with increasing number of processors. 102

6.1 Three example clock domain partitions. 107
6.2 Two chip multiprocessors . .. 108
6.3 A GALS system boundary and timing of the synchronization delay. 109
6.4 Pipeline control hazard penalties 110
6.5 Illustration of three key latencies and application throughput in GALS systesms . . 112
6.6 FIFO operation during normal situation, and FIFO empty, and FIFO full 114
6.7 System throughput in one way communication path, and communication loop path 115
6.8 Data producer proc.1 and data consumer proc.2 both too slow. 116
6.9 Performance of synchronous and GALS array processors with different FIFO sizes 117
6.10 Examples of multiple-loop links between two processors. 118
6.11 64-pt compelx FFT implementation. 119

– ix –

6.12 An example clock tree for a single processor 120
6.13 The peak performance of GALS and synchronous array processor 122
6.14 Increased clock tree delay at 1.7 V supply voltage for different clock trees 123
6.15 The peak performanc with the number of processors. 124
6.16 Clock scaling in a GALS uniprocessor. 125
6.17 Relative computational load of different processors in nine applications 126
6.18 Throughput changes with statically configured processor clocks. 127
6.19 Relationship of processors in the 4-processor 8×8 DCT application 127
6.20 The relationship between clock frequency and its power consumption 128
6.21 Relative power of the GALS array processor 129

– x –

List of Tables

1.1 Example multi-core processors presented in ISSCC from 2003 to 2007 7

2.1 Memory requirements for common DSP tasks 14
2.2 AsAP 32-bit instruction types and fields. 23
2.3 Classes of the 54 supported instructions. 23
2.4 Data fetch addressing modes .. 25
2.5 Computation load of the nine processors in JPEG encoder 31
2.6 Major features of some commercial DSP processors. 33
2.7 Comparison of the distinguished key features of selected parallel processors. . . . 41
2.8 Comparison of the selected parallel processors 42
2.9 Comparison of inter-element communication of selected parallel processors 43

3.1 Data traffic of router’s input ports and output ports for each processor 49
3.2 The required buffer sizes for defined stall probabilities. 52
3.3 Comparison of different interconnect approaches 55
3.4 Interconnect architecture options for double links 62

4.1 Typical timing constraint values for processor input and output delays 82

5.1 Area breakdown in a single processor. 94
5.2 Estimates for a 13 mm× 13 mm AsAP array implemented in various technologies 97
5.3 Area, performance and power comparison of various processors for several apps . . 99

6.1 Clock cycles (1/throughput) of several applications 111
6.2 The fraction of the time the inter-processor communication is active. 113
6.3 Effective latency (clock cycles) of several applications 115
6.4 Data for globally synchronous clock trees for different array processors 121

– xi –

– xii –

1

Chapter 1

Introduction

Applications that require the computation of complex digital signal processing (DSP)

workloads are becoming increasingly commonplace. These applications often comprise multiple

DSP tasks and are frequently key components in many systems such as: wired and wireless com-

munications, multimedia, large-scale multi-dimensional signal processing (e.g., medical imaging,

synthetic aperture radar), some large-scale scientific computing, remote sensing and processing, and

medical/biological processing. Many of these applications are embedded and are strongly energy-

constrained (e.g., portable or remotely-located) and cost-constrained. In addition, many of them

require very high throughputs, often dissipate a significant portion of the system power budget, and

are therefore of considerable interest.

There are several design approaches for DSP applications such as ASICs, programmable

DSPs and FPGAs. ASICs can provide very high performance and very high energy efficiency,

but they have little programming flexibility. On the other hand, programmable DSPs are easy to

program but their performance and energy efficiency is normally 10–100 times lower than ASIC

implementations [1]. FPGAs fall somewhere in between. One-time fabrication costs for state of the

art designs (e.g., 90 nm CMOS technology) are roughly one million dollars, and total design costs

of modern chips can easily run into the tens of millions of dollars [2]. Programmable processors are

the platforms be considered in this dissertation to allow high one-time fabrication costs and design

costs to be shared among a variety of applications; but higher performance and energy efficiency

are expected to be achieved using the architecture proposed in this dissertation compared to the

2 CHAPTER 1. INTRODUCTION

traditional programmable DSPs.

1.1 Challenges

Previous IC designers have been mainly concerned with fabrication cost and performance;

minimizing the number of transistors to reduce the area is the main approach to reduce the cost; and

increasing the clock frequency is the main approach to increase the performance. Currently, how

to achieve energy efficiency and how to adapt to the advanced fabrication technologies become

important challenges.

1.1.1 High performance and energy efficiency

High performance innovations are challenging

Increasing the processor clock frequencies and using wide issue processor architectures

have worked well to improve performance but recently have become significantly more challenging.

Deeper pipelining is one of the key techniques to increase the clock frequency and perfor-

mance, but the benefit of the deeper pipeline is eventually diminished when the inserted Flip-Flop’s

delay is comparable to the combinational logic delay. Moreover, deeper pipeline stage increases

cycles-per-instruction (CPI) and impacts negatively to the system performance. Researchers found

that the depth per pipeline is approximately 8 Fanout-4 (FO4) inverter delays to obtain highest per-

formance [3], which corresponds to 20–30 pipeline stages. The pipeline delay of some modern

processor is already close to 10 FO4 [4] so that the deeper pipelining technique for high perfor-

mance is reaching its limit. Also, increasing pipeline stages necessitates more registers and control

logic, thereby further increasing design difficulty as well as power consumption. As reported by

A. Hartstein [5], the optimum pipeline depth for maximum energy efficiency is about 22.5 FO4

delay (about 7 stage pipeline), using BIPS3/Watt as the metric—BIPS are billions of instructions

per second.

The other key technology—shrinking the size of transistors to increase the clock fre-

quency and integration capability—has amazingly followed Moore’s Law [6] for about 40 years.

Although the pace of this innovation is still going on, the limitations are right ahead in another cou-

ple of generations: either because of the physical limit when the size of transistors approaches the

1.1. CHALLENGES 3

size of atoms, or because of the fabrication cost prohibiting further progress.

Wide issue processor architectures such as VLIW and superscalar are another efficient

approaches for high performance computation while their benefit is also quickly diminished when

the issue width is more than 10; since most applications don’t have so many independently parallel

executable instructions in per fetch. For example, an 8-way VLIW TI high performance C6000

DSP [7] and an 8-wide superscalar RISC microprocessor [8] were reported in 2002, and there is no

examples beyond this range till now.

Power dissipation becomes the key constraint

The high performance design of modern chips is also highly constrained by the power

dissipation as well as the circuit constraints. Power consumption is generally dominated by dynamic

power with the trend that leakage power is playing another key role. The dynamic power is formed

by Equation 1.1

P = αCV 2f (1.1)

whereα is the circuit state transition probability,C is the capacitance,V is the supply voltage, and

f is the clock frequency. The leakage power mainly results from the reduction of the transistor

threshold voltage [9] and is also highly dependent on the supply voltage. Most high performance

technologies, such as increasing clock frequencies and increasing processor issues (which means

increasing number of circuits and increasing capacitance) result in higher power consumption; all

these imply a new era of high-performance design that must now focus on energy-efficient imple-

mentations [10].

Portable devices powered by battery certainly concern the power consumption since it

determines their operational life time between each battery charging. Traditional non-portable sys-

tems such as PC also concern power consumption, since it highly determines the packaging costs,

cooling system costs, and even limits the operation speeds and integration capacities of the sys-

tems. Figure 1.1 shows the power consumption of main Intel microprocessors from 1970 to 2006.

The data between 1970 to 2000 is from S. Borkar [11] where he found that the changes of the

power consumption follow the Moore’s law increasing from 0.3 W to 100 W, and estimated that

the processor power consumption will go up to 1000 W in a couple of years if this trend contin-

4 CHAPTER 1. INTRODUCTION

1971 1974 1978 1985 1992 00 03 05 06
10

−1

10
0

10
1

10
2

10
3

P
ow

er
 (

W
)

Year

Figure 1.1: Power consumption of Intel microprocessors from 1970 to 2006; data between 1970 to
2000 are from [11]; data in 03, 05, 06 are from [12, 13, 14] respectively. Bars are the real values
and the dashed line shows the trend

ues. Similarly to the power consumption, the power density increased significantly from a couple

of Watts per mm2 to about 100 Watts per mm2 and becomes another key issue. This trend is halted

in these years thanks to low power techniques such as voltage and frequency control technologies.

The power consumption of recently reported microprocessors is still around 100 W. It also implies

that 100 W is the power limit the current packaging technology and cooling technology can tolerate.

Power consumption has become the highest constraint for designers and limits the achievable clock

frequency and processor performance [10].

The gap between dream and reality

H. D. Man shows a future ambient intelligent computing example which illustrates the gap

between the future requirement and the current reality in both performance and power [15]. In his

opinion, there will be three major devices in the future intelligent computing system. One is the main

powerful computation components, like today’s PC; its target performance is 1 TOPS, with power

consumption less than 5 Watts, corresponding to the energy efficiency 100 to 200 GOPS/W. This

requirement is about 1000 times higher than today’s PC which has about 10 GOPS while consuming

100 W, corresponding to 0.1 GOPS/W. The second device is the handable devices powered by

1.1. CHALLENGES 5

0.18 0.13 0.10 0.07 0.05 0.035
10

0

10
1

10
2

10
3

10
4

W
ire

 d
el

ay
 d

iv
id

ed
 b

y
F

O
4

de
la

y

Technology L (um)

Global, aggressive
Global, conservative
Semi−global, aggressive
Semi−global, conservative

Figure 1.2: Wire delays (in FO4s) for fixed-length (1 cm) wires [16]; global wires have larger
width, height, and spacing which result in smaller resistance than semi-globle wires; aggressive and
conservative are two extreme scaling projections to bound scaling parameters.

battery, like current mobile phone, targets to 10 to 100 GOPS with less than 1 W, corresponding

to 10 to 100 GOPS/W. This requirement is about 10 times higher than current solutions which use

RISC processors and/or DSP processors. The third component is the sensor network to receive

and transfer information, powered by energy harvesting methods such as mechanical vibration,

with power consumption less than 100 uW; developing such low power components is another

challenging topic.

1.1.2 Future fabrication technologies

Future fabrication technologies are also imposing new challenges such as wiring and pa-

rameter variations.

In the early days of CMOS technology, wires could be treated as ideal. They transmit sig-

nals with infinite speed, without power consumption, and without coupling effect. This assumption

is no longer true. For global wires, their length is nearly constant along with the technology scaling

if the chip size stays the same; which makes their delay nearly constant. Compared to gate delay

which scales down with the technology, the delay of theglobal and long wires scales up with the

technology. As shown in Fig 1.2 [16], a 1 cm long global wire delay in modern 65 nm technol-

6 CHAPTER 1. INTRODUCTION

ogy is around 100 FO4 delay; which corresponds to more than one clock cycle period in modern

processors and the global wires have to be pipelined or be eliminated through architecture level

innovations. Similar with the delay, the power consumption of the long wires also scales up along

with the technology compared to the gates. Besides the effect on delay and power consumption, the

inductive and capacitive coupling between wires adds signal noise and impacts system reliability.

Furthermore, future fabrication technologies are expected to have tremendous variability

compared to current technologies in both gates and wires. Fundamental issues of statistical fluctu-

ations for submicron MOSFETs are not completely understood, but the variation increases leakage

of transistor and causes a variation of the speed of individual transistors, which in turn leads to

IC timing issues [17]. Borkar et al. reported chips fabricated in advanced nanometer technologies

can easily have 30% variation in chip frequencies [18]. This variance will be present at time of

fabrication and also have a time-varying component.

1.2 Solution — multi-core systems

In order to address the challenges in performance, power and future technologies, innova-

tions on computer architecture and design are needed; and multi-core systems are one of the most, or

the most promising technology. As was also pointed out by a computer architecture group at EECS

department of UC Berkeley [19]: the”shift toward increasing parallelism is not a triumphant stride

forward based on breakthroughs in novel software and architectures for parallelism; instead, this

plunge into parallelism is actually a retreat from even greater challenges that thwart efficient silicon

implementation of traditional uniprocessor architectures”.

Deep submicron fabrication technologies enable very high levels of integration such as a

recent dual-core chip with 1.7 billion transistors [13], thus reaching a key milestone in the level of

circuit complexity possible on a single chip. A highly promising approach to efficiently use these

circuit resources is the integration of multiple processors onto a single chip to achieve higher per-

formance through parallel processing, which is called a multi-core system or a chip multiprocessor

(CMP) system.

Multi-core systems can provide high energy efficiency since they can allow the clock fre-

quency and supply voltage to be reduced together to dramatically reduce power dissipation during

1.2. SOLUTION — MULTI-CORE SYSTEMS 7

Table 1.1: Major commercial general-purpose multi-core processors presented in ISSCC before
2007

Year Dual-core Quad-core 8-core
2003 Mitsubishi’s dual-core [20]
2004 UltraSPARC [21]
2005 Itanium [13] Fujitsu’s 4-core [22] CELL [23]

SPARC [24]
BlueGene/L [25]

2006 Xeon [14] Niagara1 [26]
x86 [27]

PowerTM [28]
2007 POWER6 [29] Renesas’ 4-core SoC [30] Niagara2 [31]

PowerTM [32] Opteron [33]
Merom [34]

periods when full rate computation is not needed. Giving a simple example, assuming one unipro-

cessor is capable of computing one application with clock ratef and voltagev, and consuming

powerp; now if using a dual core system and assuming the application can be partitioned into two

cores without any overhead, then each core only needs a clock ratef/2 and the voltage can be

reduced accordingly; assuming a linear relation between voltage and clock frequency and the volt-

age is reduced toV/2, then the power dissipation of the dual core system will only be aboutp/4

calculated by Equation 1.1. Multi-core systems also potentially provide the opportunity to indepen-

dently control each processor’s clock and voltage to achieve higher energy efficiency, if different

processors are in separate clock and voltage domains.

Furthermore, multi-core systems are suitable for future technologies. The distributed fea-

ture can potentially constrain the wires into one core and eliminate the global (long) wires. The

multi-core systems also provide flexible approaches to treat each core differently by adjusting the

mapped application, supply voltage, and clock rate; to utilize each core’s specific features due to

variations. For example, when one processor in the chip is much slower than the others, a low

workload can be mapped on it without effecting system performance.

The multi-core systems have high scalability since a single processor can be designed

and the system can be obtained by combining multiple processors. Thus the systems can be easily

adjusted according to the required performance and cost constraints by changing the number of

cores; which is much easier than changing the issue-width or the pipelining of uni-processors.

8 CHAPTER 1. INTRODUCTION

Table 1.1 shows the major commercial general-purpose multi-core processors presented

in ISSCC before 2007. Multi-core processors started to emerge in 2003 and had a jump in 2005

and currently quad-core processors have become the main style. The trend to migrate from unipro-

cessors to multi-core processors is clear. The research community presented some more aggressive

multi-core systems such as 16-core RAW [35] in 2003, 36-core AsAP [36] in 2006, and 80-core

Intel chip [37] in 2007.

Although the trend is clear, there are a lot of issues that remain unclear to design an

efficient multi-core processor. For example, what kind of processing element should be used in

the multi-core systems; how to efficiently connect and communicate these multiple processing ele-

ments; and what is the clocking style to be used, etc. These are the questions this dissertation will

try to investigate. Another big issue is related to the software such as how to describe applications

and kernels to expose their parallel features; and how to program the multi-core processor using

high level language; but those are beyond the main topic of this thesis.

1.3 Contributions

This dissertation makes a couple of contributions.

• It presents a successful multi-core processor, which is called Asynchronous Array of simple

Processors (AsAP) [36, 38, 39], including its architecture design, physical implementation,

application programming and results evaluation. The chip is organized by multiple simple

single issue processors, interconnected by a reconfigurable mesh network, and operating in

a globally asynchronous locally synchronous (GALS) [40] clock style. The system can effi-

ciently compute many DSP applications, to achieve high performance, high energy efficiency,

and is well suited for implementation in future fabrication technologies. The works not re-

sponsible by me are not included in this dissertation. Please refer to the publications of our

group for the additional information, such as the details of the dual-clock FIFO design [41],

the design of the large shared memory [42], the programming of an 802.11a/g wireless trans-

mitter [43, 36], and the design of the MAC unit [44], etc.

• It generalizes the physical implementation techniques for multi-core processors with GALS

1.4. DISSERTATION ORGANIZATION 9

clock styles [45]. It presents the methodologies to handle the timing issues in GALS chip

multi-processors including the inter-processor and inter-chip timing issues as well as the tim-

ing within a single processor. It takes full advantage of system scalability by taking care of

the unavoidable global signals, the power distribution, and the processor IO pins.

• It investigates the performance, scalability, and power consumption effect when adopt GALS

style to multi-core processors, by comparing to the corresponding totally synchronous sys-

tems [46]. It finds that this GALS array processor has a throughput penalty of less than

1% over a variety of DSP workloads, and this small penalty can be further avoided by large

enough FIFOs and programming without multiple-loop communication links. It shows that

unbalanced computational loads in chip multiprocessors increases the opportunity for inde-

pendent clock frequency and voltage scaling to achieve significant power consumption sav-

ings.

• It proposes an asymmetric inter-processor communication architecture which uses more buffer

resources for the nearest neighbor connections and fewer buffer resources for the long dis-

tance interconnect, and can save the area 2 to 4 times compared to the traditional NoC system

while maintaining similar communication performance. It investigates the methodologies to

support GALS clocking in long distance communication. It finds that using two or three links

between each neighboring processors can achieve good area/performance trade offs for chip

multiprocessors organized by simple single issue processors.

1.4 Dissertation organization

The organization of this dissertation is as follows. After the introduction, Chapter 2 intro-

duces the architecture of the multi-core processor; Chapter 3 investigates the inter-processor com-

munication system; Chapter 4 discusses and generalizes the physical design of tile-based GALS

multi-core systems; Chapter 5 evaluates the measurement results of the fabricated multi-core chip;

Chapter 6 analyzes the GALS effect on system features; and finally is the conclusion.

10 CHAPTER 1. INTRODUCTION

11

Chapter 2

Architecture of the Multi-core System

A multi-core processor system is proposed and designed, mainly for computationally-

intensive DSP applications. The system comprises a 2-D array of simple programmable processors

interconnected by a reconfigurable mesh network. Processors are each clocked by fully independent

haltable oscillators in a GALS fashion.

The multi-core architecture efficiently makes use of task level parallelism in many com-

plex DSP applications, and also efficiently computes many large DSP tasks through fine-grain par-

allelism to achieve high performance. The system uses processors with simple architecture and

small memories to dramatically increase energy efficiency. The flexible programmable processor

architecture broadens the target application domain and allows high one-time fabrication costs to be

shared among a variety of applications. The GALS clocking style and the simple mesh interconnect

greatly enhance scalability, and provide opportunities to mitigate effects of device variations, global

wire limitations, and processor failures.

This chapter discusses the key features and architecture level design of the proposed multi-

core system which is called AsAP [36, 39] for anAsynchronous Array of simple Processors.

2.1 Key features of the multi-core processor

Several key features distinguish the AsAP processor. These features and the resulting

benefits are illustrated in Fig. 2.1 and are discussed in greater detail in the following subsections.

12 CHAPTER 2. ARCHITECTURE OF THE MULTI-CORE SYSTEM

Chip multiprocessor High performance

Small memory

& simple processor
High energy efficiency

Globally asynchronous

locally synchronous (GALS)

Technology scalability

Nearest neighbor
communication

Key features Benefits

Figure 2.1: Key features of AsAP and resulting benefits

Task1

Task2

Task3

A

B

C

Memory

Task1 Task2
A B C

Proc.
Proc.1 Proc.2

Task3

Proc.3

Improves performance and

potentially reduces memory size

…

… …

(a) (b)

Figure 2.2: Multi-task application executing on (a) a traditional architecture, and (b) a stream-
oriented multi-processor well suited for task level parallelism

2.1.1 Chip multiprocessor and task level parallelism

As discussed in Section 1.2, parallelization through multi-core systems are the future for

high performance computation. Multi-core systems can use all types of parallelism techniques such

as instruction-level parallelism, data-level parallelism and task-level parallelism.

Task-level parallelism can not be easily used on traditional sequentially-executing pro-

cessors, but it is especially well suited for many DSP applications. As shown in Fig. 2.2 (a), the

traditional system normally contains a powerful processor with a large memory, and executes the

tasks of the application in sequence and stores temporary results into memory. The same application

may be able to run on multiple processors using task level parallelism more efficiently as shown in

Fig. 2.2 (b), where different processors handle different tasks of the application. Normally the data

input of DSP applications is considered infinite length, so these processors can execute in parallel

and achieve high performance. Also, the temporary results from each processor can be sent to the

following processor directly and do not need to be stored in a large global memory, so less memory

2.1. KEY FEATURES OF THE MULTI-CORE PROCESSOR 13

scram

coding

inter-

leave

mod.

map

loadfft
inter-
leave

IFFT
win-

dow

up-
samp
filter

scale

clip

up-
samp
filter

in out

trainingpilots

Figure 2.3: IEEE 802.11a/g wireless LAN (54 Mbps, 5/2.4 GHz) baseband transmit path

0%

20%

40%

60%

80%

100%

A
re

a
 b

re
a
k
d
o
w

n
other

mem

core

TI_C64x Itanium SPARC BlGe/L

Figure 2.4: Area breakdown of four modern processors; memory occupying most of the area

is necessary compared to the traditional method.

Task level parallelism is widely available in many DSP applications. Figure 2.3 shows

an example of a modern complex application that exhibits abundant task-level parallelism—the

transmit chain of an IEEE 802.11a/g wireless LAN transmitter. It contains more than 10 tasks, and

each of them can be directly mapped to separate processors to take advantage of the available task

level parallelism.

2.1.2 Memory requirements of the targeted tasks

With an ever increasing number of transistors possible per die, modern programmable

processors typically use not only an increasing amount of on-chip memory, but also an increasing

percentage of die area for memory. Figure 2.4 shows the area breakdown of four modern proces-

sors [7, 13, 24, 25] with memories that occupy 55% to 75% of the processor’s area. Large memories

reduce the area available for execution units, consume significant power, and require larger delays

per memory transaction. Therefore, architectures that minimize the need for memory and keep data

near or within processing elements can increase area efficiency, performance, and energy efficiency.

A notable characteristic of the targeted DSP and embedded tasks is that many have very

14 CHAPTER 2. ARCHITECTURE OF THE MULTI-CORE SYSTEM

Table 2.1: Memory requirements for common DSP tasks assuming a simple single-issue processor

Task Instruction Mem requirement Data Mem requirement
(words) (words)

N -pt FIR 6 2N
8-pt DCT 40 16
8× 8 2-D DCT 154 72
Conv. coding (k = 7) 29 14
Huffman encoder 200 350
N -point convolution 29 2N
64-point complex FFT 97 192
Bubble sort 20 1
N merge sort 50 N
Square root 62 15
Exponential 108 32

limited memory requirements compared to general-purpose tasks. The level ofrequiredmemory

must be differentiated from the amount of memory thatcanbe used oris typically used to calculate

these kernels. For example, anN -tap filter may be programmed using a vast amount of memory

though the base kernel requires only2N data words. Table 2.1 lists the actual amounts of instruction

and data memory required for several DSP tasks commonly found in DSP applications. These

numbers assume a simple single-issue fixed-point processor. The data show that several hundred

words of memory are enough for many DSP and embedded tasks—far smaller than the 10 KBytes

to 10 MBytes per processing element typically found in modern DSP processors. Reducing memory

sizes can result in significant area and power savings.

In addition to the inherent small memory requirement of DSP applications, some archi-

tectural features such as address generators and embedded NOP instructions can also contribute to

reduce the instruction memory requirement, which will be discussed further in Section 2.2.1.

2.1.3 Simple single issue datapath

The datapath, or execution unit, plays a key role in processor computation, and also oc-

cupies a considerable amount of chip area. Uniprocessor systems are shifting from single issue

architectures to wide issue architectures in which multiple execution units are available to enhance

system performance. For chip multiprocessor systems, there remains a question about the trade-off

between using many small single-issue processors, versus larger but fewer wide-issue processors.

2.1. KEY FEATURES OF THE MULTI-CORE PROCESSOR 15

Wide-issue processors work well when instructions fetched during the same cycle are

highly independent and can take full advantage of functional unit parallelism, but this is not always

the case. Furthermore, a large wide-issue processor has a centralized controller, contains more

complex wiring and control logic, and its area and power consumption increases faster than linearly

along with the number of execution units. One model of area and power for processors with different

issues derived by J. Oliver et al. [47] shows that a single 32-issue processor occupies more than 2

times the area and dissipates approximately 3 times the power of 32 single-issue processors.

Using multiple single-issue processors, such as AsAP, can usually achieve higher area

efficiency and energy efficiency, and they perform particularly well on many DSP applications since

those applications are often made up of complex components exhibiting task level parallelism so that

tasks are easily spread across multiple processors.

Using relatively simple (and hence small) processors in many-core chips also has some

other advantages. For example, it is easier to apply dynamic clock and voltage scaling on smaller

processors to achieve higher energy efficiency; it allows fitting more processors into a single chip

and can introduce more redundant processors which can provide flexible fault tolerance computation

techniques; and smaller processors are easier to design and verify, etc.

Some disadvantages of using large numbers of simple processors include extra inter-

processor communication overhead when the applications have complex communication require-

ment, which is discussed further in Sec. 5.1.4; and the system is less efficient if the application is

not possible to partition into independent tasks.

2.1.4 GALS clocking style

A globally synchronous clock style is normally used in modern integrated circuits. But

with the larger relative wire delays and larger parameter variations of deep submicron technologies,

it has become increasingly difficult to design both large chips, and chips with high clock rates.

Additionally, high speed global clocks consume a significant portion of power budgets in modern

processors. For example, 1/4 of the total power dissipation in the recent 2-core Itanium [13] is

consumed by clock distribution circuits and the final clock buffers. Also, the synchronous style

lacks the flexibility to independently control the clock frequency among system sub-components to

16 CHAPTER 2. ARCHITECTURE OF THE MULTI-CORE SYSTEM

(a) Globally synchronous

chip multiprocessor with

H-tree clock distribution

(b) GALS chip

multiprocessor

Figure 2.5: Block diagrams of (a) synchronous and (b) GALS tile-based chip multiprocessors; the
small boxes in the right figure are the local oscillators for each processor

achieve increased energy efficiency. Furthermore, if using a synchronous clock style in multi-core

systems, as shown in Fig. 2.5 (a), it has difficulty in taking full advantage of scalability benefits

since the clock tree must be redesigned when the number of processors in the chip changes—which

can result in a large effort in high performance systems. Also, clock skew in globally synchronous

chips is expected to increase as the number of processors increases, which decreases performance.

The opposite clock style of globally synchronous—fully asynchronous in which there is

no any timing reference exists—has the potential for speed and power improvements, but currently

lacks EDA tool support, is difficult to design, and has large circuit overhead which reduces its

efficiency.

The GALS [40] clocking style separates processing blocks such that each part is clocked

by an independent clock domain. Its use enables the possibility of eliminating global clock distri-

bution completely which brings power and design complexity benefits. Another significant benefit

of GALS is the opportunity to easily and completely shut off a circuit block’s clock (not just por-

tions of the clock tree as with clock gating) when there is no work to do. Additionally, independent

clock oscillators permit independent clock frequency scaling, which can dramatically reduce power

dissipation in combination with supply voltage scaling [48]. Furthermore, when using the GALS

clocking style in multi-core systems as shown in Fig. 2.5 (b), scalability is dramatically increased

and the physical design flow is greatly simplified, since only a single processor must be designed

and the entire chip can be generated easily by duplicating a single processor design.

2.1. KEY FEATURES OF THE MULTI-CORE PROCESSOR 17

2.1.5 Wires and on chip communication

As discussed in Section 1.1.2, wires are introducing greater delay, power consumption,

and other impacts to chips, and the traditional communication methods within chips such as global

bus has met considerable challenges. Global chip wires will dramatically limit performance in fu-

ture fabrication technologies if not properly addressed since their delay is roughly constant with

technology scaling—which leads to an increasing percentage of clock cycle time. A number of

architectures such as systolic [49], RAW [35] and TRIPS [50] have specifically addressed this con-

cern and have recommended using tile-based architectures. Therefore, architectures that enable the

elimination of long high-speed wires will likely be easier to design and may operate at higher clock

rates [16].

There are several methods to avoid global wires. Networks on chip (NoC) [51] treat

different modules in a chip as different nodes in a network and use routing techniques to trans-

fer data. Currently, most chip multiprocessors target broad general purpose applications and use

complex inter-processor communication strategies. For example, RAW [35] uses a separate com-

plete processor to provide powerful static routing and dynamic routing functions which is similar

with NoC, BlueGene/L [25] uses a torus network and a collective network to handle inter-processor

communication, and Niagara [26] uses a crossbar to connect 8 cores and memories. These methods

provide flexible communication abilities, but consume a significant portion of the area and power in

communication circuits.

Another method is local communication, where each processor communicates only to pro-

cessors within a local domain. One of the simplest examples is nearest neighbor communication,

where each processor directly connects and communicates only to immediately adjacent processors

and the long distance communication is accomplished by software in intermediate processors. Most

DSP applications, especially those that are stream-like [52], have specific regular features and make

it possible to use a simple nearest neighbor communication scheme to achieve high area and energy

efficiency, without a large performance loss. As can be seen from several popular industry-standard

DSP benchmarks such as TI [53], BDTI [54], and EMBC [55], the most common tasks include FIR

and IIR filtering, vector operations, the Fast Fourier Transform (FFT), and various control and data

manipulation functions. These tasks can normally belinearly pipelined, as shown in Fig. 2.6 (a) and

18 CHAPTER 2. ARCHITECTURE OF THE MULTI-CORE SYSTEM

(c)

level
shift

8 x 8
DCT

quanti-
zation

in zig-
zag

huffm.
coding

out

(b)

8
2-DFT

4
4-DFT

2
8-DFTin 1

16-DFT out

Z 1 Z 1

h0 h1 hn-1

... Z 1 y(n)

...

...

(a)

x(n)

Figure 2.6: Somelinear pipelinedalgorithm models for DSP tasks and applications; (a) Transposed
direct FIR filter, (b) 16-pt FFT, (c) JPEG encoder

(b), and the result from one stage can be pumped directly to the next stage without complex global

communication. Complete applications containing multiple DSP tasks also have similar features,

as examples shown in Fig. 2.6 (c) and Fig. 2.3 for the JPEG encoder and the 802.11a/g baseband

transmitter. All these examples can be handled efficiently by nearest neighbor inter-processor com-

munication.

The greatest challenge when using nearest-neighbor interconnects is efficiently mapping

applications that exhibit significant long-distance communication. The communication architecture

will be investigated further in Chapter 3, to achieve communication ability close to NoC with cost

close to the nearest neighbor interconnect.

2.2 The AsAP processor system

Figure 2.7 shows a block diagram of an AsAP processor and the fabricated processing

array. Each processor is a simple single-issue processor, and contains: a local clock oscillator; two

dual-clock FIFOs to provide communication with other processor cores; and a simple 16-bit CPU

including ALU, MAC, and control logic. Each processor contains a 64-word 32-bit instruction

memory and a 128-word 16-bit data memory. They also contain static and dynamic configuration

logic to provide configurable functions such as addressing modes and interconnections with other

2.2. THE ASAP PROCESSOR SYSTEM 19

Input

FIFO1

Input

FIFO0 ALU

MAC

Control

Inst.

Mem

Data

Mem

Clock

Static

config

Dynamic

config

Output

Figure 2.7: Block diagram of an AsAP processor

processors. Each processor can receive data from any two neighbors and can send data to any

combination of its four neighbors. Each processor contains two input ports because it meshes well

with the data flow graphs of the applications have studied. Clearly, two or more input ports are

required to support graph fan-in and a third input port was found not frequently used. AsAP supports

54 RISC style instructions. It utilizes a memory-to-memory architecture with no register file. During

the design phase, hardware was added only when it significantly increased performance and/or

energy-efficiency for our benchmarks.

2.2.1 Single AsAP processor design

Pipelining and datapath

Each AsAP processor has a nine stage pipeline as shown in Fig. 2.8. TheIFetch stage

fetches instructions according to the program counter (PC). No branch prediction circuits are im-

plemented. All control signals are generated in theDecodestage and pipelined appropriately. The

Mem ReadandSrc Selectstages fetch data from the data memory (Dmem), immediate field, the

asynchronous FIFO interface from other processors, dynamic configuration memory (DCMem), the

ACC accumulator register, or ALU/MAC forwarding logic. The execution stages occupy three cy-

cles, and bypass logic is used for the ALU and MAC to alleviate data hazard pipeline penalties.

The Result SelectandWrite Backstages select results from the ALU or MAC unit, and write the

result to data memory, DC memory, or neighboring processors. To simplify pre-tapeout verification,

20 CHAPTER 2. ARCHITECTURE OF THE MULTI-CORE SYSTEM

IFetch

PC

Inst.

Mem

Decode Mem.

Read

Src

Select
EXE 1 EXE 2 EXE 3 Result

Select

Write

Back

FIFO 0 RD

FIFO 1 RD

Data

Mem

Read

DC

Mem

Read

De-

code

Addr.

Gens.

ALU Data

Mem

Write

DC

Mem

Write

Proc OutputBypass

Multiply Accumulator

A

C

C
+

Figure 2.8: AsAP 9-stage pipeline

pipeline interlocks are not implemented in hardware, and all code is scheduled prior to execution by

the programmer or compiler.

The MAC unit is divided into three stages to enable a high clock rate as well as the

capability of issuing MAC and multiply instructions every cycle. The first stage generates the

partial products of the 16×16 multiplier. The second stage uses carry-save adders to compress

the partial products into a single 32-bit carry-save output. The final stage contains a 40-bit adder to

add the results from the second stage to the 40-bit accumulator register (ACC). Because the ACC

is normally read infrequently, only the least-significant 16 bits of the ACC are readable. More

significant ACC bits are read by shifting those bits into the 16 LSBs. This simplification reduces

hardware and relaxes timing in the final MAC unit stage which is the block’s critical pipeline stage.

Local oscillator

Each processor has its own digitally programmable clock oscillator which provides the

clock to each processor. There are no PLLs (phase lock loop), DLLs (delay lock loop), or global

frequency or phase-related signals, and the system is fully GALS. While impressive low clock skew

designs have been achieved at multi-GHz clock rates, the effort expended in clock tree management

and layout is considerable [56]. Placing a clock oscillator inside each processor reduces the size of

the clock tree circuit to a fraction of a mm2—the size of a processing element. Large systems can be

2.2. THE ASAP PROCESSOR SYSTEM 21

reset
halt_clk

clk

stage_sel

Clock
divider ………………… ……

Figure 2.9: Programmable clock oscillator: an inverter ring with configurable tri-state inverters, ring
size and frequency divider

made with arrays of processing elements with no change whatsoever to clock trees (that are wholly

contained within processing elements), simplifying overall design complexity and scalability.

The oscillator is an enhanced ring oscillator as shown in Fig. 2.9. It is built entirely with

standard cells and occupies only about 0.5% of the processor’s area. Three methods are used to

configure the frequency of the oscillator. First, the ring size can be configured to 5 or 9 stages using

the configuration signalstagesel. Second, seven tri-state inverters are connected in parallel with

each inverter. When a tri-state inverter is turned on, that stage’s current drive increases, and the

ring’s frequency increases [57]. Third, a clock divider at the output divides the clock from 1 to 128

times. Thehalt clk signal and SR latch allow the oscillator to cleanly halt when the processor stalls

without any partial clock pulses.

The oscillator has 2 ring-size-settings× 32768 tri-state-buffer-settings× 8 clock-divider-

settings = 524,288 frequency settings, and measured results from the fabricated chip show that its

frequency range is 1.66 MHz to 702 MHz over all possible configurations. In the range of 1.66 to

500 MHz, approximately 99% of the frequency gaps are smaller than 0.01 MHz, and the largest gap

is 0.06 MHz. Despite the fact layout for all processors is exactly the same, variations largely due to

the fabrication process cause different processors on the same die to perform differently than others.

As Fig. 2.10 shows (data was measured by group member D. Truong), at the same configuration

setting on the same chip the oscillator located in the bottom right processor has a frequency greater

22 CHAPTER 2. ARCHITECTURE OF THE MULTI-CORE SYSTEM

506.7

507.6

508.4

514.7

519.3

536.2

498.5

506.2

507.2

509.9

521.0

535.2

497.4

498.9

503.7

511.6

515.8

538.6

505.9

506.8

507.3

512.1

519.3

532.4

510.1

510.6

511.2

513.9

518.2

537.1

520.9

520.8

517.1

515.5

531.5

541.2

Figure 2.10: Physical distribution of measured oscillator frequencies across different processors
with the same configuration. Data are given in MHz with contour lines from 500 MHz to 540 MHz
in 5 MHz steps.

clk

osc off

stall_fifo

halt_clk

Figure 2.11: Example waveform of clock halting and restarting

than 540 MHz, while several oscillators in the top row have frequencies less than 500 MHz, the

frequency difference is about 10%.

Processors stall when they try to read data from an empty FIFO or write data to a full

FIFO. During these situations, the clock oscillator can be halted so that the processor consumes

no power whatsoever except leakage. Figure 2.11 shows an example waveform for clock halting

and restarting. Signalstall fifo is asserted when FIFO access is stalled due to either an empty input

or full output condition. After a nine clock cycle period, during which the processor’s pipeline is

flushed, the signalhalt clk goes high which halts the clock oscillator. The signalstall fifo returns

low when the cause of the stall has been resolved; thenhalt clk restarts the oscillator in less than

2.2. THE ASAP PROCESSOR SYSTEM 23

Table 2.2: AsAP 32-bit instruction types and fields

Instruction type 6 bits 8 bits 8 bits 8 bits 2 bits
General opcode dest src1 src2 NOP
Immediate opcode dest immediate NOP
Branch opcode – – target NOP

Table 2.3: Classes of the 54 supported instructions

Instruction class Number of instructions
Addition 7
Subtraction 7
Logic 11
Shift 4
Multiply 2
Multiply-accumulate 6
Branch 13
Miscellaneous 4

one clock period. Using this method, power is reduced by 53% and 65% for a JPEG encoder and a

802.11a/g transmitter application respectively.

Instruction set

AsAP supports 54 32-bit instructions with saturation modes, and supports three broad

instruction formats. A summary of the 54 instructions is given in Tables 2.2 and 2.3.Generalin-

structions select two operands from memories, accumulator, FIFOs, and three ALU bypass routes;

execute two operands by addition, subtraction, logic execution, multiply, or multiply-accumulate,

and then select one destination from memories, accumulator and output ports.Immediateinstruc-

tions receive input from a 16-bit immediate field.Branch instructions include a number of condi-

tional and unconditional branch functions.

Seven addition instructions include: add and save low 16 bits; add and save high 16 bits;

add with saturation; add with carry; add with carry and save high 16 bits; add with carry and with

saturation; add by 1. Similar instructions exist for subtraction. The eleven logic instructions include:

NOT, AND, NAND, OR, NOR, XOR, XNOR, MOVE, ANDWORD, ORWORD, and XORWORD.

Besides the common conditional branch instructions which determine the destinations according to

the conditional flags (such as negative, zero, carry and overflow), the instruction set also supports

24 CHAPTER 2. ARCHITECTURE OF THE MULTI-CORE SYSTEM

8 DCT8x8 DCTzig−zag msort b−sort matrix 64 FFT JPEG 802.11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
el

at
iv

e
in

st
. m

em
or

y

Figure 2.12: Relative instruction memory cost by usingembedded NOPinstruction

branching when the FIFO is empty or full. The four miscellaneous instructions include a 16-bit

bit-reverse instruction (for FFT addressing), an accumulator shift, a 16-bit move intermediate, and

halt.

Two bits in each instruction define how many NOP operations (from 0 to 3) should follow

after instruction processing, which allows inserting NOPs to avoid pipeline hazards without requir-

ing additional NOP instructions and helps reduce instruction memory requirements dramatically.

Figure 2.12 shows that instruction memory requirements can be reduced by approximately 30% for

9 applications. Below is one example to show how to use this instruction format where the data

memory with address 1 is incremented by 1 and the result is sent to data memory address 2 and

output port.

Add Dmem 2 Dmem 1 #1 NOP3

Add Obuf Dmem 2

Other than a bit-reverse instruction and a bit-reverse mode in the address generators which

is useful for the calculation of the Fast Fourier Transform (FFT), no algorithm-specific instructions

or hardware are used. While single-purpose hardware can greatly speed computation for specific

algorithms, it can prove detrimental to the performance of a complex multi-algorithmic system and

2.2. THE ASAP PROCESSOR SYSTEM 25

Table 2.4: Data fetch addressing modes

Addressing mode Example Meaning
Direct Move Obuf Dmem 0 Obuf ← Dmem[0]
Address pointer Move Obuf aptr0 Obuf ← Dmem[DCMem]
Address generator Move Obuf ag0 Obuf ← Dmem[generator]
Short immediate Add Obuf #3 #3 Obuf ← 3+3
Long immediate Move Obuf #256 Obuf ← 256
DCMem Move Obuf DCMem 0 Obuf ← DCMem[0]
Bypassing Move Obuf regbp1 Obuf ← first bypass
FIFOs Move Obuf Ibuf0 Obuf ← FIFO 0
ACC Move Obuf Acc Obuf ← ACC[15:0]

limits performance for future presently-unknown algorithms—which is one of the key domains for

programmable processors.

Data addressing

AsAP processors fetch data at pipeline stageMem Read, using the addressing modes listed

in Table 2.4. Three methods are supported to address data memory.Direct memory addressing uses

immediate data as the address to access static memory locations; fouraddress pointersaccess mem-

ory according to the value in special registers located in DCMem; and fouraddress generators

provide more flexible addressing such as automatic increment and decrement, with special-purpose

hardware to accelerate many tasks. In addition to the data memory, AsAP processors can also

fetch data from another 6 locations: 1) short immediate data (6 bits) can be used in dual-source

instructions, 2) long immediate data (16 bits) can be used in the move immediate instruction, 3) the

DCMem’s configuration information, 4) three bypass paths from the ALU and MAC units to ac-

celerate execution, 5) the two processor input FIFOs, and 6) the low 16 bits of the accumulator

register.

Address generators help reduce the required instruction memory for applications since

they can handle many complex addressing functions without any additional instructions. The upper

figure of Fig. 2.13 shows the estimated relative instruction cost for a system using three addressing

modes to fulfill the same functions. Compared to systems primarily using direct memory addressing

and address pointers, the system containing address generators reduces the number of required

instructions by 60% and 13% respectively. Also, using address generators can increase system

26 CHAPTER 2. ARCHITECTURE OF THE MULTI-CORE SYSTEM

8x8 DCTzig−zag b−sort 64 FFT JPEG 802.11
0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
in

st
. m

em
or

y direct addr.
addr. pointer
addr. gener

8x8 DCTzig−zag b−sort 64 FFT JPEG
0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
pe

rf
or

m
an

ce direct addr.
addr. pointer
addr. gener

Figure 2.13: Comparison of relative instruction memory cost and system performance for three
different addressing modes. Comparisons are made against thedirect addresscase which uses
straight line code with pre-calculated addresses only.

performance. As shown in the lower figure of Fig. 2.13, it comes within 85% of the performance of

a system using direct addressing with pre-calculated addresses, and approximately 2 times higher

performance compared to a system using address pointers alone.

2.2.2 Inter-processor communication — Reconfigurable 2-D mesh network

The AsAP architecture connects processors via a configurable 2-dimensional mesh as

shown in Fig. 2.14. To maintain link communication at full clock rates, inter-processor connections

are made to nearest-neighbor processors only. Each processor has two asynchronous input data

ports and can connect each port to any of its four nearest neighboring processors. The input connec-

tions of each processor are normally defined during the configuration sequence after powerup. The

output port connections can be changed among any combination of the four neighboring processors

at any time through software. Input ports are read and output ports written through reserved pro-

gram variables and inter-processor timing is in fact invisible to programs without explicit software

synchronization.

A number of architectures including wavefront [49], RAW [35], and TRIPS [50], have

specifically addressed this concern and have demonstrated the advantages of a tile-based architec-

2.2. THE ASAP PROCESSOR SYSTEM 27

West

Processor

North

Processor

East

Processor

east_in

south_in
west_in

north_in

IMEM

DMEM

ALU

ACC

MULT

CFG

PC

etc.

east_out

south_out

west_out

north_out
FIFO

0

FIFO
1

north_in north_out

south_insouth_out

South

Processor

east_out

east_in

west_in

west_out

Figure 2.14: Nearest neighbor inter-processor communication diagram

ture. AsAP’s nearest neighbor connections result in no high-speed wires with a length greater than

the linear dimension of a processing element. The inter-processor delay decreases with advanc-

ing fabrication technologies and allows clock rates to easily scale upward. Longer distance data

transfers in AsAP are handled by routing through intermediary processors or by “folding” the appli-

cation’s data flow graph such that communicating processing elements are placed adjacent or near

each other.

Source synchronization for GALS systems

GALS systems introduce modules with different clock domains and the communication

between those modules requires special concerns. The methods can be classified into two categories.

The first method is asynchronous handshake [58] as shown in Fig. 2.15 (a). The source sends

a requestsignal and one single data at each transaction and can start a new data transfer till it

receives theacknowledgesignal from the destination. A corresponding latency exists for each data

transfer in this method. In order to sustain higher throughput, coarse grain flow control orsource

synchronousmethod can be used as shown in Fig. 2.15 (b), where the clock of the source processor

28 CHAPTER 2. ARCHITECTURE OF THE MULTI-CORE SYSTEM

source dest.

(a)

request

ack

data

request
data

source dest.

(b)

valid
near_full

data

valid

near_full
data

buffer (dual-clk)clk_source

clk_sourceack

Figure 2.15: Two strategies for communication in GALS systems. (a) asynchronous handshake
which requires more than one clock cycle for each transaction, and (b) source synchronous flow
control which can sustain one transaction per clock cycle.

SRAM

write clock domain

clk_wr

wr_data

valid

full

write

logic

clk_rd

rd_data

empty

read

logic

syn.

logic

addr. addr.

read clock domain

Figure 2.16: Block diagram of the dual-clock FIFO used for asynchronous boundary
communication

travels along with the signals to control the writing into a buffer. Here the data can be transmitted

in each clock cycle as long as the buffer is not full. This technique generally requires larger buffers

in the destination and it also needs to support reads and writes in different clock domains since

its writing is controlled by the source processor while its reading is controlled by the destination

processor. Only the second approach is considered due to its higher throughput and because the

larger buffer does not present a significant penalty when compared to the area of a coarse block

such as a processor. The throughput of the asynchronous boundary communication can achieve 1

data word per cycle when the FIFO is not full or empty.

The reliable transfer of data across unrelated asynchronous clock domains is accom-

2.3. APPLICATION IMPLEMENTATIONS AND SOFTWARE 29

plished by mixed-clock-domain FIFOs. The dual-clock FIFOs read and write in fully independent

clock domains. A block diagram of the FIFO’s major components is shown in Fig. 2.16. The FIFO’s

write clock and write data are supplied in a source-synchronous fashion by the upstream processor

and the FIFO’s read clock is supplied by the downstream processor—which is the host for the

dual-clock FIFO in AsAP. The read and write addresses are transferred across the asynchronous

interface, which is used to decide whether the FIFO is full or empty. In order to avoid changing

multiple values at the same time across the asynchronous interface, the addresses are gray coded

when transferred across the clock domain boundary [41].

Configurable synchronization registers are inserted in the asynchronous interface to al-

leviate metastability. Although it can not drive themean time-to-failure(MTTF) to infinity, it can

make it arbitrarily high [59]. The number of synchronization registers used is a trade-off between the

synchronizer’s robustness and the system performance overhead due to the synchronizer’s latency.

The latency to communicate across the asynchronous boundary is approximately 4 clock cycles

in this example, which is made up of the write logic latency (1 cycle), synchronization latency (2

cycles if two registers are used), and the read logic latency (1 cycle). In a relevant example [59],

it was estimated that the MTTF when using one register is measured in years and it will increase

to millions of years for two registers, so a small number of synchronization registers is sufficient.

The system performance (throughput) overhead due to the synchronization latency is always quite

small, as will be discussed in Section 6.3.

2.3 Application implementations and software

2.3.1 Application implementations

Dividing applications into several tasks, coding each task independently, and mapping

each task onto a different processor(s) is the method to program the described GALS chip multi-

processor. Partly due to the natural partitioning of applications by task-level parallelism, the pro-

gramming is less challenging than first expected. This is borne out somewhat by data in Table 2.1

showing the sizes of common DSP tasks. The mapped applications include: an 8-point Discrete

Cosine Transform (DCT) using 2 processors, an 8×8 DCT using 4 processors, a zig-zag transform

using 2 processors, a merge sort using 8 processors, a bubble sort using 8 processors, a matrix mul-

30 CHAPTER 2. ARCHITECTURE OF THE MULTI-CORE SYSTEM

1-DCT Trans 1-DCT Trans

X n x m
m np

N
m

N

() () cos(
()

)=
+

=

−

ä 2 1

2
0

1

1 2 3 4 5 6 7 8

57 58 59 60 61 62 63 64

1
 2

 3
 4

 5
 6

 7
 8

5
7
 5

8
 5

9
 6

0
 6

1
 6

2
 6

3
 6

4

Figure 2.17:8 x 8 DCT implementation using 4 processors

tiplier using 6 processors, a 64-point complex FFT using 8 processors, a JPEG encoder core using

9 processors, and an IEEE 802.11a/g wireless LAN transmitter using 22 processors [43]. 2-D DCT

and JPEG are described in detail as two examples.

2-D DCT

An 8×8 DCT application is shown in Fig. 2.17. Equation 2.1 shows the algorithm for the

8×8 DCT and it can be further expressed and processed using two 1-dimensional DCTs as shown

in equation 2.2; wherea(0) = 1/
√

8 anda(m) =
√

2/8 for 1 ≤ m ≤ 7. The first and third

processors compute 1-dimensional 8-pt DCTs using an efficient algorithm [60]. The second and

fourth processors perform row and column transposes of the data.

Gc(m, n) = a(m)a(n)
7∑

i=0

7∑
k=0

g(i, k)cos
[
π(2k + 1)n

16

]
cos

[
π(2i + 1)m

16

]
(2.1)

Gc(m, n) = a(m)
7∑

i=0

[
a(n)

7∑
k=0

g(i, k)cos
π(2k + 1)n

16

]
cos

[
π(2i + 1)m

16

]
(2.2)

JPEG encoder

JPEG (Joint Photographic Experts Group) is a popular algorithm for still image compres-

sion [61] and Fig. 2.6 (c) shows its encoder block diagram. Level shift requires subtracting a fixed

value from every sample value. Quantization divides the DCT result by specific value and round-

ing is required to get accurate result. Zig-zag reorders the 8× 8 data block which groups the low

frequency coefficients, bringing more zero-value data together and making the Huffman encoding

2.3. APPLICATION IMPLEMENTATIONS AND SOFTWARE 31

DC in

Huffm

DC in

Huffm

Lv-shift

1-DCT

Zigzag
Quant.

Zigzag

AC in

Huffm

1-DCT

Trans

in DCT

8x8 DCT

Huffman

outputinput

AC in

Huffm

Figure 2.18: JPEG encoder core using 9 processors; thin arrows show all paths and wide arrows
show the primary data flow.

Table 2.5: Computation load of the nine processors in JPEG encoder to execute an 8×8 data block

Processor Function Computation load
No. (clock cycles)
1 Lv-shift, 1-DCT 408
2 Trans in DCT 204
3 1-DCT 408
4 Quant., Zigzag 652
5 Zigzag 134
6 DC in Huffm (below) 85
7 DC in Huffm (up) 140
8 AC in Huffm (below) 1423
9 AC in Huffm (up) 1390

more efficient. Huffman coding is an efficient variable length coding technique to represent infor-

mation using fewer bits. Figure 2.18 shows a JPEG encoder core using nine processors. Three

processors compute the level shift and an 8×8 DCT, and four processors implement a Huffman en-

coder. Processing each 8×8 block requires approximately 1400 clock cycles. Table 2.5 shown the

computation load of the nine processors to execute an 8×8 data block.

2.3.2 Software

Besides using assembly language to program the processor, a high level language (which

is called AsAP-C) and its corresponding compiler were developed to generate code for each indi-

32 CHAPTER 2. ARCHITECTURE OF THE MULTI-CORE SYSTEM

vidual AsAP processor. AsAP-C contains most standard C language functions such as arithmetic

calculations (addition, subtraction, multiplication, etc.), logic calculations (and, or, not, etc.), and

control functions (while loops, for loops, etc.). A saturating integer type is defined to support DSP

integer calculations which are commonly used in high level DSP languages [62]. Additionally, the

language contains several functions specific for AsAP such as FIFO reads and direct inter-processor

communication. Both inputs and outputs are mapped into the language through the reserved vari-

able names:Ibuf0, Ibuf1, andObuf. The software task also includes the mapping of processor

graphs to the 2-D planar network. An area of interesting future work is tools for the automatic

mapping of graphs to accommodate rapid programming and to recover from hardware faults and

extreme variations in circuits, environment, and workload [63].

2.4 Related work

The related work is discussed in this section. Starting from the traditional DSP processors,

then some pioneering multiprocessor systems and multi-core systems proposed/developed mainly

in 1970’s and 1980’s are discussed; then some major modern multi-core processors (include those

for general purpose and specific domain applications) are discussed and compared.

2.4.1 Traditional DSP processors

Programmable DSPs appeared in early 1980s for the high performance computation for

DSP applications. In the early days, DSP processors were distinguished from general purpose

processors by a couple of features [64]: such as higher arithmetic processing ability by integration

of a hardware multiplier/accumulator and saturation circuity; and higher memory access bandwidth

by multiple memory banks and sophisticated addressing mode generators.

When some new applications such as multimedia processing [65] emerged, both DSP

processors and general purpose processors tried to enhance their features to make themselves suit-

able for those new applications. General purpose processors adopted some new technologies such

as instruction level parallelism (superscalar); and data level parallelism (SIMD or MMX technol-

ogy [66]). DSP processors also included some new architectures such as VLIW parallelism and

hierarchical cache memory organization. As a result, the architectures of state-of-the-art DSPs and

2.4. RELATED WORK 33

Table 2.6: Major features of some commercial DSP processors

Company Processor Architecture Cache Clock Word
type /Memory frequency width

(KB) (MHz) (bits)
Texas Instruments C2000 single issue 13–295 40–150 32
Texas Instruments C54x single issue 24–280 50–300 16
Texas Instruments C64x 8-way VLIW 1024–2048 500–1000 32
Analog Device ADSP single issue 8–48 75–160 16
Analog Device SHARC single issue 500–3000 150–400 32/40 floating pt.
Analog Device TigerSHARC 4-way VLIW 500–3000 250–600 32 floating pt.
Freescale DSP563xx single issue 24–576 100–275 24
Freescale MSC8144 quad core 10500 upto 1000 16
Freescale MSC711x 6-way VLIW 80–448 upto 1000 16

general purpose processors become broadly similar with each other. A recent 600-MHz, 64 M tran-

sistor, eight-way VLIW DSP processor with 32 KB of level-1 caches and 1 MB of level-2 caches

illustrates this point [7]. DSP processors of this type are well-suited for executing both numerically-

intensive codes and larger more control-oriented general-purpose codes. Table 2.6 lists some fea-

tures for a couple of major commercial DSPs [53, 67, 68] from Texas Instruments, Analog Device,

and Freescale. There are some startup companies keep entering this area. For example, Stretch

announced their product for video surveillance systems [69] recently.

Texas Instruments corporation reported their new C64x+ DSP in 2007 [70] which con-

tains three DSP cores and was fabricated in 65 nm technology. Although the architecture is just

simply putting three DSPs together and can categorize it in the traditional DSP processor domain; it

illustrates the trend of DSP processors shifting from uni-core to multi-core architectures. The chip

operates at 1.1 GHz, each core has 8 functional units and can perform up to 8000 MIPS or 8000 16b

MMACs per second. The chip consumes 6 W and occupies 130 mm2.

2.4.2 Pioneering multiprocessor systems and multi-core processors

Communication model: shared-memory and message passing

The idea of multiprocessor systems can be traced back to early 1970’s, when ashared-

memorymultiprocessor architecture was proposed [71] in which processors exchange data through a

global memory. In order to reduce the traffic between processors and global memory, each processor

34 CHAPTER 2. ARCHITECTURE OF THE MULTI-CORE SYSTEM

normally has some cache embedded; which raises the issue of multiple copies of a single memory

word being manipulated by multiple processors. This so calledcache coherenceissue significantly

increases hardware complexity. Another major issue of the shared memory system is its limited

scalability due to its centralized structure. Some work such as DASH [72] tried to improve the scal-

ability of shared-memory systems by distributing the global memory to each processor node. Later

another multiprocessor system platform usingmessage passingcommunication was proposed [73]

where processors exchange information by sending/receiving data between processors in a point-to-

point fashion. Message passing architectures simplify hardware and also increase system scalability,

but increase programming complexity. Some work such as FLASH [74] built systems to support

both communication protocols in one hardware platform efficiently.

Interconnect topology

Under the two communication models, there are many interconnect topologies. The most

basic topology is probably theglobal buswhere all elements communicate through the global wires.

The bus topology is simple, but it doesn’t scale well since increasing the number of nodes on the

bus can quickly introduce congestion and reduce communication performance; furthermore, the

increasing delay/power of long wires in modern technology also makes the bus unattractive.

Crossbaris a network which is organized by a grid of switches to provide the connection

from one group processors (memories) to another group of processors (memories), which makes it

suitable for the shared memory architecture. It can provide more powerful communication capa-

bility than the global bus; but its complexity grows exponentially along with the number of nodes.

A hybrid topology between bus and crossbar called multistage topology have been proposed where

the network is organized by multiple stages and each stage provides part of the crossbar function;

some examples includesOmega[75] andperfect shuffle[76].

As for the message passing communication, the most straightforward topology is probably

thecompletely-connectednetwork where each node has a direct link to every other node. It has the

obvious disadvantage of the too large number of links. Other topologies suitable for the message

passing communication include: 1-D linear array where each node is connected to its two neighbors;

2-D mesh array where each node is connected to its four neighbors; and 3-D mesh (cube) where

each node is connected to its 6 neighbors.2-D meshis attractive since it naturally fits into the 2-D

2.4. RELATED WORK 35

chip.

Some design cases

The transputer [77] is a popular parallel processor originally developed in the 1980s. It

pioneers the philosophy of using multiple relatively simple processors to achieve high performance.

The transputer is designed for a multiple processor board, where each transputer processor is a com-

plete standalone system. It uses a bit serial channel for inter-processor communication which can

support communication of different word lengths to save hardware, but with dramatically reduced

communication speeds.

Systolic processor [78, 79] is another parallel computing architecture proposed in the

1980s. It pioneers in showing that some applications can be partitioned and connected by a couple

of subtasks, and then these sub-tasks can be mapped to an array processor to achieve higher per-

formance. Systolic processors contain synchronously-operating elements which send and receive

data in a highly regular manner through a processor array. Due to its strict timing requirement for

the data flow, the suitable applications for Systolic processor are quite limited. Some projects such

as ChiP [80] (Configurable Highly Parallel Computer) can be categorized into Systolic systems,

but it provides more flexible programmable interconnect structure so that the communication is not

limited to the neighboring elements.

Wavefront processors [81, 49] were proposed right after Systolic processors, mainly by

S.Y. Kung. In order to release the strict data flow timing requirement of Systolic processors, the

Wavefront processor permits adata-driven, self-timedapproach to array processing, and substitutes

the requirement of correcttiming by correctsequencingand thus significantly broadens the num-

ber of suitable applications. Furthermore, S.Y. Kung studied the VLSI device scaling trend and

predicted the importance of the global (long) wiring [49], and suggested each processing element

could execute asynchronous with each other, which pioneered the concept of GALS although he

did not implement it. The work finished by U. Schmidt et. al. [82] was an exciting experiment of

using wavefront array processor for image processing, unfortunately there has been no following up

works. Some of the concepts of Wavefront array processors, such as GALS and data-driven commu-

nication, are similar with the techniques used in AsAP. But AsAP is distinguished from Wavefront

processors broadly, such as its investigations on the granularity of each processing unit, the real

36 CHAPTER 2. ARCHITECTURE OF THE MULTI-CORE SYSTEM

implementation of the chip and system, and more broad application mappings.

2.4.3 Modern multi-core systems

Although multi-core research in the 1980’s showed great potential, they unfortunately did

not dominate the market. The main reason is that simply increasing the processor clock frequency

is much easier and cheaper than designing a brand new multi-core architecture, so there was not

enough motivation for the shifting from uni-core processors to multi-core processors.

There is a clear revival in the multi-core processor research starting from the middle

1990’s, in both academic and industry, because of the great challenges faced by the uni-core pro-

cessors. An alternative solution is urgently required. Compared to the previous multiprocessors

which were normally distributed in multiple chips, the modern single chip multi-core systems have

some unique concerns such as the power consumption (which motivates AsAP’s simple processing

element decision), wiring issues (which results the distributed instead of centralized architecture,

also motivates AsAP’s GALS and mesh connection); and the faster and higher intra-chip communi-

cation bandwidth than inter-chip communication which affect the communication technology. Also,

some researchers focus on the programming method to make the multiprocessor programming eas-

ier. Some modern multi-core processors will be discussed in this subsection, mainly from academic

since they have more published information; and then compare the difference between AsAP to

others.

PADDI-2 [83] was developed at UC Berkeley in the middle 1990’s for DSP applications.

It is a MIMD multiprocessor architecture consisting of arrays of simple elements (PEs) connected by

a reconfigurable 2-level hierarchical network. The level-1 communication network consists of 6 data

buses and is responsible for communication within a cluster of 4 PEs; and the level-2 communication

network consists of 16 buses and handles traffic among the 12 clusters. PEs communicate with each

other exclusively using data streams and control streams in a data-driven manner. The chip was

fabricated in a 1µm technology; it occupies 12 mm× 12 mm, operates at 50 MHz and provides

2.4 GOPS peak performance.

RAW [84] was developed at MIT starting from the late 1990’s. Their initial target ap-

plications were stream-based multimedia computations although later they believe RAW can be a

2.4. RELATED WORK 37

universal solution for both general- and special-purpose applications. Motivated by the increas-

ingly important wiring issues and high economic constraints of verifying new designs, they choose

a tile-based architecture and use software to control inter-processor communication, wiring as well

as instructions. One of the key features of their design is the static and dynamic switching circu-

ity which allows an extremely low communication latency about 3 clock cycles for inter-processor

communication. To achieve this goal is not free though, about half of the processor area is devoted

to communication circuity; whether this cost is worthwhile is not easy to conclude and depends on

specific applications. A 4× 4 RAW array was implemented and reported in 2003 [35, 85] using

IBM 0.18 µm CMOS technology. Each core contains 32 KB instruction memory, 32 KB Dcache

and 64 KB SMem, and occupies 4 mm× 4 mm, and the entire chip is 18.2 mm× 18.2 mm including

PADs. The chip core averages 18.2 Watts at 425 MHz.

Imagine [86] was developed at Stanford starting from the late 1990’s, targeting stream

style media processing. Motivated by the high parallelism and high computation locality of me-

dia applications, a streaming programming model and a corresponding Imagine architecture were

developed. One of the main features of Imagine processor is that it provides a bandwidth hierar-

chy tailored to the demands of media applications which is organized by local register file, global

register file and memory; and most of the computations can be finished in the registers thus im-

proving performance as well as energy efficiency. The difference between global register file and

cache is its high bandwidth which allows tens of words be fetched per cycle. A prototype Imagine

processor was fabricated in a 0.15µm CMOS technology [52]. It is an array containing 48 floating-

point arithmetic units organized as eight SIMD clusters with a 6-wide VLIW processor per cluster,

with 9.7 KBytes of local register file and 128 KBytes of global register file. Each cluster occupies

5.1 mm× 0.8 mm and the die size is 16 mm× 16 mm [87]. Imagine sustains 4.8 GFLOPS on

QR decomposition while dissipating 7.42 Watts operating at 200 MHz. The Imagine processor was

commercialized in 2007 in Stream Processors [88] in a 0.13µm technology. The chip contains a

16-lane data-parallel unit with 5 ALUs per lane, two MIPS CPU cores, and I/Os. Each lane runs

at 800 MHz at 1.0 V and occupies 3.2 mm2. The peak performance is 128 GMACs with power

consumption about 10 W.

Hydra [89] was proposed in Stanford in the late 1990’s. From the high level view of its

architecture, Hydra is similar to the traditional shared-memory multiprocessor systems: the chip

38 CHAPTER 2. ARCHITECTURE OF THE MULTI-CORE SYSTEM

simply connects a couple of RISC processors (such as MIPS) and a L2 Cache together by a global

bus; this centralized feature might limit its scalability potential. The novel contribution of Hydra

is mainly on the programming: it simplifies the parallel programming as well as improves the

performance by hardware supported thread-level speculation and memory renaming. Some of the

technologies of Hydra were successfully used in the Sun Niagara SPARC processor [26]. The chip

contains 8 symmetrical 4-way multithreaded cores sharing 3 MB of L2 cache. The die occupies

378 mm2 in a 90 nm CMOS technology, operates at 1.2 GHz and consumes 63 Watts under 1.2 V.

The second version of Niagara was reported in 2007 [31].

Pleiades Maia [90] was developed in UC Berkeley in the late 1990’s; a reconfigurable

DSP for wireless baseband digital signal processing. It combines an embedded microprocessor

with an array of computational units of different granularities to achieve high energy efficiency;

processing units are connected by a hierarchical reconfigurable interconnect network to provide

flexibility; and handshake style GALS signaling was adopted to allow various modules to operate

at different and dynamically varying rates. A prototype chip was implemented in a 0.25µm CMOS

process. The die size is 5.2 mm× 6.7 mm. The chip operates at 40 MHz on average and consumes

1.8 mW at a supply voltage 1 V; with energy efficiency between 10 and 100 MOPS/mW. The

heterogeneous architecture is the main reason for Pleiades Maia’ high energy efficiency; while it

also limits its application domain.

Smart Memories [91] was proposed in Stanford in the early 2000’s. It is a tile-based

design made up of many processors, and has an ambitious goal to be a universal general design. In

order to make it widely applicable, Smart Memories provides configurability to memories, wires and

computational elements. This flexibility comes at a cost though. Compared to those programmable

processors with specific domains such as Imagine processor, Smart Memories has about 50% per-

formance degradation. The reconfigurable memory block of Smart Memories was fabricated in

TSMC 0.18µm technology [92] but the computation engine and the whole system has not been

built. One reconfigurable memory with 512× 36b SRAM occupies 0.598 mm2 (in which 61% of

the area is SRAM and the others are the logic providing the configuration), operates up to 1.1 GHz

and consumes 141.2 mW.

TRIPS [93] was developed at UT Austin in the early 2000’s, with the ambitious goal to

build a system which provides high performance across a wide range of application types. In order

2.4. RELATED WORK 39

to provide configurability for both small and large-grain parallelism, TRIPS uses ultra-large cores—

each core is a 16-wide-issue processor; the TRIPS can be configured to use ILP, TLP and DLP to

be adapted to different application features and achieve high performance. It is a little questionable

whether it is an achievable goal to build a universally energy efficient processor since the large

core and additional configurability introduces non-negligible overhead. A prototype TRIPS chip

was fabricated in a 0.13µm technology [94]. The chip contains two cores and a separate on-chip

network and occupies 336 mm2. Its clock rate is 366 MHz and its power consumption is 36 W.

PipeRench [95] was developed at CMU in the early 2000’s. The motivation of PipeRench

is to efficiently execute numerically intensive applications, and its key feature is the dynamically

reconfigurable datapath to match the features of applications. PipeRench is organized by sixteen

stripes and each stripe consists of sixteen processing elements. A prototype PipeRench chip was

fabricated in a 0.18µm technology. Each processing element occupies 325µm × 225µm whose

area is dominated by interconnect resources, and the whole die area is 7.3 mm× 7.6 mm. The

chip can run at 120 MHz and executes a 40 tap 16-bit FIR filter at 41.8 million samples per second

(MSPS). Operating at 33 MHz, the FIR filter consumes 518 mW without virtualization and 675 mW

with virtualization.

WaveScalar [96] was proposed in University of Washington in 2003 targeting general

purpose applications. A proposed architecture is organized as 16 clusters and each cluster contains

tens of processing elements. Each processing element contains 8 instruction buffers, and each four

clusters contains a traditional L1 data cache. The processing elements communicate via a shared

bus within a cluster, and the inter-cluster communication uses a dynamic routed on-chip network.

More implementation prototypes were discussed in 2006 [97]. Compared to AsAP, WaveScalar has

a hierarchical organization. Its single processing element has finer granularity compared to AsAP

while its cluster is more coarser to AsAP. Furthermore, WaveScalar uses a dataflow programming

model which eliminates the traditional program counter to increase the parallelism. WaveScalar

was not fabricated but was implemented on a FPGA.

Synchroscalar [98] was proposed in UC Davis in 2004. It is a tile-based multi-core

architecture designed for embedded DSP processing. It uses columns of processor tiles organized

into statically-assigned frequency-voltage domains, and each column uses a SIMD controller. Each

column uses a rationally related clock frequency and can provide some flexibility of adaptive clock

40 CHAPTER 2. ARCHITECTURE OF THE MULTI-CORE SYSTEM

and voltage scaling for each domain to achieve higher energy efficiency; although it is not as flexible

as the absolute GALS style used in AsAP. Synchroscalar uses partially synchronous design and

global interconnect for the centralized controller. This design can be suitable for those systems with

low-frequency and a limited number of tiles, but its scalability is likely difficult if the number of

tiles is increased a lot or the clock frequency is scaled up. Synchroscalar has not been fabricated.

Intel 80-core was published in 2007 [37]. It is a network-on-chip (NoC) architecture con-

taining 80 tiles arranged as a 10× 8 2D mesh network. The chip uses scalable global mesochronous

clocking, which allows for clock-phase-insensitive communication across tiles and synchronous op-

eration within each tile. The chip was fabricated in a 65 nm technology, each tile occupies 3 mm2

and the whole chip is 275 mm2. The chip operates at 3.13 GHz at supply voltage 1 V and 4 GHz

at 1.2 V, and achieves 1.0 TFLOPS (trillion floating point operations per second) and 1.28 TFLOPS

respectively.

There are some other chip multiprocessors such as RaPiD [99] developed in Univer-

sity of Washington, Picochip’s PC102 [100], NEC’s IMAP-CE [101], Xelerated AB’s NPU [102],

CISCO’s Metro [103], IBM/sony/toshiba’s CELL [23], Intellasys’s SEAforth proc [104], Mathstar’s

Arrix FPOA [105], RAPPORT’s KC256 [106], Ambric’s proc [107], CEA-LETI’s FAUST [108],

and Cavium networks’ 16-core [109].

The following subsections will try to compare those parallel processors using tables in-

stead of describing them separately.

2.4.4 Distinguishing multi-core processors

It is not easy to distinguish and categorize different projects/processors by simply compar-

ing their area, speed, power without looking into them deeply. This section tries to analyze different

multi-core processors starting from their objectives since that is the key to motivate their specific

designs and features.

Table 2.7 summarizes the objectives of some multi-core processors and their one or two

most important features. The first three are pioneering multiprocessor systems proposed/developed

before 1990’s and the others are modern multi-core processors. Some processors such as Hydra

and WaveScalar target to simplify the programming and their architectures are relatively similar

2.4. RELATED WORK 41

Table 2.7: Comparison of the objectives and distinguished key features of selected parallel
processors

Processor Targets/objectives Distinguished features
Transputer [77] high performance multiprocessor bit serial channel
Systolic [78] high performance array processing regular communication pattern
Wavefront [49] high performance array processing data-driven, selftime execution
Hydra [89] program shared-memory systems thread speculation, memory renaming
WaveScalar [96] program dataflow systems memory ordering
RAW [84] a universal system complex static/dynamic route
TRIPS [93] a universal system large wide issue configurable core
Smart Memories [91] a universal system configurable memory system
PADDI-2 [83] DSP applications data-driven control
RaPiD [99] DSP applications reconfigurable pipelined datapath
PipeRench [95] DSP applications dynamically configurable datapath
Ambric’s proc [107] DSP applications massively-parallel MIMD fabric
Synchroscalar [98] some of DSP applications rationally clocking and global comm.
CELL [23] multimedia applications one power proc and 8 synergistic procs
Imagine [86] stream applications hierarchical register file system
Pleiades Maia [90] wireless applications heterogeneous, reconfigurable connect
Picochip [100] wireless applications heterogeneous, reconfigurable
IMAP-CE [101] video recognition linear array of VLIW processor
Metro [103] network applications embedded DMA engine
Cavium 16-core [109] network applications RISC array + network coprocessor
NPU [102] packet processing in network linear array of 200 processors
FAUST [108] telecom baseband applications heterogeneous, GALS
Intel 80-core [37] beyond 1 TOPS per chip NoC, mesochronous clocking
AsAP DSP applications fine grain processor array, GALS

to traditional styles. Some processors such as RAW, TRIPS, and Smart Memories try to be as

flexible and configurable as possible to make them suitable for wide applications; to achieve this

goal, they introduce overhead such as complex interconnect, extremely large cores, and configurable

memories. Some processors such as PADDI, RaPiD, PipeRench, Synchroscalar, Imagine, Pleiades,

Picochip, and Metro target one domain of applications; they use more specific architectures such

as heterogeneous processing elements, specific register file systems, and configurable datapaths to

make the architecture efficient to the specific feature of those application domains.

Table 2.8 compares the listed parallel processors including the features of their processing

elements, homogeneous/heterogeneous styles, chip sizes and power, etc.. Most parallel processors

can be easily differentiated by their processing element architectures which can be categorized into

42 CHAPTER 2. ARCHITECTURE OF THE MULTI-CORE SYSTEM

Table
2.8:C

om
parison

ofthe
selected

parallelprocessors;the
data

is
scaled

to
0.18

µm
technology

and
1.8

V
voltage

supply;assum
ing

a
1/s

2
reduction

in
area,

a
s
2/v

increase
in

clock
rate,

and
as/v

3
reduction

in
pow

er
consum

ption
heresis

the
technology

scaling
factor

andvis
the

voltage
scaling

factor;
energy

per
operation

is
obtained

from
chip

pow
er

divided
by

(issue
w

idth
×

elem
entnum

ber×
clock

rate);the
processors

are
sorted

according
to

the
area

ofeach
processing

elem
ent;data

for
S

ynchroscalar,W
aveS

calar
and

S
m

artM
em

ories
are

published
estim

ates
.

P
rocessor

Y
ear

H
om

og.
P

rocessing
E

lem
.

M
em

.
E

lem
.

E
lem

.
C

hip
C

lock
C

hip
E

nergy
/H

eterog.
elem

ents
size

size
issue

num
.

size
rate

pow
er

per
op

(m
m

2)
(K

B
)

w
idth

(m
m

2)
(M

H
z)

(W
)

(nJ/op)
A

rrix
F

P
O

A
[105]

2006
heterogeneous

A
LU

/M
A

C
/R

F
<

0.05
0.128

1
400

N
/A

782
N

/A
N

/A
P

A
D

D
I-2

[83]
1995

hom
ogeneous

proc.
0.09

0.052
1

48
4.66

277
N

/A
N

/A
R

aP
iD

[99]
1999

heterogeneous
A

LU
/M

U
LT

/R
A

M
0.65

N
/A

1
16

12
277

N
/A

N
/A

A
sA

P
2006

hom
ogeneous

proc.
0.66

0.64
1

36
32

530
1.28

0.07
P

leiades
M

aia
[90]

2000
heterogeneous

A
S

IC
s/proc.

∼
0.8

N
/A

N
/A

22
18

138
0.014

N
/A

M
etro

[103]
2005

hom
ogeneous

proc.
0.96

N
/A

1
188

621
180

67
1.98

P
ipeR

ench
[95]

2002
hom

ogeneous
execution

cluster
1.17

0.256
16

16
55

33
0.675

0.08
Im

agine
[86]

2002
hom

ogeneous
V

LIW
execution

cluster
5.9

9.7
8

8
368

200
7.4

0.58
IM

A
P

-C
E

[101]
2003

hom
ogeneous

proc.
cluster

∼
6

16
32

16
121

100
2.5–4∼

0.06
S

tream
proc

[88]
2007

hom
ogeneous

V
LIW

execution
cluster

6.1
16

10
16∼183

750
∼

42
∼

0.35
FA

U
S

T
[108]

2007
heterogeneous

A
S

IC
s

∼
7

N
/A

N
/A

20
152

126
2.68

N
/A

R
A

W
[84]

2003
hom

ogeneous
proc.

16
128

1
16

331
425

18.2
2.68

Intel80-core
[37]

2007
hom

ogeneous
V

LIW
proc.

23
5

8
80

2108
735

206
0.44

N
iagara1

[26]
2006

hom
ogeneous

m
ultithreaded

proc.
50

24
4

8
1512

450
106

7.36
C

E
LL

[23]
2005

hom
ogeneous

S
IM

D
proc.

58
256

4
8

840
1500∼

120
∼

2.5
N

iagara2
[31]

2007
hom

ogeneous
m

ultithreaded
proc.∼

75
24

8
8

2622
300

133
6.93

T
R

IP
S

[94]
2007

hom
ogeneous

w
ide-issue

proc.
∼

200
32

16
2

642
264

69
8.2

K
C

256
[106]

2006
hom

ogeneous
proc.

N
/A

N
/A

1
256

N
/A

100
0.5

0.02
N

P
U

[102]
2004

hom
ogeneous

proc.
N

/A
N

/A
1

200
N

/A
144

18
0.62

S
E

A
forth-24

[104]
2006

hom
ogeneous

proc
N

/A
0.256

1
24

N
/A

N
/A

N
/A

N
/A

C
avium

16-core
[109]

2006
hom

ogeneous
proc.

N
/A

40
2

16
N

/A
470

61
4.05

P
icochip

P
C

102
[100]

2003
heterogeneous

procs./A
S

IC
s.

N
/A

0.7
-

65
3

322
N

/A
125

12
0.10

A
m

bric’s
proc

[107]
2006

hom
ogeneous

procs.
cluster

N
/A

8
8

45
N

/A
240

N
/A

N
/A

S
ynchroscalar

[98]
2004

hom
ogeneous

proc.
3.5

32
4

16
60

400
1.84

0.07
S

m
artM

em
s

[91]
2004

hom
ogeneous

proc.
20

128
3

64
1300

N
/A

N
/A

N
/A

W
aveS

calar
[96]

2006
hom

ogeneous
procs.

cluster
80

2
16

16
1280

568
N

/A
N

/A

2.4. RELATED WORK 43

Table 2.9: Comparison of inter-element communication of selected parallel processors

Processor Inter-connect Details
Hydra [89] bus connect RISC processors and L2 Cache
Cavium 16-core [109] bus connect 16 processors and L2 Cache
CELL [23] bus high-bandwidth bus composed of four 128b data rings
Niagara [26] Crossbar connect between 8 cores and 4 L2 Caches
RaPiD [99] 1-D linear array linearly connect reconfigurable pipelined datapath
PipeRench [95] 1-D linear array linearly connect execution clusters
IMAP-CE [101] 1-D linear array linearly connect 128 processors
NPU [102] 1-D linear array linearly connect 200 processors
RAW [35] 2-D mesh including static and dynamic route
Ambric’s proc [107] 2-D mesh configurable switches for distant comm.
TRIPS [50] 2-D mesh dynamically routed, with ALU operand network
Smart Memories [91] 2-D mesh packeted-based, dynamically-routed
FAUST [108] 2-D mesh packeted-based, dynamically-routed
Intel 80-core [37] 2-D mesh packeted-based, dynamically-routed
Pleiades [90] hierarchical 2-D mesh for both local and global
PADDI-2 [83] hierarchical bus for local and crossbar for global
Imagine [86] hierarchical switch for both local and global
WaveScalar [96] hierarchical bus for local and 2-D mesh for global
Picochip [100] hierarchical special picobus for both local and global
Metro [103] hierarchical 16 clusters each with 12 processing elements
Synchroscalar [98] hierarchical 4 SIMD processors, connected by bus
AsAP 2D mesh statically configurable

three broad types—heterogeneous, multiple execution units (often similar to classic SIMD), and

multiple processors (MIMD).

A heterogeneous style such as the one used by Pleiades and Picochip makes the system

efficient for specific applications, but results in a non-regular layout and has difficulty scaling.

Some projects such as Imagine, RaPiD, and PipeRench use multiple execution units to

improve their performance. Strictly speaking, they can be categorized to parallel processing ar-

chitectures but not multi-core systems since they have a centralized instruction controller. These

architectures normally use hierarchical structures: combining some processing element into groups

(calledclusterin Imagine andstripesin PipeRench) and then those groups are organized into chip.

Quite a lot of systems can be categorized into MIMD processors, and AsAP can be distin-

guished from them by its small processing element granularity alone. One of the main reasons for

others’ increased processor granularity is because they target a wider range of applications including

those which require large data working sets.

44 CHAPTER 2. ARCHITECTURE OF THE MULTI-CORE SYSTEM

Table 2.9 compares the inter-processor communication network. Different processors

choose their network for their target applications: from the simple bus, crossbar to 2-D mesh (in-

cluding those called network-on-chip structure); and some processors use hierarchical network to

treat local and long distance communication differently.

In terms of the clocking style, most other projects use a totally synchronous clocking

style. Pleiades and FAUST uses GALS clocking style, but they use handshaking scheme to han-

dle the asynchronous boundaries, it is quite different from the source-synchronous interprocessor

communication style used in AsAP which is able to sustain a full-rate communication of one word

per cycle. The GALS processing array by Ambric was presented but no details were given by re-

garding its operation. Intel 80-core employs mesochronous clocking where each processor has the

same clock frequency while the clock phase can be different. Synchroscalar uses rationally related

clocking style to achieve part of the clock/voltage scaling benefit; but not as flexible as GALS.

Partly because of these architectural level difference, these processors target different

application domains. For example, Pleiades and Picochip target wireless applications; Imagine

targets stream applications; RaPiD, PipeRench, and Synchroscalar target DSP applications; and

TRIPS, Smart Memories, and RAW target all kinds of applications.

The key features of the AsAP processor—small granularity of each processor whit small

memory and simple processing unit, GALS clocking style, and reconfigurable nearest-neighbor

mesh network—distinguish it from other works.

2.5 Summary

The AsAP platform is well-suited for the computation in complex DSP workloads com-

prised of many DSP sub-tasks, as well as single highly-parallel computationally demanding tasks.

By its very nature of having independent clock domains, very small processing elements, and short

interconnects, it is highly energy-efficient and capable of high throughput.

45

Chapter 3

An Low-area Multi-link Interconnect

Architecture

Inter-processor communication is an extremely important issue in chip multiprocessor

systems, and it is investigated further in this chapter based on the discussion in Section 2.1.5. Both

dynamic routing architectures and static nearest neighbor interconnect architectures—they are ex-

plained in section 3.0.1—achieve significant success in specific areas, but they have some limi-

tations. Dynamic routing architecture is flexible, but normally sacrifices relatively high area and

power overhead on the communication circuitry. The static nearest neighbor interconnect architec-

ture reduces the area and power overhead significantly, but it sacrifices high latency for long distance

communication. Architectures to obtain good trade offs between flexibility and cost are desired.

Communications within chip multiprocessors of many applications, especially many DSP

algorithms, are often localized [110, 111]: most of the communications are nearest neighbors (or

local) while a few are long distance. Motivated by this reality, we propose anasymmetricstructure:

treat the nearest neighbor communication and long distance communication differently, use more

buffer resources for nearest neighbor connections, and use fewer buffer resources for long distance

connections. Together with the relative simple static routing approach, this asymmetric architecture

can achieve low area cost on the communication circuitry.

Under the static asymmetric architecture, there are a couple of design options available

such as the number of input ports (buffers) for the processing core; and the number of links at

46 CHAPTER 3. AN LOW-AREA MULTI-LINK INTERCONNECT ARCHITECTURE

Route

East

North

West

South

East

North

West

South

Core

(a)

buffer

bu
ffe

r

bu
ffe

r

buffer

north in

west
in

south in

east
in

core

north out

south out

west
out

east
out

(b)

Figure 3.1: (a) An illustration of interprocessor communication in a 2-D mesh, and (b) a generalized
communication routing architecture in which only signals related to the west edge are drawn.

each edge. The area, speed and performance of different design options are analyzed, and some

conclusions based on the results are drawn. It is found that increasing the number of links between

processors is helpful for the routing capability, but it will affect the processor area dramatically at

some point. Two or three links are suitable if each processor in the chip utilizes a simple single

issue architecture.

Moreover, the proposed architecture supports the GALS clocking style in long distance

communication. After examining the characteristics of different approaches, the source synchronous

method (it is explained in Section 2.2.2) is extended which transfers the clock with the signals along

the entire path to control the data writing.

In this chapter,nearest neighborof a processor represents the 4 nearest neighbors in

2D meshes although results will be similar for others such as the 6 nearest neighbors in 3D cubes;

processing coreis used for the execution unit of each processor and each input port of the processing

core is connected to a buffer.

3.0.1 Background: traditional dynamic routing architecture

Figure 3.1 (a) shows the interprocessor communication in 2-D mesh chip multiprocessors

using a routing architecture: the router block in each processor receives data from neighboring

47

Route

East

North

West

South

Core

(a)

bu
ffe

r

north in

west
in

south in

east
in

core

north out

south out

west
out

east
out

(b)

Figure 3.2: The concept and circuitry diagram of the nearest neighbor interconnect architecture.
Data from four inputs are transfered only to the processing core to reduce the circuitry cost.

processors (east, north, west, and south) and then sends data to the processor core or to the other

neighboring processors. Since the communication links are not always available due to slow data

processing speed or link congestion, buffers are inserted at each input edge [112]. Figure 3.1 (b)

shows a generalized diagram of the routing circuitry where only signals related to the west edge

(west inandwest out) are drawn. Input ports from each side feed data into a corresponding buffer,

and the buffers supply data to the processor core or the other output ports. Each output port selects

data from processor core and three input buffers. As the diagram shows, the communication logic

includes four buffers and five muxes, and there is some control logic to support the communication

flow control which is not drawn. Other implementations are possible, for example, each output

port can also have a buffer or each input buffer can be split into multiple virtual channels [51] to

reduce communication latency. The area of the communication circuitry is normally dominated by

the buffers and the logic in four input/output ports are normally the same.

3.0.2 Background: static nearest neighbor interconnect

Most communications in the chip multiprocessors are localized or can be localized, which

means the data traffic going into the processor core is much larger than the other paths. To minimize

the communication circuit overhead, another interprocessor communication strategy—as used in

48 CHAPTER 3. AN LOW-AREA MULTI-LINK INTERCONNECT ARCHITECTURE

the first version of the AsAP processor—is to implement only the nearest neighbor interconnect

logic, and long distance communication is fulfilled by extra MOVE instructions in the intermediate

processors. Figure 3.2 (a) shows the concept of nearest neighbor interconnect and Fig. 3.2 (b) shows

a circuitry diagram. All data from the input ports are transferred to the processing core, so instead of

inserting a buffer at each input port, there is little effect on system performance by inserting buffer(s)

only at the output(s) to the processing core, and statically configure the routing path. Comparing

Fig. 3.1 and Fig. 3.2, the nearest neighbor interconnect reduces the number of buffers from four to

one and the muxes for each output port are all avoided; resulting in more than four times smaller

area. But clearly it has the limitation that long distance communication has a large latency.

3.1 Low-area interconnect architecture

This section proposes the statically configurable asymmetric architecture to achieve low

area cost.

3.1.1 Asymmetric architecture

Asymmetric data traffic exists at the router’s output ports universally

J. Hu et al. discovered the asymmetric data traffic in inter-processor communication and

proposed using different buffer resources at input ports of routers to match the traffic [113]. One

limitation of the asymmetric input ports architecture is that for different applications as well as for

different processors of individual applications, the existing asymmetric data traffic on the router

input ports is different, which makes the allocation of the buffer resources application specific.

Considering the router’s output ports instead of its input ports, most of the data from the input ports

are delivered to the core and very few are to edges, which makes the asymmetric data traffic on

the route’s output more general and universal. Allocating asymmetric buffer resources at the output

ports is applicable in a much wider range of applications, which is important since nowadays NoC

architectures are used more widely than just specific domains.

Table 3.1 shows the data traffic of each processor for a JPEG encoder as shown in Fig. 2.18

which can demonstrate the different asymmetric data traffic on the input and output ports of routers.

On the input ports, although each processor shows a clear asymmetric communication data traffic;

3.1. LOW-AREA INTERCONNECT ARCHITECTURE 49

Table 3.1: Data traffic of router in a 9-processor JPEG encoder to process one8 × 8 block.
Assuming an architecture with four-inputs and five-outputs like Fig. 3.1. 80% of the data from
inputs are delivered to the processing core which dominates the traffic at the output ports.

Processor Network data words of Network data words of
No. input ports of router output ports of router

East North West SouthCore East North West South
1 0 64 0 0 64 0 0 0 0
2 0 64 0 0 64 0 0 0 0
3 0 64 0 0 64 0 0 0 0
4 0 0 64 0 64 64 0 0 0
5 0 0 96 0 64 0 32 0 0
6 0 0 0 64 1 0 0 63 0
7 0 0 0 3 3 0 0 0 0
8 63 0 0 0 63 0 0 0 0
9 4 0 0 252 256 0 0 0 0

Total 67 192 160 319 643 64 32 63 0
Relative overall (input) 9% 26% 22% 43%
Relative overall (output) 80% 8% 4% 8% 0%

the major input direction for different processors are different which makes the overall traffic at

the input ports quite uniform. On the output ports, however, each processor shows the similar

asymmetric data traffic and overall about 80% data are delivered to the core. Similar results exist in

other applications.

Proposed asymmetric architecture

An architecture is proposed which has asymmetric output ports as shown in Fig. 3.3 to

achieve good trade offs between cost and flexibility. As shown in Fig. 3.3 (a), instead of equally

distributing buffer resources to each output port, sufficiently large buffers are allocated to the pro-

cessing core port, and the other ports use small buffers (one or several registers). Figure 3.3 (b)

shows the circuitry diagram where the connections of the west signalswest inandwest outare com-

pletely drawn while the other edges are simplified. From the point view of the area and logic cost,

this scheme is similar to the static nearest neighbor interconnect, as shown in Fig. 3.2, by adding a

couple of registers and muxes. From the point view of the routing capability, this scheme is similar

to the traditional dynamic routing architecture, as shown in Fig. 3.1, since reducing the buffers in

ports for long distance communication does not significantly affect system performance when the

50 CHAPTER 3. AN LOW-AREA MULTI-LINK INTERCONNECT ARCHITECTURE

Route

East

North

West

South

East

North

West

South

Core

(a)

north in

west
in

south in

east
in

Core

north out

south out

west
out

east
out

B
uf

fe
r

(b)

Figure 3.3: The concept and circuitry diagram of the proposed inter-processor communication ar-
chitecture; it has the asymmetric buffer resources for the long distance interconnect and the local
core interconnect

communication is localized. If using one large buffer for the processing core, the proposed archi-

tecture can save about 4 times area compared to the Fig. 3.1 architecture. If using two large buffers

which will be discussed in Section 3.2.1, the area saving can still be about 2 times.

3.1.2 Theoretical analysis

This section gives a quantitative analysis about how the buffer size affects system perfor-

mance. Also, another interesting question is that if the total buffer size is kept the same, what will

be the best distribution of the buffer resources on channels with different traffic patterns.

Performance effect analysis

The buffer writing procedure is generally halted when the buffer is full, so that the buffer

size has a strong effect on system performance. The quantitative effect of buffer size is highly

dependent on the probability function of the data traffic in the buffer and Poisson distribution is

one of the best models for the traffic behavior [114, 115]. Assuming the number of data in the port

(channel) follows the Poisson function with average number of dataλ, the probability of havingk

3.1. LOW-AREA INTERCONNECT ARCHITECTURE 51

10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Buffer size (N)

B
uf

fe
r

st
al

l p
ro

ba
bi

lit
y

(p
)

Avg Num. = 2
Avg Num. = 5
Avg Num. = 10
Avg Num. = 20
Avg Num. = 50

Figure 3.4: Buffer stall probability (p) along with buffer size (N) for channels with different average
number of data modeled as Possion function

number of data is shown in Equation 3.1. Although the model is not quite possible to fit the reality

exactly, it can provide some useful information.

f(k, λ) =
e−λλk

k!
(3.1)

If using a buffer with sizeN for that channel, then the probability of buffer full follows Equation 3.2.

p(λ, N) = 1−
N∑

k=0

e−λλk

k!
(3.2)

Fig. 3.4 shows buffer stall probability (p) along with buffer size (N) for channels with different

average number of data. When the buffer size is 2 times the average number of data in the channel,

the buffer stall probability is close to zero. Table 3.2 shows the required buffer sizes for different

target stall probabilities and different channels. These results show that the required buffer size is

approximately linearly related to the traffic in the channel. It means that reducing the buffer size

linearly along with traffic has nearly no effect on the performance, if the original buffer size is

sufficiently large.

52 CHAPTER 3. AN LOW-AREA MULTI-LINK INTERCONNECT ARCHITECTURE

Table 3.2: The required buffer sizes for the defined stall probabilities and channels with different
average numbers with Possion distribution function

Stall Required buffer sizes with different
probability average number of data in channels

2 5 10 20 50
10% 4 8 14 26 59
1% 6 11 18 31 67
0.1% 8 13 21 35 77

Optimal buffer resource distribution

It is also interesting to see the optimal buffer distribution if the total buffer resource is

fixed asQ, and the average number of data in the processing core channel and other channels areλ

andnλ respectively (heren is the traffic ratio between the other channels and the processing core

channel).

If allocating buffer sizeN to the processing core channel andmN to the other channels

(herem is the buffer size ratio between the other channels and the processing core channel), the

question is to minimize the total buffer full probability as shown in Equation 3.3:

(
1−

N∑
k=0

e−λλk

k!

)
+ 4×

(
1−

mN∑
k=0

e−nλ(nλ)k

k!

)
(3.3)

And m andN need to meet Equation 3.4:

Q = N + 4mN (3.4)

which meansN = Q
1+4m . Replacing it into Equation 3.3 and the goal becomes to minimize Equa-

tion 3.5:

(1−
Q

1+4m∑
k=0

e−λλk

k!
) + 4× (1−

mQ
1+4m∑
k=0

e−nλ(λ)k

k!
) (3.5)

Fig. 3.5 shows the overall system buffer stall probability at different buffer size ration (m) for

different total buffer size (Q), assumingλ = 50 andnλ = 5 as a representative system. When

there is sufficient buffer resource (Q = 200 in our case), the system has nearly no stall as long

as the ratio is not too small (m < 0.1 in our case, which makes small buffer not large enough) or

too large (m > 0.5 in our case, which makes the large buffer not sufficient enough). When there

is moderate buffer resource (Q = 100 in our case), the system achieves best overall performance

3.1. LOW-AREA INTERCONNECT ARCHITECTURE 53

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

The ratio of small to large buffer size

O
ve

ra
ll

bu
ffe

r
st

al
l p

ro
ba

bi
lit

y
(p

)

Total buffer size = 50
Total buffer size = 100
Total buffer size = 200

Figure 3.5: The overall system stall probability (the addition of stall probabilities of 5 buffers in-
cluding the buffers for the processing core and other four edges) along the size ratio between small
buffer to large buffer with different fixed total buffer resources; assuming a traffic pattern where the
average number of data in the processing core is 50 and the other four channels each has average
number 5.

when the buffer size ratio is a little larger than the channel traffic ratio (the optimal buffer ratio point

m = 0.18, and the traffic ratio isn = 0.1). When there is very limited buffer resource (Q = 50

in our case), the system always has non-negligible performance loss, and the overall buffer stall

probability is smallest when each buffer has the same size.

For systems with different traffics to our example, the exact results will be different, but

the general conclusion drawn above should still be valid. Also, these discussions are for dynamic

routing architectures; if using static routing as will be discussed in Section 3.1.3, only one register

is necessary in each bypass channel for the pipelining and no additional buffer is required.

3.1.3 Static routing vs. dynamic routing

The inter-processor connections can be configured statically before the runtime (static

routing), or dynamically at the runtime (dynamic routing). Traditional multiprocessor systems such

as message passing architectures and the current chip multiprocessor research on NoC have widely

covered the dynamic routing network, but the static configuration architecture was not intensively

54 CHAPTER 3. AN LOW-AREA MULTI-LINK INTERCONNECT ARCHITECTURE

studied. The key advantage of the static configuration is that for applications with predictable traffic,

such as most of DSP applications, it can provide an efficient solution with small area cost and

communication latency. The dynamic configuration solution has more widely suitable applications

because of its flexibility, but it has non-negligible overhead in terms of the circuitry area and the

communication latency; the main overhead comes from the routing path definition, the arbiter of

multiple clock independent sources, and the signal recognition at the destination processor.

Dynamic routing and its overhead

In dynamic routing, the data transferring path should be defined by the source processor

and propagated to the corresponding downstream processors, or dynamically decided by interme-

diate processors. The circuitry to define and control routing path has the area overhead, and to

propagate the routing path might cost extra instructions and increase the clock cycles for the data

transfer.

Since each link in the dynamic routing architecture is shared by multiple sources, an

arbiter is required to allow only one source to access the link at one time. Furthermore, in GALS

chip multiprocessors, this arbiter becomes more complex since it has to handle the sources with

unrelated clock domains. An obvious overhead is that some synchronization circuitry is required for

the arbiter to receive the link occupying request from different sources, and some logic is required

to avoid the glitches when the occupying path changes.

Another question is how the destination processor can identify the source processors of

the receiving data. Since data can travel through multiple processors with unknown clock domains,

it is not possible to assume a particular order for the coming data. One method is that an address

is assigned to each processor and sent along with the data, and the destination processor uses the

address to identify the source processor through software or hardware.

Combining these overheads, the communication latency for dynamic routing is normally

larger than 20 clock cycles [116], and this value will increase further for GALS dynamic routing

networks due to the additional synchronization latency.

3.1. LOW-AREA INTERCONNECT ARCHITECTURE 55

Table 3.3: Comparison of a couple of routing approaches. The data for Area are obtained at 0.18µm
technology; and the values can be slightly different in specific implementations due to other effects
such as routing schemes

Suitable Latency Area
applications (clk cycles) (mm2)

Static Systolic route limited ∼1 –
Dynamic route broad >20 –

RAW (static + dynamic) broad 3 ∼4
proposed static route broad ∼5 ∼0.1

Static routing

Instead of discussing dynamic routing strategy, only the static routing approach is inves-

tigated in our design.

Not a lot of systems use static routing and the Systolic [78] system is one of the pioneers.

Systolic systems contain synchronously-operating processors which “pump” data regularly through

a processor array, and the data to be processed must reach the processing unit at the exact pre-

defined time. Due to this strict requirement for the data stream, the systolic architecture is only

suitable for applications with highly regular communication such as matrix multiplying. Its suitable

applications are quite limited.

Releasing the strict timing requirement of the data stream can significantly broaden the

application domain. To release the timing requirement, each processor must ‘wait’ for data when

the data is late, and the data must ‘wait’ to be processed when it comes early. Inserting FIFO(s) at

the input(s) of processing cores for the coming data can naturally meet these requirements, in which

the processor is stalled when the FIFO is empty, and the data is buffered in the FIFO when it comes

early. In this way, the requirement for the data stream is only its order, not the exact time.

RAW [116] is a chip multiprocessor with extremely low latency for interprocessor com-

munication (3 clock cycles) using both static routing and dynamic routing, but it achieves this goal

with a large area cost of about 4 mm2 in 0.18µm technology. Our communication system is suit-

able for broad applications, with low latency (about 5 clock cycles), and low area overhead (about

0.1 mm2 in 0.18µm technology).

Table 3.3 compares the interconnect architectures described in this subsection.

56 CHAPTER 3. AN LOW-AREA MULTI-LINK INTERCONNECT ARCHITECTURE

Core

B
uf

fe
r

Core

B
uf

fe
r

in1

B
uf

fe
r

in2

(a) (b)

B
uf

fe
r

in1

in2

(c)

B
uf

fe
r

B
uf

fe
r

in3

Core
Core

B
u
ff
e
r

in1

in2

(d)

B
u
ff
e
r

B
u
ff
e
r

in3

B
u
ff
e
r

in4

Figure 3.6: Diagrams of architectures with various numbers of input ports (and therefore various
numbers of buffers) for the processing core: (a) single port, (b) two ports, (c) three ports, and
(d) four ports

3.2 Design space exploration

Under the staticall configurable asymmetric architecture as discussed in Section 3.1, there

are a couple of options for the communication logic realization. Two important options are investi-

gated in this section, including:

• The number of ports (buffers) for the processing core

• The number of links at each neighboring processor pair

3.2.1 Single port vs. multiple ports for the processing core

In Fig. 3.3, each processing core has one input port (and one corresponding buffer). When

using the dynamic routing approach, a single port might be sufficient since the processing core

can fetch data from all directions by dynamically configuring the input mux. If using the static

routing approach, a single port means each processing core can only fetch data from one source,

which might be inefficient when multiple sources are required. Using multiple ports (buffers) for

the processing core is considered, as shown in Fig. 3.6. The area of the communication circuitry

roughly doubles if using two ports (buffers) instead of single port (buffer); and the area becomes

three times and four times larger if using three and four ports (buffers).

Performance evaluation

The effect of the number of ports (buffers) on the routing capability is highly dependent

on the application communication patterns. Thebasiccommunication patterns, including one-to-

3.2. DESIGN SPACE EXPLORATION 57

2 3 4 5 6 7 8 9 10
2

4

6

8

10

12

14

16

18

The size of array (n x n)

La
te

nc
y

(N
um

 o
f p

ro
cs

)

Architectures will all kinds of number of buffers

Figure 3.7: Architectures with different numbers of ports (buffers) for the processing core always
travel through2n− 2 processors to fulfill one-to-one and one-to-all communication

one communication (in which two processors at opposite corners communicate with each other),

one-to-all broadcast (in which one corner processor sends data to all processors), all-to-one merge

(in which all processors send data to a processor at the middle), and all-to-all communication are

used to evaluate the performance of different architectures; the real applications can normally be

obtained by the combination of these basic patterns.

For the one-to-one and one-to-all communications in which the destination processor(s)

only need one source, the single-port architecture has the same performance as other multiple-port

architectures and the communication latency is the time to travel through2n − 2 processors in a

n× n array, as shown in Fig. 3.7.

For the all-to-one communication case, as shown in Fig. 3.8. increasing the number of

ports (buffers) has the benefit. For the single port (buffer) architecture, each processor can receive

data from only one source and the furthest processor needs to propagate the data through all the

n2 processors, like all the processors are arranged in a linear array. For architectures with multiple

ports (buffers), the communication can be distributed in multiple directions and the furthest proces-

sor only needs to propagate through aroundn processors. The architectures with 2, 3, or 4 ports

(buffers) perform similarly; the two-port architecture is slightly worse in the 5× 5 array and the

four-port architecture is slightly better in the 3× 3 array. Here the longest traveling distance is used

to present the communication latency. When the array of processors becomes very large or if the

58 CHAPTER 3. AN LOW-AREA MULTI-LINK INTERCONNECT ARCHITECTURE

2 3 4 5 6 7 8 9 10
10

0

10
1

10
2

The size of array (n x n)

Lo
ng

es
t d

is
ta

nc
e

(N
um

 o
f p

ro
cs

)

One buffer
Two buffers
Three buffers
Four buffers

Figure 3.8: The longest traveling distance from source to destination for architectures with different
numbers of ports (buffers) for the processing core, by varing the size of the array and using the
all-to-one communication pattern

latency to propagate through each processor is very small, the communication latency might be lim-

ited by how fast the destination processor canacceptthe data not by how fast the furthest processor

can reach the destination processor. For example, if passing one processor takes 5 clock cycles,

in a n× n processor array the longest traveling latency is about5n clock cycles; for a two-port

architecture, it is able to accept no more than 2 data at each clock cycle, so the time to accept all the

data is at leastn2/2 clock cycles. Whenn < 10, the traveling time dominates the latency; when

n > 10, the time for the destination processor to accept the data dominates the latency. Besides how

fast the destination processor canacceptthe data, another consideration is how fast it canprocess

the received data. A single issue simple processor can normally consume (process) no more than

two data at one clock cycle, which means it has little help to accept more than 2 data at each cycle,

hence it also means to use 3 or 4 ports (buffers) for the processing core can not provide significant

help.

The all-to-all communication differs to the all-to-one communication in that each proces-

sor needs to reach all the other processors. The architecture with one port (buffer) need to arrange

all processors linearly and the latency is the time needed to propagate through all the n2 proces-

sors; the architectures with multiple ports (buffers) can communicate in two dimensions and all of

their latency is the time needed to propagate through one row and one column of totally2n − 1

3.2. DESIGN SPACE EXPLORATION 59

2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

The size of array (n x n)

La
te

nc
y

(N
um

 o
f p

ro
cs

)

One buffer
Architectures with two, three and four buffers

Figure 3.9: The longest traveling distance for architectures with different numbers of ports (buffers)
for the processing core, by varying the size of the array and using the all-to-all communication
pattern

processors. Fig. 3.9 shows the result. Similarly to the all-to-one communication discussion, here

the longest traveling distance is used as the communication latency. How fast each processor can

accept and process the received data can also affect communication and computation latency.

Considering the trade off between area and performance, using two ports (buffers) for

the processing core is a good solution. A further extended consideration is that if the chip is in a

3-dimensional shape, then the best option will be three-port architecture.

3.2.2 Single link vs. multiple links

One of the key differences between interconnects of inside-chip and inter-chip is that there

is more connect wire resources inside the chip while the inter-chip connect is normally limited by

the available chip IOs. W.J. Dally [51] suggested increasing the word width of each link in NoC to

take this advantage. Another option that can be used is to increase the number of links at each edge

to increase the connection capability and flexibility.

Single link

When there is one link (one output as well as one input) at each edge, each link poten-

tially can receive data from other three edges and the processing core. And each processing core

60 CHAPTER 3. AN LOW-AREA MULTI-LINK INTERCONNECT ARCHITECTURE

in_W

out_E

to core

to switch

in_N

in_W

in_S

core

Figure 3.10: Diagram of inter-processor connection with one link at each edge

can receive data from four neighbors. Fig. 3.10 shows its diagram. It is a relatively simple and

straightforward architecture.

Double links

If using double links at each edge, the source of the processing core becomes 8; and

each edge has two outputs and each output potentially has 7 sources (6 from input edges and one

from the processing core). Comparing the two-links architecture as shown in Fig. 3.11 (a) and the

single-link architecture as shown in Fig. 3.10, the overhead of increasing the link is significant;

not only because of the increased control logic, more importantly is that the semi-global wires (the

wires in each processor from one edge to another edge) increase a lot which can affect system

area/speed/power significantly in submicron technologies.

Some methods are available to simplify the fully connected architecture. Considering the

router’s logic at the east edge which receives data fromNorth, West, SouthandCore and sends

data toEastoutput, in1N, in2 N, in1 W, in2 W, in1 S, in2 S, sigcore, out1E, out2E are used to

define these signals. There is a large exploration space at a first glance since 7 inputs and 2 outputs

have totally214 connecting options. Since three input edges are symmetric,{in1 N, in1 W, in1 S}
are grouped together as input in1 and another input group is named as in2, so that the input number

is reduced to 3 and the exploration space is reduced to26=64 as shown in Table 3.4. In options

1-8, the out1 does not have any connections so they are not considered as two-links architectures.

Option 9 is neglected by similar reason. Option 10 only connects processing core to the outputs

and basically it is the same as the nearest neighbor architecture. Option 11 can not be realized since

out2 is only connected with in2 which means this link has no original source. Option 12 can be a

3.2. DESIGN SPACE EXPLORATION 61

to core

(a)

to switch

to switch

expensive ‘semi’
global wires

to core

(b)

to switch

in2
_W

out2
_E

to core

out1
_E

in1
_W

(d)

to switch

to switch

in1_Nin2_N

to core

(c)

to switch

in2_N

to switch

in2
_W

out2
_E

out1
_E

in1
_W

in2
_W

out2
_E

out1
_E

in1
_W

in2
_W

out2
_E

out1
_E

in1
_W

core

in2_E

in2_S

core
core

in1_E

in2_E

in1_Sin2_S

in1_Nin2_N

in1_Sin2_S

in1_E

in2_E

Figure 3.11: Inter-processor connections with double links: (a) fully connected; (b) separated near-
est neighbor link and long distance link; (c) separated link from core and link from edges; (d) con-
nections exist between ‘corresponding’ links; (b) (c) (d) are related to option 12, 15 and 44 in
Table 3.4.

potential choice, where out1 is connected only to the core served as the nearest neighbor link, and

out2 is connected to in2 and core served as the long distance connect link. Fig. 3.11 (b) shows the

circuit diagram; each edge contains only one 4-input mux. By examining all the other options, it is

found that option 15 and 44 can be potential good choices. In option 15, out1 (link1) receives data

from the core while out2 (link2) receives data from edges, both of them send data to consumer core

and routers. Fig. 3.11 (c) shows the circuit diagram; each edge contains one 6-input mux. In option

44, each link receives data from the core and acorrespondinglink (out1 corresponds to in1 while

out2 corresponds to in2), and sends data to the processing core and routers. Fig. 3.11 (d) shows the

circuit diagram; each edge contains two 4-input muxes.

In terms of the area cost and the routing flexibility of the four architectures shown in

Fig. 3.11, architecture (a) has the most flexible connections while it has the biggest cost; archi-

tecture (b) has the most limited connections while it has the smallest cost; architecture (c) has the

connection flexibility and cost in between (a) and (b). Architecture (d) has the area cost similar

with (c), and interestingly, its routing capability is the same with architecture (a). This concept can

be demonstrated by Fig. 3.12 where A needs to communicate with B, while path1 and path2 occupy

62 CHAPTER 3. AN LOW-AREA MULTI-LINK INTERCONNECT ARCHITECTURE

Table 3.4: Interconnect architecture options for double links.Yesmeans a connection exists between
input and output,Nomeans no connection exists, andxx means don’t care.

options in1-out1 in2-out1 core-out1 in1-out2 in2-out2 core-out2 corresponding circuitry
1-8 No No No xx xx xx
9 No No Yes No No No
10 No No Yes No No Yes
11 No No Yes No Yes No
12 No No Yes No Yes Yes Fig. 3.11 (b)
13 No No Yes Yes No No
14 No No Yes Yes No Yes
15 No No Yes Yes Yes No Fig. 3.11 (c)
16 No No Yes Yes Yes Yes

17-32 No Yes xx xx xx xx
33-40 Yes No No xx xx xx

41 Yes No Yes No No No
42 Yes No Yes No No Yes
43 Yes No Yes No Yes No
44 Yes No Yes No Yes Yes Fig. 3.11 (d)

45-48 Yes No Yes Yes xx xx
49-64 Yes Yes xx xx xx xx

some parts of the links between them. For the fully connected architecture, the path between A

and B is easy to setup since it can first use link2 and then switch to link1. Using architecture as

Fig. 3.11 (d) has difficulty at the first glance but it can be handled by re-routing path1 and then

use link2 as the path between A and B, achieving the same routing purpose as fully connected

architecture.

According to these discussions, Fig. 3.11 (d) architecture is a good option due to its rout-

ing flexibility and moderate circuitry cost; and Fig. 3.11 (b) can also be a good option due to its

small circuitry cost.

Increasing the number of links further

Increasing the number of links further can increase the routing capability further. Fig. 3.13

shows architectures with three and four links enhanced from Fig 3.11 (b) and (d) architectures. The

circuitry clearly becomes more complex along with the increased number of links. Each edge

contains 2 or 3 4-input muxes in three links architecture and contain 3 or 4 4-input muxes in four

links architecture. Also, the source of the processing core becomes 12 and 16 in three and four

3.2. DESIGN SPACE EXPLORATION 63

B

A

link1

link2

(a)

B

A

link1

link2

(b)

path 1 path 1

path 2path 2

Figure 3.12: Setup the interconnect path from point A to B: (a) using fully connected architecture
as Fig. 3.11(a); (b) reorganize the paths and using architecture shown in Fig. 3.11(d)

links architectures respectively. Since the wires connected to these logics are all semi-global, the

overhead of these additional logic might has non-negligible effect on the system area and speed.

Since the architectures with various links have a large number of options and is not easy to

judge according to the qualitative analysis, more quantitative analysis will be given in the following

subsections. The evaluated architectures include the single-link architecture shown in Fig. 3.10,

the double-links architectures shown in Fig. 3.11 (b) and (d), and three and four links architectures

shown in Fig. 3.13.

Area and speed

Increasing the number of communication links requires additional control logic, which is

expected to increase the circuitry area and effect the processor speed. The synthesis tool reports that

the communication logic area for the discussed seven architectures are 0.013, 0.032, 0.047, 0.058,

0.067, 0.075, and 0.081 mm2 respectively, in a 0.18µm technology.

The result from the synthesis can not tell the whole story if not putting the communication

circuitry into an entire processor environment and considering the physical layout effect. In the sub-

micron technologies, wires introduce non-negligible delay compared to the logic gate; in addition,

complex wire connections might require extra area for the routing. These communication circuitry

is embedded in a simple single issue processor with the original area about 0.66 mm2 in a 0.18µm

technology, and do the physical layout design use Cadence tool Encounter. The layout utilization

64 CHAPTER 3. AN LOW-AREA MULTI-LINK INTERCONNECT ARCHITECTURE

neighbor
link

(a)

to switch

in2_N

to core

to switch

in3_N

neighbor
link

(b)

to switch

in2_N

to core

to switch

in3_N in1_N

to switch

(c)

to switch

in2_N

to core

to switch

in3_N

(d)

to core

to switch

in4_N

Figure 3.13: Inter-processor interconnect with three and four links. (a) and (c): separated nearest
neighbor link and long distance link, similar with Fig. 3.11 (b); (b) and (d): connections exist
between ‘corresponding’ links; similar with Fig. 3.11 (d)

in the physical design can have a strong impact on the design result. In terms of the area, higher

utilization is always good as well as the chip is routable. In terms of the speed, too low utilization

will introduce some unnecessary long wires and reduce system speed; too high utilization can result

wiring congestion and complicate or prohibit the routing. It is found that setting 70% utilization

initially is a good option, and it normally goes up to around 85% after clock tree insertion and

inplacement optimization.

Fig. 3.14 shows the layouts of seven processors containing different numbers of commu-

nication links. Fig. 3.15 (a) shows their area, and Fig. 3.15 (b) shows the relative area increment

of each architecture compared to type 1 architecture. The types 6 and 7 (four links architectures)

have a noticeable increase of the area (close to 25% area increment). The reason is that these two

architectures can not successfully finish the routing using the initial 70% utilization as others, and

is reduced to 64% and 65% respectively. This result provides some interesting insight about how

many global wires can fit into a chip. For a processor with a 0.66 mm2 area and a 0.8 mm edge,

assuming minimum 1µm pitch between IO pins, an optimistic estimation is that each edge can fit

800 IO pins, beyond this range the chip size will becomeIO pin or wire dominated. This estimation

3.2. DESIGN SPACE EXPLORATION 65

Figure 3.14: Scaled layouts of seven processors containing different numbers of communication
links; type 1 to 7 correspond to the architectures shown in Fig. 3.10, Fig. 3.11(b), Fig. 3.11(d) and
Fig. 3.13

can be true if these IO pins are all connected to short wires. For global wires as used for communi-

cation routers, increasing the number of wires will quickly result in routing congestion and increase

the chip size. In our example, each processor edge in four-link architecture has about 160 IO pins,

much less than the optimistic 800 IO pins. Four or more communication link architectures are not

considered due to their area cost.

Fig. 3.15 (c) shows the processor’s speed and Fig. 3.15 (d) shows the relative speed dif-

ference of each architecture compared to type 1 architecture. Each processor has similar speed and

the difference is within a negligible 2%. Type 6 and 7 have a little faster speed compared to type 1

because the released area helps to simplify the routing.

Performance

Again the basic communication patterns are used to evaluate the performance of architec-

tures with different numbers of links.

66 CHAPTER 3. AN LOW-AREA MULTI-LINK INTERCONNECT ARCHITECTURE

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

Architecture type
A

re
a

(m
m

2)

(a)

1 2 3 4 5 6 7
0

5

10

15

20

25

Architecture type

A
re

a
in

cr
em

en
t (

%
)

(b)

1 2 3 4 5 6 7
0

100

200

300

400

500

Architecture type

M
ax

. c
lo

ck
 r

at
e

(M
H

z)

(c)

1 2 3 4 5 6 7
−3

−2

−1

0

1

2

3

Architecture type

C
lo

ck
 r

at
e

di
ffe

re
nc

e(
%

)
(d)

Figure 3.15: Comparing the area and the speed of processors with different communication cir-
cuitry containing different numbers of links; (a) the absolute area; (b) the relative area increment to
architecture 1; (c) the absolute speed; (d) the relative speed decrement to architecture 1; type 6 and
7 (four links architecture) have a noticeable area increase due to their semi-global wire effect on the
processor area

The communication latency between two processors can be expressed ask×p clock cycles

wherep is the distance between source and destination expressed as the number of processors andk

is the clock cycles across one processor. For the nearest neighbor interconnect architecture, cross-

ing one processor requires extra instruction and the latency (k) is dependent on the asynchronous

synchronization time and the processor pipeline depth; it is 13 in our experimental system. For the

proposed routing architecture,k is 1 if the data can use the routing circuitry and be registered in

each processor.

For one-to-one or one-to-all communication, each processor only requires one source

so that single link architecture is sufficient and has the same communication latency with other

architectures, as shown in Fig. 3.16. A little surprisingly, all architectures have the same latencies

for all-to-all communication, as shown in Fig. 3.17, because each processor needs data from both

horizontal and vertical neighboring processors and both of the two ports (buffers) of each processor

are occupied by the nearest neighbor connections, prohibiting the usage of the additional links for

long distance communication.

These architectures have different results in all-to-one communication as shown in Fig. 3.18.

3.3. SUPPORTING GALS LONG DISTANCE COMMUNICATION 67

2 3 4 5 6 7 8 9 10
14

16

18

20

22

24

26

28

30

The size of array (n x n)

La
te

nc
y

(c
lo

ck
 c

yc
le

s)

All types architecture

Figure 3.16: The communication latencies (clock cycles) of architectures with different numbers of
links for one-to-one and one-to-all communication patterns, they all have the same latencies since
single link is sufficient for those communications.

For type 1 (single link) architecture, most or all of the link resources are occupied by the nearest

neighbor interconnect and little can be used for the direct switch, so the latency is relatively high.

Increasing the number of links helps when the latency is limited by the link resources. Type 2 (dou-

ble links with separated nearest neighbor link) has little advantage to type 1 but with a relatively

much higher area, and type 4 (three links with separated nearest neighbor link) has little advantage

to type 3 (double links) but with a relatively much higher area, so that type 2 and 4 are not consid-

ered. Type 3 architecture is about two times faster than the single link architecture, which makes it a

good candidate. Comparing type 5 (three links) architecture with type 3, they have the same latency

within a small communication domain (2× 2 and 3× 3 arrays), while the three-link architecture

benefits when the array grows. For 4× 4 to 6× 6 arrays, three-link architecture has about 25%

smaller latency; for 7× 7 to 9× 9 arrays, it has about 30% smaller latency, and the benefit increases

along with the larger array.

3.3 Supporting long distance communication with GALS clocking style

The design methodology to support nearest neighbor communication with GALS style is

already discussed in Section 2.2.2. The design becomes more complex when considering the long

68 CHAPTER 3. AN LOW-AREA MULTI-LINK INTERCONNECT ARCHITECTURE

2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

The size of array (n x n)

La
te

nc
y

(c
lo

ck
 c

yc
le

s)

All types architectures

Figure 3.17: The communication latencies (clock cycles) of architectures with different numbers of
links for the all-to-all communication patterns; they all have the same latencies since two ports are
always occupied by the nearest neighbor connections and therefor an increased number of links can
not be used.

2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

The size of array (n x n)

La
te

nc
y

(c
lo

ck
 c

yc
le

s)

Type 1
Type 2
Type 3
Type 4
Type 5

Figure 3.18: Comparing the communication latency (clock cycles) of interconnect architectures
type 1 to 5, by varing the size of the array and using the all-to-one communication pattern. Type
6 and 7 architectures are not included in the comparison due to their high area cost as shown in
Fig. 3.15

3.3. SUPPORTING GALS LONG DISTANCE COMMUNICATION 69

Proc CProc A Proc B

Proc C

osc

Proc A Proc B

(a)

(b)

Proc CProc A

(c)

osc

osc

Proc B

D.C.

FIFO

D.C.

FIFO

D.C.

FIFO

D.C.

FIFO

Figure 3.19: Synchronization strategies for long distance communication between processors with
unrelated clocks: (a) using intermediate processors’ clocks with dual-clock FIFOs, (b) using source
synchronous clocking with pipeline stages in each intermediate processors, and (c) using source
synchronous clocking with selectable registering in intermediate processors

distance communication. For the asynchronous handshake scheme, each bit of the signal might

reach the destination in a very different time, and some specific logic is necessary to guarantee the

arrival of all bits of the signal [117]. The logic overhead to handle this asynchronous communication

is not negligible, and the propagation delay can be significant.

Significant research exists in investigating the clock issue on the network on chip. Intel

proposed 2D array with packet-switched routers and employs mesochronous clocking where each

processor has the same clock frequency while the clock phase can be different [37]. ST proposed

an asynchronous network-on-chip which uses handshake scheme to handle the asynchronous com-

munication [108].

3.3.1 Source synchronization for long distance communication

For the source synchronous scheme in long distance communication, in order to avoid

different data bits reaching the destination in different clock period, prevent the signal delays larger

than the clock period, and minimize the antenna and/or crosstalk effect from long distance wires,

70 CHAPTER 3. AN LOW-AREA MULTI-LINK INTERCONNECT ARCHITECTURE

the data signals likely need to be registered (pipelined) in intermediate processors along its path.

Two options exist for this task, as shown in Fig. 3.19 (a) and (b), where processor A sends data to

processor C through processor B. The first option is to register the signals using intermediate pro-

cessors’ clock by a dual-clock FIFO, as shown in Fig. 3.19 (a). This scheme should work well under

most of the situations, but is not efficient due to significant additional circuits and increased path

latency. In addition, if an intermediate processor’s clock is running slowly, it will be a bottleneck to

the link’s throughput.

Extending the source synchronous method that routes the initial source clock along the

entirepath is proposed, as shown in Fig. 3.19 (b). In the case when the source processor is running

at slow speed, the registers in the intermediate processors are unnecessary and the link latency can

be reduced with non-pipelined paths as shown in Fig. 3.19 (c). Besides the data and the clock, some

information indicating the FIFO full and empty are also required to be transferred to guarantee the

correct FIFO operation.

3.3.2 Care more about the clock delay, less about skew or jitter

The dual-clock FIFO design allows arbitrary clock skew and drift, which greatly simplifies

the circuit design. The most important parameter of the clock used for the synchronization is no

longer the skew or jitter, but is the propagation delay.

Firstly, the delay of clock must relate to the delay of data to meet the setup/hold time

requirement during the register writing. Some configurable delay logic might be needed in the path

of the data [45] or the path of the clock for this purpose. Secondly, the delay of clock (and data)

should be minimized if possible, since increasing the communication delay not only increases the

application computation latency, but also can reduce the application computation throughput.

3.4 Implementation and results

The communication circuitry is implemented using the topology shown in Fig. 3.3, the

static routing with two ports (buffers) for the processing core as shown in Fig. 3.6 (b) and double

links at each edge as shown in Fig. 3.11 (d). and the extended source synchronous strategy shown

in Fig. 3.19 (c). Each processor with the communication circuitry occupies 0.71 mm2 in 0.18µm

3.4. IMPLEMENTATION AND RESULTS 71

32 64 128
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Buffer size (words)

R
el

at
iv

e
ar

ea

Static nearest neigh. archi.
Propos. static double−link archi.
Dynamic single−link archi.

Figure 3.20: The relative communication circuit area of several interconnection architectures. The
static single-link nearest neighbor and proposed static double-link asymmetric architecture contain
two ports (buffers) for the processing core, and dynamic routing architecture contains four buffers
for the router’s input ports with a single link at each edge.

CMOS technology, and the critical path delay is 2.24 ns.

The implemented example is compared to a traditional dynamically configurable inter-

connect architecture with symmetric buffer allocation and single-link between each neighboring

processor pair; we use 20 clock cycles as the communication latency [116], and we also assume

the destination processor receives one data and its address separately in two clock cycles (sending

address together along with the data and using hardware can receive and recognize the source in one

clock cycle but it requires extra hardware).

3.4.1 Area

Different communication architectures, including the static nearest neighbor interconnect,

the proposed double-link routing architecture, and the traditional dynamic routing architecture are

modeled in 0.18µm CMOS technology. Fig. 3.20 compares the communication circuitry area (in-

cluding the buffers and the control logic) with different sizes of each buffer, and the area of nearest

neighbor connect architecture is scaled to 1. When the buffer is not large, the control logic plays an

important role in the area. For example, when the buffer size is 32 words, the double-link architec-

ture is about 1.5 times larger than the nearest neighbor architecture. Along with the increased buffer

72 CHAPTER 3. AN LOW-AREA MULTI-LINK INTERCONNECT ARCHITECTURE

2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

The size of array (n x n)

La
te

nc
y

(c
lo

ck
 c

yc
le

s)

Static nearest neigh. archi.
Propos. static double−link archi.
Dynamic single−link archi.

Figure 3.21: Comparing the communication latency of the static nearest neighor architecture, dy-
namic single-link routing architecture , and the proposed static double-link architecture, by varing
the size of the array and using one-to-one and one-to-all communication patterns

size, the area of the communication circuitry will be dominated by the buffer size. When the buffer

is 128 words, the proposed double-link architecture has approximately 25% larger area compared

to the nearest neighbor architecture, while the traditional dynamic routing architecture is more than

2 times larger.

3.4.2 Performance comparison

Performance of the basic communication patterns

Fig. 3.21, 3.22, and 3.23 shows the latency of the basic communication patterns mapped

onto different architectures along with different array sizes. The one-to-one communication has the

same result as the one-to-all broadcast.

The proposed double-link routing architecture has significant lower communication la-

tency compared to the nearest neighbor architecture. The latency of dynamic single-link routing

architecture is similar to the static double-link architecture; it is a little worse in the one-to-one

communication and all-to-one patterns; it is a little better in the all-to-all communication since

where the flexibility of dynamic routing overcomes its disadvantages.

3.4. IMPLEMENTATION AND RESULTS 73

2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

The size of array (n x n)

La
te

nc
y

(c
lo

ck
 c

yc
le

s)

Static nearest neigh. archi.
Propos. static double−link archi.
Dynamic single−link archi.

Figure 3.22: Comparing the communication latency of the static nearest neighor architecture, dy-
namic single-link routing architecture , and the proposed static double-link architecture, by varing
the size of the array and using all-to-one communication pattern

2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

The size of array (n x n)

La
te

nc
y

(c
lo

ck
 c

yc
le

s)

Static nearest neigh. archi.
Propos. static double−link archi.
Dynamic single−link archi.

Figure 3.23: Comparing the communication latency of the static nearest neighor architecture, dy-
namic single-link routing architecture , and the proposed static double-link architecture, by varing
the size of the array and using all-to-all communication pattern

74 CHAPTER 3. AN LOW-AREA MULTI-LINK INTERCONNECT ARCHITECTURE

2 3 4 5 6 7 8 9
20

40

60

80

100

120

140

160

180

200

220

Local area (n x n)

La
te

nc
y

(c
lo

ck
 c

yc
le

s)

Nearest neighb
Props. archi
NoC

Figure 3.24: Comparing the communication latency of of static nearest neighbor architecture, dy-
namic single-link routing architecture, and the proposed static double-link architecture by mapping
various application models to a 10× 10 array. The application models are obtained by uniformly
combining four basic communication patterns and assume 80% of the communication is within
local area, and the meaning oflocal areavaries from 2× 2 to 9× 9 array.

Combining the basic patterns

Although the communications of real applications have a wide range of variation, they can

normally be modeled using some combination of basic communication patterns. This subsection

investigates one application model mapped onto a 10× 10 array.

The modeled communication is organized uniformly by the four basic communication

patterns and assumes 80% of the communication is within the local area which is the value nor-

mally used in literatures [118]; in order to generally cover the localization parameters of different

communication patterns, eight data points present the situations where the definition oflocal area

varies from 2× 2 to 9× 9 arrays. Fig. 3.24 shows the results of latency.

Not surprisingly, static nearest neighbor architecture performs worst and the proposed

static double-link routing architecture is more than 2 times faster than it, and dynamic single-link

routing architecture is a little worse than the static double-link architecture.

3.5. SUMMARY 75

3.5 Summary

An asymmetric inter-processor communication architecture which uses more buffer re-

sources for nearest neighbor connections and fewer buffer resources for long distance interconnect

is proposed; the architecture also provides the ability to support long distance GALS communication

by extending the source synchronous method. Several design options are explored. Static routing is

emphasized due to its low cost and low communication latency. Inserting two ports (buffers) for the

processing core and using two or three links at each edge can achieve good area/performance trade

offs for chip multiprocessors organized by simple single issue processors; and the optimal number

of links is expected to increase if the chip is organized by larger processors.

76 CHAPTER 3. AN LOW-AREA MULTI-LINK INTERCONNECT ARCHITECTURE

77

Chapter 4

Physical Implementation of the GALS

Multi-core Systems

Tile-based multi-core systems with GALS clocking styles provide great benefits, such as

high performance, energy efficiency and scalability, as discussed in Section 2.1.4, but they impose

some design challenges during the physical implementation regarding the robust handling of timing

issues and limits in taking full advantage of system scalability.

GALS multi-core systems introduce challenges in handling the timing of signals due to

the multiple clock domains. The timing issues include signals within a single processor, signals

between processors, and signals between chips. A dual clock FIFO can reliably handle the asyn-

chronous interface within a single processor and is already described in Section 2.2.2, and this

chapter will discuss the inter-processor and inter-chip timing issues in Section 4.1. Section 4.2 in-

vestigates how to take full advantage of system scalability, mainly concerning some unavoidable

global-style signals such as the configuration signals, power distribution and processor IO pins. Fi-

nally, Section 4.3 discusses some other issues of AsAP processor implementation such as design

flow, high speed implementation, and testing etc.

4.1 Timing issues of GALS multi-core systems

Figure 4.1 contains an overview of important timing issues in GALS chip multiprocessors

using coarse grain source synchronous flow control. All signals in such interfaces can be classified

78 CHAPTER 4. PHYSICAL IMPLEMENTATION OF THE GALS MULTI-CORE SYSTEMS

A B
clock

FIFO

Proc. BProc. A

clk tree

B A

signals
FIFO

Proc. A’s clk domain

Clk A

A B
signals

Proc. B’s

clk domain

Clk B
B C
clock

B C
signals

C B

signals

Figure 4.1: An overview of timing issues in GALS chip multiprocessors; each clock domain covers
multiple processors and each processor contains multiple clock domains

into three categories. Here is an example with processor A sending data to processor B:

• A → B clock: the clock synchronizes thesource synchronoussignals traveling from A to B.

This scheme requires an extra clock tree to be inserted at processor B which brings additional

timing concerns for inter-processor communication.

• A → B signals: these include the data to be sent, and can also include other signals such as a

“valid” signal.

• B → A signals: processor B can send information back to the source; for example, a flow

control signal such as “ready” or “hold” falls into this category.

4.1.1 Inter-processor timing issues

Figure 4.2 shows three strategies to send signals from one processor to another. Fig. 4.2 (a)

is an aggressive method where the clock is sentonlywhen there is valid data (assuming the clock is

sent out one cycle later than the data although they can also be in the same cycle). This method has

high energy efficiency, but imposes a strict timing requirement between the delay of data (Ddata),

the delay of clock (Dclk) and the clock period (T), as shown in Eq. 4.1.

thold < Ddata −Dclk < T − tsetup − tclk to Q (4.1)

Fig. 4.2 (c) is a conservative method where the clock is always active. With this method, the delay

of data does not have to satisfy Eq. 4.1, as long asdata andvalid reach processor B within the

4.1. TIMING ISSUES OF GALS MULTI-CORE SYSTEMS 79

send data

send clk

rec. data

rec. clk
Dclk

(a)

Ddata

Dclk

(b)

send valid

rec. valid

Ddata

Dclk

(c)

Ddata

Figure 4.2: Three methods for inter-processor communication: (a) sends clock only when there is
valid data; (b) sends clock one cycle earlier and one cycle later than the valid data; (c) always sends
clock

1st method 2nd method 3rd method
0

0.5

1

R
el

at
iv

e
cl

k
ac

tiv
e

tim
e

1st method 2nd method 3rd method
0

0.5

1

R
el

at
iv

e
co

m
m

. p
ow

er

Figure 4.3: Relative clock active time and communication power consumption for the three inter-
processor communication methods described in Fig. 4.2 for a 2-D 8×8 DCT application

same clock period, which results in a system similar to wave pipelined systems [119] with a slightly

modified set of timing equations and of course additional constraints on minimum path times. A

compromise method as shown in Fig. 4.2 (b) is proposed, where the clock starts one cycle before

the data and ends one cycle later than the data. This scheme has high energy efficiency similar to

the aggressive method since it keeps a relatively low clock active time. Figure 4.3 compares the

communication power of these three methods for a 2-dimensional 8×8 DCT application using four

processors, assuming the power is zero when there is no active clock and the power is reduced by

50% when there is no inter-processor data transferring but the clock is running. The second scheme

has a much more relaxed timing requirement compared to the first method, as shown in Eq. 4.2.

80 CHAPTER 4. PHYSICAL IMPLEMENTATION OF THE GALS MULTI-CORE SYSTEMS

valid

clk

data

valid_out

clk_out

data_out

Figure 4.4: Circuit for the Fig. 4.2 (b) inter-processor communication method

clk_upstrm

write signal
(data,valid)

FIFO

SRAM

Proc. BProc. A

clk tree

DLY DLY

Ddata_A Ddata_w Ddata_B

Dclk_A Dclk_w Dclk_B

clk_dnstrm

out in

FIFO_full_in FIFO_full_out

Output

logic

input

logic

Figure 4.5: Configurable logic at the inter-processor boundary where one clock domain covers two
processors; GALS style brings an additional clock tree at the consumer processor

Figure 4.4 shows a circuit to realize this second scheme.

−T < Ddata −Dclk < 2T (4.2)

Figure 4.5 shows a generic implementation for inter-processor communication where pro-

cessor A sends signals (includingdata, valid,andclock) to processor B. Along the path ofdata

there are delays in processor A (Ddata A), at the inter-processor wiring (Ddata w), and in processor

B (Ddata B). The path ofclk has a similar makeup. Not considering the clock tree buffer, the data

path and clock path have roughly the same logic and similar delays. To compensate for the clock

tree delay and to meet the timing requirements, configurableDLY logic is inserted in both processor

A and B as shown in Fig. 4.5. Equation 4.1 can then be simplified as follows:

thold < Dinsert −Dclk tree < T − tsetup − tclk to Q (4.3)

HereDinsert andDclk tree are the delays of inserted logic and clock tree respectively. Normally

4.1. TIMING ISSUES OF GALS MULTI-CORE SYSTEMS 81

thethold, tsetup, andtclk to Q can be neglected since they are generally small compared to the clock

period. Equation 4.4 lists three delay possibilities for the inserted delay logic, and the optimal delay

for each inserted gate is shown in Eq. 4.5 and Eq. 4.6.

Dinsert = 2Dmux + {0, DDLY , 2DDLY } (4.4)

Dmux = Dclk tree/2 (4.5)

DDLY = T/2 (4.6)

As a typical example, if the clock tree delay is 6 Fanout-of-4 (FO4) delays and the clock period

is 20 FO4, then the optimal delays for mux and DLY gates are:Dmux = 3 FO4, andDDLY =

10 FO4.

The third type of signal consists of signals that flow in a direction opposite to the clock

signal. As illustrated in Fig. 4.5, a common example of such a signal is theFIFO full signal. Such

signals do not need to match delays with others so they are relatively easy to handle, but they can

not be too slow so they arrive in the correct clock period. The timing constraints discussed below

handle this requirement.

Previously discussed circuits match the delay according to logic delays, but the real circuit

delay is also highly dependent on wiring and gate loads. Specific input delay and output delay

constraints clearly quantify circuit timing requirements. The value of input delays and output delays

should follow Eqs. 4.7 and 4.8 for the architecture shown in Fig. 4.5.

output delay = T −Ddata A (4.7)

input delay = T −Ddata B (4.8)

If T = 20 FO4, DDLY = 10 FO4, Dmux = 3 FO4, and output logic at processor A is 2 FO4,

thenDdata A = 15 FO4 andoutputdelayshould be 5 FO4.Input delaycan be calculated similarly.

Table 4.1 lists delays for one example case study.

4.1.2 Inter-chip timing issues

Similarly to the case of inter-processor communication,inter-chipcommunication presents

timing challenges as illustrated in Fig. 4.6. Besides the delay at the producer processor (DA1) and

consumer processor (DB1), there is also delay at the chip A boundary (DA2), chip B boundary

82 CHAPTER 4. PHYSICAL IMPLEMENTATION OF THE GALS MULTI-CORE SYSTEMS

Table 4.1: Typical timing constraint values for processor input and output delays

Constraint Signals Reference clk Value
input delay data in clk dnstrm 5 FO4
input delay valid in clk dnstrm 5 FO4
input delay FIFO full in clk upstrm 10 FO4
output delay data out clk upstrm 5 FO4
output delay valid out clk upstrm 5 FO4
output delay FIFO full out clk dnstrm 10 FO4

DA2 D1 2 DB2

data

clk

Chip 1 Chip 2

DA1 DB1

Figure 4.6: Inter-chip communication

(DB2), and the inter-chip delays including pads, package, and printed circuit board delays (D1→2).

The three communication schemes shown in Fig. 4.2 also apply to inter-chip communication and the

configurable delay logic embedded into each processor shown in Fig. 4.5 is still valuable to adjust

the data delay for inter-chip communication. Due to the more complex environment with inter-chip

communication, Fig. 4.2 (b) and (c) methods are preferred. Synthesis timing constraints for the chip

IO signals can also help the inter-chip timing issue.

4.2 Scalability issues of GALS chip multiprocessors

Tile-based architectures and GALS clocking styles improve the scalability of systems

and allow adding more processors easily into the chip. But some additional issues must still be

considered to take full advantage of its potential scalability. The key issue is that some signals

unavoidably have someglobal features and have to be considered carefully. Correspondingly, the

4.2. SCALABILITY ISSUES OF GALS CHIP MULTIPROCESSORS 83

global signals
slow clock

Figure 4.7: Global signals controlled by a low-speed clock are buffered with inserted buffers and
route through processors with internal wiring

key idea is to try to avoid or isolate those signals if possible, so that multiple processors can be

directly tiled without further changes.

4.2.1 Clocking and buffering of global signals

The GALS style avoids making the most important signal a global one: the clock. Signals

discussed in previous sections are alllocal signals which run within one processor or travel at the

boundary of two processors, so they can be controlled by a full speed clock. But it is likely that

there are some unavoidable global signals such as configuration (used to configure the connections

between processors, or to configure the local oscillator frequency, etc.) and test signals. These

global signals can be pipelined into multiple segments [120] and still run at full speed, or can

use totally asynchronous communication to avoid clock constraints [121]—both of these methods

significantly increase design difficulty. There is a fact that manynecessarily globalsignals are

related to functions that are either seldom used in normal operation, or are typically used at powerup

time. Therefore, making them run at slow speed in many cases does not strongly affect system

performance. A dedicated low-speed clock can then be used to control these less-critical global

signals. These signals can be fed through each processor with internal wiring and buffering, to

increase their driving strength and to enable them to be directly connected to an adjacent processor

without any intermediary circuits at all. Figure 4.7 illustrates this scheme.

84 CHAPTER 4. PHYSICAL IMPLEMENTATION OF THE GALS MULTI-CORE SYSTEMS

OSC
power ring

OSC
power grid

OSC grid not
connected to main grid

Metal5

Metal6Metal6Metal6Metal6

Metal1

Metal 2

Tile

boundary

Core

boundary

Metal 2 Metal 2 Metal 2

Figure 4.8: An example power distribution scheme with power wires reaching beyond the processor
core to allow it to directly abut other processors

4.2.2 Power distribution

Power distribution can also be viewed as a global signal and deserves special considera-

tion. In order to enable processors to directly abut each other without any further modifications, a

complete power grid for each single processor should be designed. The width of metal power wires

must be carefully considered to meet the voltage supply requirement, according to Eq. 4.9, where

V2 − Vorig is the allowable voltage drop,I is the estimated current for the entire chip (not a single

processor) which can be obtained from the Encounter,L andw are the length and width of the metal

wire, andρ is the metal’s resistivity per unit length and width.

I × ρL

w
= V2 − Vorig (4.9)

Figure 4.8 shows a complete power distribution example for a single processor using 6

metal layers, which is common in 0.18µm technology. Metal 5 and 6 are used for global power

distribution with wide wires, and Metal 1 and 2 are used to distribute power to each gate with

narrower wires. VIAs are placed between Metal 6 and 5, Metal 5 and 2, and Metal 2 and 1. Power

grids reach out of the core to the tile boundary and enable processors to directly abut others at the

chip level.

4.3. A DESIGN EXAMPLE — IMPLEMENTATION OF ASAP 85

Proc B

Proc A

Figure 4.9: Pins connections between two processors vertically; nearly directly abutting each other
enables very short wires

A related issue with processor power distribution is the power plan for the local oscillator,

if one exists. To get clean clock power, the local oscillator should be placed and routed separately

and then inserted into the processor as a hard macro. The left part of Fig. 4.8 shows an example

implementation for the oscillator power grid. The oscillator should be placed away from the noisiest

processor circuits to reduce clock jitter—this is likely at the corner of the processor. A placement

blockage (block halo) should be added around the oscillator which blocks any logic from being

placed at this location, to simplify the routing of oscillator signals and also to reduce effects from

other logic. Finally, the oscillator in this example has a separated power ring and power grid which

are not connected to the main processor power grid to get a clean power supply.

4.2.3 Position of IO pins

The position of IO pins for each processor is also important for scalability since they must

connect with other processors. Figure 4.9 and 4.10 show example connections of two processors in

vertical and horizontal directions, where IO pins directly abut each other with very short connecting

wires.

4.3 A design example — implementation of AsAP

The single-chip tile-based 6× 6 GALS AsAP multiprocessor is designed and imple-

mented in a 0.18µm CMOS technology [36]. Data enters the array through the top left processor

and exits through one of the right column processors, selected by a mux. Input and output circuits

are available on each edge of all periphery processors but most are unconnected in this test chip due

to package I/O limitations.

86 CHAPTER 4. PHYSICAL IMPLEMENTATION OF THE GALS MULTI-CORE SYSTEMS

Figure 4.10: Pins connections between two processors horizontally

The chip utilizes the Artisan standard cell library and was auto placed and routed. Fig-

ure 4.11 shows the die micrograph. The chip is fully functional at a clock rate of 520–540 MHz

under typical conditions at 1.8 V, and achieves a peak performance of 19 GOPS with a power con-

sumption of approximately 3.4 W. The size of each processor is 0.66 mm2. Each processor contains

230,000 transistors, and dedicates approximately 8% of its area to communication circuits, and less

than 1% to each local clock oscillator.

4.3.1 Physical design flow

Since each processor including its clock tree can be exactly the same in a GALS tile-

based chip multiprocessor, it provides near-perfect scalability and greatly simplifies the physical

design flow. One processor design can be easily duplicated to generate an array processor. Fig. 4.12

shows the hierarchical physical design flow. A local oscillator is used to provide the clock for each

processor, and it is designed separately for more robust operation. After a single processor is auto

placed and routed, processors are arrayed across the chip, and the small amount of global circuitry

is auto placed and routed around the array. The right column of Fig. 4.12 shows the physical design

flow for a single processor, and a similar flow also applies for the oscillator and the entire chip.

4.3. A DESIGN EXAMPLE — IMPLEMENTATION OF ASAP 87

Transistors:
1 Proc 230,000
Chip 8.5 million

Max speed: 530 MHz @ 1.8 V
Area:

1 Proc 0.66 mm²
Chip 32.1 mm²

Power (1 Proc @ 1.8V, 530 MHz):
Typical application 36 mW
Typical 100% active 94 mW
Worst case 144 mW

Power (1 Proc @ 0.9V, 116 MHz):
Typical application 2.4 mW

Single
Processor

OSC FIFOs

DMemIMem

810 µm
5.65 mm

810
µm

5.68
mm

Figure 4.11: Chip micrograph of a 6×6 GALS array processor

The chip is fully synthesized from verilog, except the clock oscillator which was designed

by hand from standard cells. The Imem, Dmem, and 2 FIFO memories are built using memory

macro blocks. Verilog was used as the front end design language and was synthesized using Synop-

sysDesign Compiler. The synthesized netlist was then imported into the automatic placement and

routing tool, CadenceEncounter, to do floorplanning, placement, clock tree insertion, routing, and

in-place optimization to change the size of gates and optimize logic to alleviate wire delay effects.

The result from the place and routing tool was imported into another custom layout tool (icfb) to do

final layout editing such as pad bounding, IO pin labeling, and layout layer checking.

Intensive verification methods were used throughout the design process as shown in Fig. 4.13

including: gate level dynamic simulation usingNC-Verilog, static timing analysis usingPrime-

time, DRC/LVS usingCalibre, spice level simulation usingNanosim, and formal verification using

Tuxedo. The entire back end design flow took approximately 4 person-months including setup of

tools and standard cell libraries.

The final 6×6 chip design was extended from a 3×3 design a few days before tapeout

from verilog to GDS II in a total of 10 hours—clearly demonstrating the excellent scalability of this

architecture and approach.

88 CHAPTER 4. PHYSICAL IMPLEMENTATION OF THE GALS MULTI-CORE SYSTEMS

OSC

HDL
(Verilog or VHDL)

Floorplan

Placement

In-place

optimization

Route

Entire chip

Single

processor

Final Layout

(ready for fabrication)

Clock tree

insertion

Synthesis

Layout edit

Figure 4.12: Hierarchical physical design flow of a tile-based GALS chip multiprocessor, with
details specific to a synthesized standard cell design. A single processor tile can be replicated
across the chip.

4.3.2 Implementation for high speed

Several methods were used to speed up the processor clock frequency during the syn-

thesis. The MAC unit was synthesized separately by Module-compiler; the synthesis script was

optimized for high speed such as setting high constraint clock period and using high effort compile;

the RTL code of some function modules were rewritten using parallel architecture to replace serial

style. Using these methods, the reported clock period from synthesis was reduced from 2.49 ns to

1.82 ns. The effect of these methods is shown in the upper part of Fig. 4.14. The critical path comes

from ALU and its feedback path.

Along with the more advanced technology, the wire delay is becoming an important issue.

Placement and routing has a large impact on the system speed. Timing driven placement and routing

4.3. A DESIGN EXAMPLE — IMPLEMENTATION OF ASAP 89

Spice level Simulation

Spice netlist

HDL

(Verilog or VHDL)

P & R

Layout edit

Gate level dynamic &

static timing analysis

Final layout

(ready for fabrication)

Formal Verification

Final
verilog

timing

DRC, LVS

Synthesis

Synthesized
verilog

Design procedure Verification procedure

Figure 4.13: A standard cell based back end design flow emphasizing the verification

was used in our flow. In-placement optimization was used, which enlarges some gates to compensate

the wire delay introduced during the place and routing. Careful metal fill parameters were chosen to

meet the metal density requirement with little speed effect. The active spacing (the space between

signal metal and filler metal) was constrained to bigger than 1 um and the spacing between metal

fills was constrained to bigger than 0.6 um. Using these methods, the reported clock period after

placement and routing was reduced from 4.26 ns to 2.22 ns. The effect of these methods is shown

in the lower part of Fig. 4.14.

The clock tree has to be carefully concerned for the correct function and high speed,

especially when containing multiple clock domains as in our case. There are four clock trees in

each single processor: the main clock generated by local oscillator, two FIFO write clocks, and

the configuration clock. The reported clock skew for these four are 44 ns, 10 ns, 20 ns and 39 ns

respectively, and the transition rise time at the buffer and end registers is less than 120 ns.

4.3.3 Testing

For testing purposes, 27 critical signals from each of the 36 processors, totaling 972 sig-

nals in the chip, can be selectively routed to eight chip pads for real-time viewing of these key signals

90 CHAPTER 4. PHYSICAL IMPLEMENTATION OF THE GALS MULTI-CORE SYSTEMS

original optimize MAC optimiz script parallelizing
1

1.5

2

2.5

M
ax

. d
el

ay
 (

ns
)

original timing opt. P&R inplace opt. metal filler
1

2

3

4

5
M

ax
. d

el
ay

 (
ns

)

Figure 4.14: Speed-up methods during synthesis (upper figure) and place and routing (bottom
figure)

which include: clocks, stall signals, FIFO signals, PC, etc. Figure 4.15 shows the test environment

for the AsAP prototype, built by group member Jeremy Webb, including a printed circuit board

hosting an AsAP processor and a supporting FPGA board to interface between AsAP’s configura-

tion and data ports and a host computer. There is one SPI style serial port designed in the AsAP

processor which receives external information and commands for configuration and programs.

4.4 Summary

This chapter discusses implementation techniques for tile-based GALS chip multiproces-

sors. This architecture improves system scalability and simplifies the physical design flow. At the

same time, it imposes some design challenges. These include several timing issues related to inter-

processor communication, inter-chip communication, and asynchronous boundaries within single

processors. By carefully addressing these timing issues, it is possible to take full advantage of its

scalability, and the processor architecture makes it possible to design a high performance system

with a small design group within a short time period.

4.4. SUMMARY 91

Figure 4.15: AsAP board and supporting FPGA-based test board

92 CHAPTER 4. PHYSICAL IMPLEMENTATION OF THE GALS MULTI-CORE SYSTEMS

93

Chapter 5

Results and Evaluation of the Multi-core

System

This chapter presents and evaluates the measurement results of the fabricated chip includ-

ing performance, area and power consumption. In addition, a thorough evaluation of its perfor-

mance and energy efficiency for several DSP applications by comparing to some related processors

is presented.

5.1 Area, speed, and power

Each processor occupies 0.66 mm2 and the 6×6 array occupies 32.1 mm2 including pads.

The chip operates at 520–540 MHz under typical conditions at 1.8 V, and 116 MHz at 0.9 V. Since

AsAP processors dissipate zero active power when idle for even brief periods of time (it is common

in complex applications), and because different instructions dissipate varying amounts of power, it is

useful to consider several power measurements. The average power consumption for each processor

is 36 mW when processors are executing applications such as a JPEG encoder or an 802.11a/g

baseband transmitter. Processors that are 100% active and executing a “typical application” mix of

instructions dissipate 94 mW each. The absolute worst case power per processor is 144 mW and

occurs when using the MAC instruction with all memories active every cycle.

94 CHAPTER 5. RESULTS AND EVALUATION OF THE MULTI-CORE SYSTEM

Table 5.1: Area breakdown in a single processor

Area (µm2) Area percentage
Core and others 433,300 66.0 %
Data memory 115,000 17.5 %
Instruction mem. 56,500 8.6 %
Two FIFOs 48,000 7.4 %
Oscillator 3,300 0.5 %
Single processor 656,100 100.0 %

0%

20%

40%

60%

80%

100%

A
re

a
 b

re
a
k
d
o
w

n

comm mem core

P
ro

c
e
s
s
o
r

a
re

a

(m
m

²)

20x

0.1

1

10

100

TI RAW Fujitsu BlGe/ AsAP

C64x 4-VLIW L

TI CELL/ Fujitsu RAW ARM AsAP

C64x SPE 4-VLIW

(a) (b)

Figure 5.1: Area evaluation of AsAP processor and several other processors; with technology scaled
to 0.13µm

5.1.1 Small area and high area efficiency

Due to its small memories and simple communication scheme, each AsAP processor de-

votes most of its area to the execution core and thereby achieves a high area efficiency.

Table 5.1 shows the area breakdown for each AsAP processor. Each one dedicates 8%

to communication circuits, 26% to memory circuits, and a favorable 66% to the core. These data

compare well to other processors [7, 35, 122, 25, 23, 123], as shown in Fig. 5.1(a), since the other

processors use 20% to 45% of their area for the core. Each AsAP processor occupies 0.66 mm2 and

the 6×6 array occupies 32.1 mm2 including pads, global power rings, and a small amount of chip-

level circuits. Figure 5.1(b) compares the area of several processors scaled to 0.13µm, assuming

area reduces as the square of the technology’s minimum feature size. The AsAP processor is 20 to

210 times smaller than these other processors.

The processor area, or say the level of granularity of each processing element, is one of

the most important variables in chip multiprocessor architecture. A wide range of granularities are

possible, as shown in Fig. 5.2 [36, 35, 23, 13] which has similar information as Fig. 5.1(b) but shows

5.1. AREA, SPEED, AND POWER 95

AsAP RAW TI C64xCELL

/SPE

Itanium

Figure 5.2: Approximate scale die micrographs of the multicore processors AsAP, RAW, and CELL
SPE, and the TI C64x processor scaled to the same technology.

real layouts. The coarse grain 2-core Itanium [13] contains large wide-issue processors each close

to 300 mm2 in 90 nm technology, while the fine grain AsAP contains single-issue processors each

less than 1 mm2 in 0.18µm technology. Size differences of tens and hundreds make strong impacts

on system behavior.

Most chip multiprocessors target a broad range of applications, and each processor in

such systems normally contains powerful computational resources—such as large memories, wide

issue processors [13], and powerful inter-processor communication [35]—to support widely varying

requirements. Extra computational resources can enable systems to provide high performance to a

diverse set of applications, but they reduce energy efficiency for tasks that can not make use of those

specialized resources. Most DSP applications (targets of the AsAP) are made up of computationally

intensive tasks with very small instruction and data kernels, which makes it possible to use extremely

simple computational resources—small memory, simple single issue datapath, and nearest neighbor

communication—to achieve high energy efficiency while maintaining high performance.

96 CHAPTER 5. RESULTS AND EVALUATION OF THE MULTI-CORE SYSTEM

1 1.2 1.4 1.6 1.8 2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Supply voltage (V) 0.1 V/Div

 P
er

io
d

(n
s)

 0
.2

5
ns

/D
iv

passed
failed

Figure 5.3: Processor shmoo: voltage vs. speed

5.1.2 High speed

Small memories and simple processing elements enable high clock frequencies. The fab-

ricated processors run at 520–540 MHz at a supply voltage of 1.8 volts. The shmoo plot of Fig. 5.3

shows processor operation as a function of supply voltage and clock speed. The AsAP processor

operates at frequencies among the highest possible for a digital system designed using a particular

design approach and fabrication technology. The clock frequency information listed in Table 5.3

supports this assertion.

5.1.3 High peak performance and low average power consumption

High clock speed and small areas result in a high peak performance with a fixed chip size;

also its average power consumption is low due to its simple architecture. Figure 5.4 compares the

peak performance density and energy efficiency of several processors [23, 122, 123, 35, 7]. All

data are scaled to 0.13µm technology. Energy efficiency is defined as the power divided by the

clock frequency with a scale factor to compensate for multiple issue architectures. These processors

have large differences that are not taken into account by these simple metrics—such as word width

and workload—so this comparison is only approximate. The AsAP processor has a high peak

5.1. AREA, SPEED, AND POWER 97

0.01

0.1

1

10 100 1000 10000

AsAP

CELL/SPE

Fujitsu-4VLIW

ARM

RAW

TI C64x

P
o
w

e
r

/
C

lo
c
k
 f
re

q
u
e
n
c
y

/
S

c
a

le
 *

(m

W
/M

H
z
)

Peak performance density (MOPS/mm²)

* Assume 2 ops/cycle for

CELL/SPE and 3.3 ops/cycle

for TI C64x

Higher perform
ance

per area, and

Lower estim
ated

energy

Figure 5.4: Power and performance evaluation of AsAP processor and several other processors;
with technology scaled to 0.13µm

Table 5.2: Estimates for a 13 mm× 13 mm AsAP array implemented in various semiconductor
technologies

CMOS Processor Num Procs Clock Peak System
Tech Size per Chip Freq Processing
(nm) (mm2) (GHz) (Tera-Op)
180 0.66 256 0.53 0.13
130 0.34 500 0.73 0.36
90 0.16 1050 1.06 1.11
45 0.04 4200 2.12 8.90

performance density that is 7 to 30 times higher than the others. Also, the AsAP processor has a

low power per operation that is 5 to 15 times lower than the others.

With advancing semiconductor fabrication technologies, the number of processors will

increase with the square of the scaling factor and clock rates will increase approximately linearly—

resulting in a total peak system throughput that increases with thecubeof the technology scaling

factor. Table 5.2 summarizes the area and performance estimates for several technologies with the

corresponding peak performance. It shows that in 90 nm technology, an AsAP array can achieve

1 Tera-op/sec with a 13 mm×13 mm chip, but dissipates only 10 W typical application power in ad-

dition to leakage. Real applications would unlikely be able to sustain this peak rate, but tremendous

throughputs are nonetheless expected.

98 CHAPTER 5. RESULTS AND EVALUATION OF THE MULTI-CORE SYSTEM

AsAP Niagara BlueG/L RAW
0

0.1

0.2

0.3

0.4

A
re

a
pe

rc
en

ta
ge

(a)

AsAP Niagara BlueG/L RAW
10

−2

10
−1

10
0

10
1

10
2

A
bs

ol
ut

e
ar

ea
 (

m
m

2)

(b)

AsAP Niagara BlueG/L RAW
0

0.1

0.2

0.3

0.4

P
ow

er
 p

er
ce

nt
ag

e

(c)

AsAP Niagara BlueG/L RAW
10

−3

10
−2

10
−1

10
0

10
1

A
bs

ol
ut

e
en

er
gy

 (
m

W
/M

H
z)

(d)

Figure 5.5: Comparison of area and power consumption for the communication circuit of four chip
multiprocessors: (a) absolute comm. area; (b) area percentage of comm. circuit to processor;
(c) absolute comm. circuit power consumption; and (d) power consumption percentage of comm.
circuit to processor. Values are scaled to 0.13µm technology.

5.1.4 Result of communication circuitry

Nearest neighbor communication simplifies the inter-processor circuitry and two dual-

clock FIFOs present the major cost in this case, which results in high area and energy efficiencies.

Figure 5.5 compares AsAP to three other chip multiprocessors [26, 25, 124]. The communication

circuitry in the AsAP processor occupies less than 0.08 mm2 in 0.18µm CMOS, which is approx-

imately 8% of the processor area, and is more than 100 times smaller than the others. Under the

worst case conditions when maximizing possible communication, the communication circuity in the

AsAP processor consumes around 4 mW at 470 MHz, which is about 4% of the processor power

and 200 times lower than the others.

5.2 High performance and low power consumption for DSP applica-

tions

Table 5.3 lists area, performance, and power data for a number of general-purpose (MIPS

VR5000 [53, 125], NMIPS [126], ARM [127]), programmable DSP (TI C62x [53, 125], PipeRench [95]),

5.2. HIGH PERFORMANCE AND LOW POWER CONSUMPTION FOR DSP APPLICATIONS99

Table 5.3: Area, performance and power comparison of various processors for several key DSP
kernels and applications; all data are scaled to 0.18µm technology assuming a1/s2 reduction in
area, a factor ofs increase in speed, and a1/s2 reduction in power consumption. The area is the
chip core area when available.

Benchmark Processor Scaled Scaled Clock Scaled Scaled Scaled
area clock freq. cycles execution power energy

(mm2) (MHz) time (mW) (nJ)
(ns)

40-tap FIR AsAP (8 proc.) 5.28 530 10 19 803 15
MIPS VR5000 N/A 347 430 1239 2600 3222
TI C62x > 100 216 20 92 3200 296
PipeRench 55 120 2.87 24 1873 45

8x8 DCT AsAP (8 proc.) 5.28 530 254 479 402 192
NMIPS N/A 78 10772 137000 177 24400
CDCT6 N/A 178 3208 18000 104 1950
TI C62x > 100 216 208 963 3200 3078
DCT processor 1.72 555 64 115 520 60

Radix-2 AsAP (13 proc.) 8.6 530 845 1593 759 1209
complex MIPS VR5000 N/A 347 15480 44610 2600 115988
64-pt FFT TI C62x > 100 216 860 3981 3200 12739

FFT processor 3.5 (core) 27 23 852 43 37
JPEG AsAP (9 proc.) 5.94 300 1443 4810 224 1077
encoder ARM N/A 50 6372 127440 N/A N/A
(8x8 block) TI C62x > 100 216 840 3900 3200 12400

ARM+ASIC N/A 50 1023 20460 N/A N/A
802.11a/g AsAP (22 proc.) 14.52 300 4000 13200 407 5372
Trans. TI C62x > 100 216 27200 126800 3200 405760
(1 symbol) Atheros 4.8 (core) N/A N/A 4000 24.2 96.8

and ASIC (DCT processor [128], FFT processor [129], ARM+ASIC [127], Atheros [130]) proces-

sors for which their data could be obtained. The TI C62x was chosen as the reference programmable

DSP processor since it belongs to the TI VLIW C6000 series, which is TI’s highest performance

series. The enhanced TI C64x VLIW DSP processor [7] is also in the C6000 series and has an

architecture similar to the C62x, but it contains substantial circuit level optimizations that achieve

more than 4 times higher performance with less than half the power consumption compared to the

C62x. The C62x should be a fair comparison with the first version AsAP processor and thus a better

comparison at the architecture level, without tainting from circuit level optimizations.

In support of the assertion that the AsAP prototype has significant room for improvement,

there is a fact that measurements show approximately 2/3 of AsAP’s power is dissipated in its

clocking system. This is largely due to the fact that clock gating was not implemented in this first

100 CHAPTER 5. RESULTS AND EVALUATION OF THE MULTI-CORE SYSTEM

FIR 8x8 DCT FFT JPEG 802.11
10

−2

10
0

10
1

10
3

R
el

at
iv

e
ar

ea

DSP
AsAP
ASIC

Figure 5.6: Relative area for various implementations of several key DSP kernels and applications.
Source data are available in Table 5.3.

prototype. All circuits within each processor are clocked continuously—except during idle periods

when the oscillator is halted. The future addition of even coarse levels of clock gating (distinguished

from oscillator halting) are expected to significantly reduce power consumption further.

The area used by AsAP, shown in Table 5.3, is the combined area required for all proces-

sors including those used for communication. Data for the FIR, 8×8 DCT, and FFT are deduced

from measured results of larger applications. The performance of the JPEG encoder on the TI C62x

was estimated by using the relative performance of the C62x compared to MIPS processors [125],

and a reported similar ARM processor [127].

Figure 5.6, 5.7, and 5.8 compares the relative performance and power of an AsAP proces-

sor to other processors in Table 5.3. These comparisons make use of 8, 8, 13, 9, and 22 processors

respectively. A larger numbers of processors (through parallelization) would increase performance

further. AsAP achieves 26–286 times higher performance and 96–215 higher energy efficiency than

RISC processors (single issue MIPS and ARM). AsAP also achieves 0.8–9.6 times higher perfor-

mance and 10–75 times higher energy efficiency than high-end programmable DSPs (TI C62x). For

ASIC implementations, AsAP achieves performance within a factor of 2–4.2 and energy efficiency

within a factor of 3–50 with an area within a factor of 2.5–3. As a whole, RISC processors do not

compare well, but this is to be expected since they are not optimized for DSP applications.

Another source of AsAP’s high energy efficiency comes from its haltable clock, which

5.2. HIGH PERFORMANCE AND LOW POWER CONSUMPTION FOR DSP APPLICATIONS101

FIR 8x8 DCT FFT JPEG 802.11
10

−2

10
0

10
1

10
3

R
el

at
iv

e
ex

e.
 ti

m
e

RISC

 DSP

AsAP

ASIC

Figure 5.7: Relative execution time for various implementations of several key DSP kernels and
applications. Source data are available in Table 5.3.

FIR 8x8 DCT FFT JPEG 802.11
10

−2

10
0

10
1

10
3

R
el

at
iv

e
en

er
gy

RISC

 DSP

AsAP

ASIC

Figure 5.8: Relative energy for various implementations of several key DSP kernels and applica-
tions. Source data are available in Table 5.3.

102 CHAPTER 5. RESULTS AND EVALUATION OF THE MULTI-CORE SYSTEM

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

20

Number of processors

R
el

at
iv

e
sy

st
em

 th
ro

ug
hp

ut

8−tap FIR
8x8 DCT
Max in 100 data
64−pt comp. FFT

Figure 5.9: Increase in system throughput with increasing number of processors

is greatly aided by the GALS clocking style. Halting clocks while processors are momentarily

inactive results in power reductions of 53% for the JPEG core and 65% for the 802.11a/g baseband

transmitter.

Supply voltage scaling can be used to further improve power savings in very low power

applications. Processors dissipate an average of 2.4 mW at a clock rate of 116 MHz using a supply

voltage of 0.9 V while executing the described applications.

5.2.1 Performance scaling with the processor number

Figure 5.9 shows how throughput scales for four single tasks relative to the throughput

of a single processor. Programs were written in assembly by hand but are lightly optimized and

unscheduled. The memory requirement for the 8×8 DCT and 64-pt complex FFT exceeds the

available memory of a single AsAP processor, so data points using one processor are estimated

assuming one single processor had a large enough memory. An analysis of scaling results from a

16-tap FIR filter implemented in 85 different designs using from 1–52 processors shows a factor of

9 variations in throughput per processor over this space [131].

When all processors have a balanced computation load with little communication over-

head, the system throughput increases close to linearly with the number of processors, such as for

the task of finding the maximum value of a data set (Max in 100 datain Fig. 5.9). Clearly, ap-

5.3. SUMMARY 103

plications that are difficult to parallelize show far less scalability at some point. For example, the

performance of the 8×8 DCT increases well up to 10 processors where 4.4 times higher perfor-

mance is achieved, but after that, little improvement is seen and only 5.4 times higher performance

is seen using 24 processors. However, there is significant improvement in the FIR filter and FFT

after a certain number of processors is reached. The reason for this is because increasing the number

of processors in these applications avoids extra computation in some cases. For example, the FFT

avoids the calculation of data and coefficient addresses when each processor is dedicated to one

stage of the FFT computation. On average, 10 processor and 20 processor systems achieve more

than 5 times and 10 times higher performance compared to a single processor system, respectively.

5.3 Summary

The AsAP scalable programmable processor array is designed for DSP applications and

features a chip multiprocessor architecture, simple architecture with small memories, GALS clock-

ing style, and nearest neighbor communication. These and other features make AsAP well-suited

for future fabrication technologies, and for the computation of complex multi-task DSP workloads.

The AsAP processing array is implemented in 0.18µm CMOS, and runs at 520–540 MHz

at 1.8 V. It is highly energy efficient and each processor dissipates 36 mW while executing applica-

tions, and 94 mW when 100% active. It achieves a high performance density of 530 Mega-ops per

0.66 mm2.

104 CHAPTER 5. RESULTS AND EVALUATION OF THE MULTI-CORE SYSTEM

105

Chapter 6

System Feature Analysis: GALS vs.

Synchronous

The effect of GALS style to the system features is investigated in this chapter. GALS chip

multiprocessors under the right conditions like AsAP can hide much of the GALS performance

penalty and at the same time, take full advantage of its scalability and high energy efficiency. Along

with a thorough investigation of GALS effects on system performance, it is shown that such GALS

chip multiprocessors have small performance penalties compared to corresponding synchronous

systems. Furthermore, the small performance penalty can be completely eliminated by using suf-

ficiently large FIFOs for inter-processor communication and programming without multiple-loop

communication links. Scalability is enhanced due to the lack of a need for a global clock tree. In

additional, the potential energy savings from joint adaptive clock and supply voltage scaling is in-

creased in the common situation when workloads have highly unbalanced computational loads for

each processor, thereby increasing the the probability processors can be tuned to save power. This

work is distinguished from previous GALS multiprocessor evaluations [132] by not restricting the

analysis to systems with global communication schemes.

After investigating several key design choices which impact the behavior of GALS sys-

tems in Section 6.1, Section 6.2 introduces the simulation platform. Section 6.3 investigates the

effect of the asynchronous communication penalty to the performance of this GALS chip multipro-

cessor. Its scalability is shown in Section 6.4 compared to the corresponding synchronous system.

106 CHAPTER 6. SYSTEM FEATURE ANALYSIS: GALS VS. SYNCHRONOUS

Section 6.5 investigates the power efficiency of this GALS chip multiprocessor when using adaptive

clock/voltage scaling.

6.1 Exploring the key GALS chip multiprocessor design options

Several design options impact the behavior of GALS chip multiprocessors. This section

presents the three most fundamental parameters: the clock domain partition, asynchronous bound-

ary communication, and the inter-processor network.

Using dual-clock FIFO to reliably and efficiently move data across asynchronous clock

boundaries is a key component in GALS systems and is already discussed in Section 2.2.2. Fur-

thermore, as will be shown in Section 6.3.3, the relatively larger buffer has the benefit of hiding

some communication latency. Dual-clock FIFOs introduce extra communication delay compared to

a corresponding synchronous design, and exact values vary depending on many circuit, fabrication

technology, and operating condition variables.

6.1.1 Clock domain partition of GALS chip multiprocessors

The most basic issue in designing a GALS chip multiprocessor system is how to partition

the system into multiple clock domains. One method is to partition each processor into a single

clock domain. A more fine grain method is to partition each processor into several clock domains,

which is called aGALS uniprocessor. A more coarse grain method is to group several processors

together into a single clock domain. Figure 6.1 illustrates these three methods.

Partitioning each processor into several clock domains has been studied by several re-

searchers [48, 133]. Its key advantage is providing opportunities to use clock/voltage scaling not

only to individual processors, but also to modules inside each processor. Its primary disadvantage

is a relatively significant performance penalty and design overhead.

Upadhyay et al. [134] investigated coarse granularity clock domain partitioning for a

GALS chip multiprocessor. They compared power savings from the simplified clock tree versus

the power overhead from the local clock generator plus asynchronous communication for different

partition methods. Minimum power consumption of these function blocks can be achieved by par-

titioning the system according to their method, assuming no other power saving methods such as

6.1. EXPLORING THE KEY GALS CHIP MULTIPROCESSOR DESIGN OPTIONS 107

(b) each processor has one

clock domain
(c) each four processors

has one clock domain

(a) each processor has four

clock domains

Figure 6.1: Three example clock domain partitions, from a sub-processor fine grain partition to a
multi-processor coarse grain partition. The dotted lines show the clock domain partition boundaries.
Analysis and results are independent of whether modules are homogeneous or heterogeneous.

clock and voltage scaling are used.

Placing each processor in its own clock domains is a simple but efficient strategy. Al-

though power savings from simplified clock trees may not be able to compensate fully for overhead

due to the local clock generator and asynchronous communication interface, it makes each processor

highly uniform and simplifies the physical design. Furthermore, as shown in Section 6.5, it provides

the flexibility to adaptively scale the clock and voltage for each processor which can achieve more

than 40% power savings compared to a fully synchronous design.

6.1.2 Inter-processor network

The networking strategy between processors also strongly impacts the behavior of GALS

chip multiprocessors.

Smith [132] proposes and analyzes a GALS chip multiprocessor with multiple processors

and shared memory communicating through a global bus. This scheme provides very flexible com-

munication, but places heavy demands on the global bus; thus the system performance is highly

dependent on the level and intensity of the bus traffic. Furthermore, this architecture lacks scalabil-

ity since increased global bus traffic will likely significantly reduce system performance under high

traffic conditions or with a large number of processors.

A distributed network strategy such as “nearest neighbor” mesh distributes the intercon-

nections across the whole chip and the communication load for each inter-processor link can be

108 CHAPTER 6. SYSTEM FEATURE ANALYSIS: GALS VS. SYNCHRONOUS

IMEM

ALU

MAC

Control

DMEM

FIFO0

FIFO1

IMEM

ALU

MAC

Control

DMEM

osc

dualclk-

FIFO0

dualclk-

FIFO1

(a) 6x6 chip multiprocessor
(c) Single processor in the

synchronous system

(b) Single processor in the

GALS system

configconfig

Figure 6.2: Two chip multiprocessors: one using a fully synchronous style and the other using a
GALS style with per-processor clock domains

highly reduced. This architecture also provides perfect physical scalability due to its tile-based

architecture without global wires.

6.2 Simulation platform — the GALS and non-GALS chip multipro-

cessors

The AsAP platform is used to illustrate principles presented in this chapter. A special

feature of the design is that it provides a mode where all processors operate fully synchronously,

thereby permitting an excellent testbed for a GALS versus non-GALS comparison.

Figure 6.2(b) shows a single processor in the GALS system. In the dual-clk FIFO, two

synchronization registers are used in the experiments shown in section 6.3. The synchronous pro-

cessor is shown in Fig. 6.2(c), and local clock oscillators are unnecessary since a global clock is

provided to all processors. Processors’ FIFOs are fully synchronous for this system. The syn-

chronous chip multiprocessor is emulated using special configurations in the chip, and uses a global

clock signal without synchronization registers between asynchronous boundaries inside the inter-

processor FIFOs.

The extra circuitry for supporting the GALS clocking style—the local oscillator and logic

in the FIFOs related to dual-clock operation—occupies only about 1% of the processor area. Con-

sidering the fact the GALS system has a simplified clock tree, the area difference between a GALS

system and a synchronous-only system is negligible.

6.3. REDUCING AND ELIMINATING GALS PERFORMANCE PENALTIES 109

clk1

clk2

module

1

sync.

circuit

module

2

clk1

Total

sync. delay

(a) A simple GALS system (b) Sync. delay = clk edge alignment (t
e
) + sync. circuit (t

s
)

clk2

t
e

t
s

Figure 6.3: A GALS system boundary and timing of the synchronization delay accross the boundary

6.3 Reducing and eliminating GALS performance penalties

GALS systems require synchronization circuits between clock domains to reliably trans-

fer data. Clock phase edge alignment time for unmatched clocks and synchronization circuitry in-

troduces a synchronization delay as illustrated in Fig. 6.3. The delay normally results in a reduction

of performance (throughput).

This section discusses in depth principles behind how GALS clocking affects system

throughput and find several key architectural features which can hide the GALS effects. Fully

avoiding any GALS performance penalties is possible for the described GALS chip multiprocessor.

To simplify the discussions, in this section both GALS and synchronous systems use the same clock

frequencies.

6.3.1 Related work

Significant previous research has studied the GALS uniprocessor—in which portions of

each processor are located in separate clock domains. Results have shown GALS uniprocessors ex-

perience a non-negligible performance reduction compared to a corresponding synchronous unipro-

cessor. Figure 6.4 shows the control hazard of a simple DLX RISC processor [135] and can give

an intuitive explanation for the performance reduction of a GALS uniprocessor. The upper sub-

plot shows a branch penalty for a normal synchronous pipeline. The lower subplot shows a GALS

uniprocessor’s pipeline where each stage is in its own clock domain. During taken branch in-

structions, the synchronous processor has a 3-cycle control hazard, while the GALS system has a

3 + 4 × SYNC cycle penalty, significantly reducing system performance. Other pipeline hazards

110 CHAPTER 6. SYSTEM FEATURE ANALYSIS: GALS VS. SYNCHRONOUS

IF ID EXE MEM WB

IF ID EXE

Branch inst

Branch inst IF ID EXE MEM WBSYNC SYNC SYNC SYNC

IF

Branch penalty of 3 cycles in a synchronous uni-processor

Branch penalty of 3 cycles and 4 SYNC delays in a GALS uni-processor

clk4 clk5clk3clk2clk1

MEM WBbranch penalty

branch penalty

Figure 6.4: Pipeline control hazard penalties of a 5 stage synchronous uniprocessor and a 5 stage
GALS uniprocessor

generate similar performance impacts. Studies of GALS uniprocessor performance have reported

reductions of 10% [136] and 7%–11% [137] compared to fully synchronous designs. Semeraro et

al. found that the performance penalty of GALS uniprocessor can be as low as 4% [48] by adjusting

the synchronization logic to minimize the synchronization delay, and this performance degradation

can be further reduce to 2% [138] by adding out-of-order superscalar execution features. However,

minimizing the synchronization delay is generally not easy to implement, and fully avoiding the

GALS performance penalty is still not achievable using this approach.

Other related work includes the performance analysis reported by Smith [132] for a GALS

chip multiprocessor with a shared memory and a global bus. The GALS multiprocessor has addi-

tional latency when data transfers between processors and the shared memory through the global

bus, thus introducing a performance penalty compared to the equivalent synchronous design. The

reported performance penalty was typically higher than 5%, and varies across applications due to

the different loadings of the global bus.

6.3.2 Comparison of application performance: GALS versus synchronous

The applications mentioned in Section 2.3 are mapped and simulated onto the verilog

RTL model of our chip to investigate the performance of synchronous and GALS chip multiproces-

sor [46]. The RTL model is cycle-accurate with the fabricated chip and therefore exactly models

its performance. The synchronous system uses a single global clock and has no synchronization

registers in its communication boundaries. The GALS system uses a local oscillator and two syn-

chronization registers inside each processor.

6.3. REDUCING AND ELIMINATING GALS PERFORMANCE PENALTIES 111

Table 6.1: Clock cycles (1/throughput) of several applications mapped onto a synchronous array
processor and a GALS array processor, using 32-word FIFOs

Synch. GALS GALS perf. GALS perf.
array array reduction reduction

(cycles) (cycles) (cycles) (%)
8-pt DCT 41 41 0 0%
8×8 DCT 498 505 7 1.4%
zig-zag 168 168 0 0%
merge sort 254 254 0 0%
bubble sort 444 444 0 0%
matrix multiplication 817.5 819 1.5 0.1%
64-pt complex FFT 11439 11710 271 2.3%
JPEG encoder 1439 1443 4 0.3%
802.11 a/g TX 69700 69971 271 0.3%

The first two columns of Table 6.1 show the computation time in clock cycles when map-

ping these applications onto the synchronous and GALS chip multiprocessors. The third and fourth

columns list the absolute and relative performance penalty of the GALS chip multiprocessor. The

performance of the GALS system is nearly the same as the synchronous system with an average of

less than 1% performance reduction, which is much smaller than the 10% performance reduction of

a GALS uniprocessor [136, 137], or the 5% performance reduction of the GALS chip multiproces-

sor with a shared memory and global bus [132].

6.3.3 Analysis of the performance effects of GALS

The very small performance reduction of the GALS chip multiprocessor motivates us to

understand the factors that affect performance in GALS style processors. Figure 6.5 shows the chain

of events that allow synchronization circuit latency to finally affect application throughput. It is a

long path, so several methods are available to hide the GALS effect. To take a closer look at the

effect in each block in Fig. 6.5:

• Synchronization circuit latencyis inherent in every asynchronous boundary crossing due to

mismatch in clock phases and overhead of synchronization circuits.

• Average communication latencytakes into account the fact that the synchronization circuit

path is normally not active every cycle. Thus, the synchronization latency should be weighted

112 CHAPTER 6. SYSTEM FEATURE ANALYSIS: GALS VS. SYNCHRONOUS

clk1 clk2
Sync. circuit latency

Syn.
circuit

Syn.
circuit

P1

x%

(100-x)%

Average comm. latency

Syn.
circuit

P1Effective comm. latency P2

Application throughput Syn.
circuit

P1 P2
Syn.

circuit
P3

FIFO

FIFO

FIFO FIFO

Figure 6.5: Illustration of three key latencies and application throughput in GALS multiprocessor
systesms

by the fraction of the time the path is active (x% in Fig. 6.5), which is the average communi-

cation latency.

• Effective communication latencytakes into account cases where the downstream processor

does not consume data immediately after it is received. In other words, the average commu-

nication latency has its impact only when a program is waiting for these delayed signals, and

the impact is zero otherwise.

• Application throughputis the metric of highest importance. The effective communication

latency impacts application throughput only when there is communication feedback. As more

fully shown in sec. 6.3.3, one-way communication does not result in throughput penalties

under certain conditions.

The following three subsections discuss in further detail each step from the synchroniza-

tion circuit latency to the application throughput, and show methods to hide the GALS performance

effect.

6.3. REDUCING AND ELIMINATING GALS PERFORMANCE PENALTIES 113

Table 6.2: The fraction of the time the inter-processor communication is active for each processor
executing several applications; P1–P9 represent processors 1–9 respectively

P1 P2 P3 P4 P5 P6 P7 P8 P9 Ave.
8-pt DCT 0.19 0.19 – – – – – – – 0.19
8×8 DCT 0.12 0.12 0.12 0.12 – – – – – 0.12
zig-zag 0.57 0.38 – – – – – – – 0.47
merge sort 0.06 0.02 0.05 0.03 0.03 0.06 0.03 0.03 – 0.04
bubble sort 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 – 0.03
matrix multip. 0.11 0.18 0.26 0.31 0.33 0.03 – – – 0.20
64-pt FFT 0.01 0.02 0.03 0.02 0.01 0.02 0.03 0.02 – 0.02
JPEG encod. 0.04 0.04 0.04 0.07 0.04 0.05 0.003 0.18 0.06 0.06

Hiding synchronization circuit latency by localizing computation

An obvious but nonetheless worthwhile point is that the asynchronous boundary circuit

affects performance only when signals cross it, so the effect from this circuit latency can be highly

decreased if data communication across the asynchronous boundary is reduced. This may initially

sound like a difficult goal, but in fact key parameters such as clock domain granularity and applica-

tion partitioning can easily affect this coefficient by more than an order of magnitude.

In many GALS systems the asynchronous boundaries have frequent traffic. For example,

in a GALS uniprocessor each instruction crosses several asynchronous boundaries while flowing

through the pipeline. But in a GALS chip multiprocessor, computation is much more localized at

each single processor and communication through the asynchronous boundaries is less frequent and

thus the effect of GALS is much lower.

Table 6.2 shows the fraction of the time the inter-processor communication path is active

for several applications. The inter-processor communication is often infrequent, especially for com-

plex applications such as the 64-point complex FFT and JPEG encoder that show communication

time percentages of only 2% and 6% respectively.

Hiding average communication latency by FIFO buffering

Not every data word transfered across an asynchronous boundary results in effective la-

tency. As Fig. 6.6(a) shows, the GALS system has the same computational flow as the synchronous

system when the FIFO is neither empty nor full.

114 CHAPTER 6. SYSTEM FEATURE ANALYSIS: GALS VS. SYNCHRONOUS

(a) FIFO partially full

F
I
F
O

write

read

Proc

(b) FIFO empty stall

F
I
F
Owrite read

Proc

(c) FIFO full stall

F
I
F
O

write

read

Proc

write_data

read_data

write_data

read_data

S
Y
N
C
H

G
A
L
S

extra delay

extra delay

wait for write

wait for write

wait for read

wait for read

1 2 3 4 5

15 16 17 18 19

1 2 3 4 5

1 2 3

1 2

1 2 3

1

1 2

115 16 17 18 19

1 2 3

1 2 3

Figure 6.6: FIFO operation when FIFO is: (a) neither full nor empty, (b) empty, and (c) full. Correct
operation requires delaying reads when the FIFO is empty, and delaying writes when the FIFO is
full. Full speed operation is permitted when the FIFO is partially full.

FIFO stalls caused by full and empty conditions introduce extra latency in GALS systems.

A FIFO empty stalloccurs when a processor reads an empty FIFO and must wait (stall) until data

is available, as illustrated in Fig. 6.6(b). In this case, reads in GALS systems have extra delay

compared to synchronous systems. AFIFO full stall occurs when a processor writes a full FIFO

and must wait until there is writable space. As shown in Fig. 6.6(c), writes in GALS systems have

extra delay compared to synchronous systems.

Table 6.3 shows the effective latency difference of the GALS chip multiprocessor and

its corresponding synchronous system over several applications. Due to the adequately large FIFO

buffer of 32 words, there are relatively few resulting FIFO stalls, and the effective latency penalty of

the GALS chip multiprocessor is small with an average of less than 2%. Interestingly, this latency

penalty is larger than the throughput penalty—which is less than 1% as shown in Table 6.1.

The key point is this: latency penalties do not always result in throughput penalties. This

result is further explained in the following subsection.

Throughput penalty caused by latency penalty from communication loops

Reading an empty FIFO or writing a full FIFO results in extra computation latency, but

does not always reduce application throughput. Generally speaking, simpleone-way communication

does not affect system throughput, what really matters iscommunication loops—in which two units

6.3. REDUCING AND ELIMINATING GALS PERFORMANCE PENALTIES 115

Table 6.3: Effective latency (clock cycles) of several applications mapped onto a synchronous array
processor and a GALS array processor, with 32-word FIFOs

Synchronous array GALS array Difference Difference
latency latency
(cycles) (cycles) (cycles) (%)

8-pt DCT 78 82 4 5%
8×8 DCT 996 1003 7 0.7%
zig-zag 221 224 3 1.3%
merge sort 542 552 10 1.8%
bubble sort 1966 1984 18 0.9%
matrix multiplier 1705 1720 15 0.8%
64-pt complex FFT 26741 27319 578 2.1%
JPEG encoder 2726 2741 15 0.5%
802.11a/g 115477 117275 1798 1.5%

unit1

(T1)

unit2

(T3)

comm.

(T2)

(a) One way communication:

The throughput is 1/Max (T1, T2, T3)

unit1

(T1)

unit2

(T3)
comm.

(T2)

(b) Communication loop:

The throughput is 1/(T1 + T2 + T3 + T4)

comm.

(T4)

Figure 6.7: System throughput in a) one way communication path, and b) communication loop path.
For a GALS system,unit1andunit2are assumed in different clock domains and therefor thecomm.
communication delays are significant. For both synchronous and GALS systems, throughout is
not reduced with one-way communication (assuming communication time is less than computation
time), but is reduced in the loop case.

wait for information from each other.

In aone way communication pathas shown in Fig. 6.7(a), the system throughput is depen-

dent on the slowest unit and is not related to the communication—assuming communication is not

the slowest unit, which is true in our case. However, throughput is significantly impacted when the

communication has feedback and generates a loop, as shown in Fig. 6.7(b). If unit 1 and unit 2 both

need to wait for information from each other, the throughout will be dependent on the sum of unit

execution time and communication time. Then the communication time affects the performance of

both synchronous and GALS systems, but the GALS system has a larger performance penalty due

to its larger communication time.

A similar conclusion can be drawn from the GALS uniprocessors. The GALS overhead

116 CHAPTER 6. SYSTEM FEATURE ANALYSIS: GALS VS. SYNCHRONOUS

Proc.
1

 Proc.
2

empty
stall

full
stall

F
I
F
O

Figure 6.8: A common stall communication loop exists when the data producerproc.1 and data
consumerproc.2are alternatively busy and idle, the FIFO alternates between being empty and full,
and processors stall appropiately. The wide arrow is the direction of data transfer, and thin arrows
show how FIFO stalls are generated

increases the communication latency between pipeline stages. In instructions without pipeline haz-

ards, the GALS uniprocessor maintains the same throughput as the synchronous uniprocessor al-

though with larger latency, since it has onlyone way communication. However, during instructions

such as taken branches (where the newPC needs the feedback from the execution result), acommu-

nication loopis formed, and thus the GALS style brings a throughput penalty.

In our GALS chip multiprocessor, pure FIFO-full stalls or FIFO-empty stalls alone as in

Fig. 6.6(b),(c) generate one way communication and have no effect on system throughput. Fig-

ure 6.8 shows the FIFO stall communication loop. Sometimes processor 1 is too slow and results

in FIFO-empty stalls. Sometimes processor 2 is too slow and results in FIFO-full stalls. Coexisting

FIFO-full stalls and FIFO-empty stalls (obviously at different times) in a link produce a communi-

cation loop and this reduces system performance—for both synchronous and GALS systems, albeit

with less of a penalty for a synchronous system.

Results in Table 6.1 show that the GALS chip multiprocessor has nearly the same perfor-

mance as the synchronous chip multiprocessor. This performance reduction is much less compared

to the GALS uniprocessor’s reduction. This implies that the performance penalty sources—the

communication across asynchronous boundary, the FIFO stalls, and FIFO stall loops—are much

smaller than the probability of a pipeline hazard in a uniprocessor. These results match well with

our model. In Table 6.1, the 8-pt DCT, zig-zag, mergesort and bubblesort have no GALS perfor-

mance penalties since they have only one-way FIFO stalls. The other applications have about 1%

performance penalty on average due to FIFO stall loops.

6.3. REDUCING AND ELIMINATING GALS PERFORMANCE PENALTIES 117

8 DCT 8x8 DCTzig−zag m−sort b−sort matrix 64 FFT JPEG 802.11
0

0.5

1

R
el

. P
er

fo
rm

an
ce

Relative performance of synchronous system in different FIFO depth

16 words
32 words
64 words
128 words

8 DCT 8x8 DCTzig−zag m−sort b−sort matrix 64 FFT JPEG 802.11
0

0.5

1

R
el

. P
er

fo
rm

an
ce

Relative performance of GALS system in different FIFO depth

16 words
32 words
64 words
128 words

8 DCT 8x8 DCTzig−zag m−sort b−sort matrix 64 FFT JPEG 802.11
0.8

0.85

0.9

0.95

1

P
er

fo
rm

an
ce

 R
at

io

Performance ratio of GALS to synchronous in different FIFO depth

16 words
32 words
64 words
128 words

Figure 6.9: Performance of synchronous and GALS array processors with different FIFO sizes

6.3.4 Eliminating performance penalties

Increasing FIFO sizes

Increasing the FIFO size will reduce FIFO stalls as well as FIFO stall loops, and hence

increase system performance and reduce the GALS performance penalty. With a sufficiently large

FIFO, there will be no FIFO-full stalls and the number of FIFO-empty stalls can also be greatly re-

duced; then the communication loop in Fig. 6.8 will be broken and no GALS performance penalties

will result.

The top and middle subplots of Fig. 6.9 show the performance of the synchronous and

GALS systems with different FIFO sizes, respectively. Whether using a synchronous or GALS

style, increasing the FIFO size will increase system performance. Also, a threshold FIFO size exists

above which the performance won’t change. The threshold is the point when the FIFO-full stall

becomes non-existent due to having a large enough FIFO size, and increasing the FIFO size further

gives no additional benefit. The threshold is dependent on the application as well as the mapping

method. In our case, the thresholds for the 8×8 DCT and 802.11a/g are 64 words; JPEG and bubble

sort are 32 words; the 8-pt DCT and merge sort are less than or equal to 16 words.

118 CHAPTER 6. SYSTEM FEATURE ANALYSIS: GALS VS. SYNCHRONOUS

Proc.
1

 Proc. 2

empty stall

full stall

full stall

empty stall

F
I
F
O

F
I
F
O

Figure 6.10: Examples of multiple-loop links between two processors

The bottom subplot of Fig. 6.9 shows the performance ratio of the GALS system to the

synchronous system. The ratio normally stays at a high level larger than 95%. When increasing

the FIFO size, the ratio tends to increase due to fewer FIFO stalls and FIFO stall loops. The ratio

normally reaches 1.0 at the threshold, which means the FIFO stall loops are all broken and the GALS

system has the same performance as the synchronous system. The exception in the examples is the

FFT in which the GALS system always has a noticeable performance penalty of approximately 2%.

This comes from the multiple-loop links and will be explained in the following subsection.

Breaking multiple-loop links

Figure 6.10 shows the multiple-loop communication links. In this case, processor 1 and

processor 2 send data to each other, and each processor has both FIFO full stalls and FIFO empty

stalls. When the FIFO is large enough, there will be no FIFO-full stalls, but FIFO-empty stalls can

still occur. So, the likelihood of the communication loop in Fig. 6.10 is still possible since FIFO-

empty stalls alone can generate a stall loop. In the FFT application, several processors are used

as data storing (Memory) coprocessors and they send and receive data to computation (Butterfly)

processors [139], as shown in Fig. 6.11, thus generate multiple-loop links.

In order to avoid any performance penalties, programmers must avoid these types of

multiple-loop link implementations. For example, in the FFT case, theMemoryprocessor and

Butterflyprocessor can be combined into one processor.

6.4. SCALABILITY ANALYSIS OF GALS CHIP MULTIPROCESSORS 119

Bit
Reverse Memory Butterfly Shuffle

Memory MemoryButterfly Butterfly

Input Output

Figure 6.11: 64-pt complex FFT implementation containing multiple-loop links [139]

6.4 Scalability analysis of GALS chip multiprocessors

One of the key benefits of a GALS chip multiprocessor with distributed communication

is its scalability: it allows simply inserting processors into the chip to expand an array. For a

synchronous system, the clock tree has to be redesigned for different processor arrays and the design

difficulty increases quickly along with the chip size. In addition, the clock skew normally becomes

larger due to the more complex clock tree and more circuit parameter variation effects.

6.4.1 Auto generated clock trees for different sizes of chip multiprocessors

Multiple clock trees are generated using Cadence Encounter with an Artisan 0.18µm

standard cell library. An example clock tree for a single processor is shown in Fig. 6.12. It uses 37

buffers arranged in 3 levels, has 47 ps worst-case clock skew, around 555 ps delay, 120 ps buffer

transition time and 97 ps sink transition time. The clock treedelay is the time from clock root to

registers, thebuffer transition timeandsink transition timeare the signal rise time at the inserted

buffers and clocked registers respectively. The constrained parameters for the clock tree include:

50 ps clock skew, 2000 ps delay, and 120 ps buffer and sink transition times.

As the number of processors increases, the synchronous global clock tree becomes more

complex and therefore more difficult to design. Table 6.4 lists several key parameters of clock trees

for arrays made up of different numbers of processors. In general, all listed parameters tend to

increase as the number of processors increases. However, in some cases, the parameters do not

increase monotonically. This is due to the complex nature of the clock tree optimization problem

which is affected by many discrete parameter (e.g., there can be only an integer number of buffer

120 CHAPTER 6. SYSTEM FEATURE ANALYSIS: GALS VS. SYNCHRONOUS

L1_N0

L2_N0

L2_N2

L3_N2

L3_N3

L3_N1

L3_N0

clk_orig

L2_N3

L2_N1

L2_N4

L2_N5 L3_N27

L3_N28

L3_N26

L3_N25

L3_N29

Buffer
trans.
time

Sink
trans.
time

Total tree delay

.

.

.
.
.
.

Figure 6.12: An example clock tree for a single processor

levels), and also by the time-limited non-optimal Cadence Encounter optimization runs. For exam-

ple, 10× 10 array has lower skew than the 9× 9 array, but is also has a significantly higher Buffer

Transition time and Sink Transition time—which likely come from increased load of buffers since

they both have 13 levels of buffers.

Different design methods may have different results from our experiments. Using full

custom design and deskewing technologies [140] can certainly generate better results but will dra-

matically increase the design effort, and also may increase the area and power consumption. For

example, active deskewing and scan-chain adjustments used for Itanium [141] produced a clock

tree with skew less than 10 ps, but it consumed around 25 W for clock generation and distribution

circuits. Whichever methods are used, the trend that larger chip sizes result in more complex clock

trees and larger clock skew, should always be true; and furthermore, impacts from circuit parameter

variations are also increasing.

6.4. SCALABILITY ANALYSIS OF GALS CHIP MULTIPROCESSORS 121

Table 6.4: Data for globally synchronous clock trees with different number of processors in the
array

Processor Num of Buffer Sink Total Max. Total
array buffer trans. time trans. time num of skew tree delay
size levels (ps) (ps) buffers (ps) (ps)

1× 1 3 120 97 37 47 555
2× 2 6 120 115 157 49 1081
3× 3 8 120 117 320 49 1150
4× 4 10 121 133 633 59 1400
5× 5 9 177 123 787 70 1700
6× 6 10 174 143 1097 72 1800
7× 7 12 170 171 1569 85 1900
8× 8 14 251 119 1992 92 2100
9× 9 13 204 119 3012 103 2200

10× 10 13 228 141 3388 97 2300
11× 11 15 169 120 3762 116 2450

6.4.2 The effect of clock tree on system performance

The clock period of modern processors expressed as fanout-of-4 (FO4) delay normally

ranges between 10 to 20 [10], and is determined by the pipelining of the processor as well as clock

distribution factors such as clock skew and jitter. Each FO4 delay in 0.18µm is about 65 ps.

Assuming the maximum logic delay (including register setup time and clock-to-Q time) within one

clock period is 1000 ps, which is 15 FO4 delays and is in the range of modern high performance

processor designs [4], the effect of clock tree design on system performance can be investigated. For

the example of a single processor with 47 ps of clock skew, the smallest clock period (fastest clock

speed) available will be 1047 ps. The relative system peak performance for different processor

arrays is shown in Fig. 6.13. The peak performance of a GALS chip multiprocessor increases

linearly with the number of processors, and the synchronous chip multiprocessor behaves similarly

when the number of processors is not very large. For example, when containing 49 processors

(around 33 mm2 in 0.18µm technology), the performance of the synchronous array processor is

96.5% of the GALS array processor. The performance of the synchronous system increases slower

when the number of processors is larger since its clock skew increases along with the chip size.

When it contains 121 processors (around 80 mm2 in 0.18µm technology), the performance of the

synchronous array processor is reduced to 93.8% of the GALS array processor.

122 CHAPTER 6. SYSTEM FEATURE ANALYSIS: GALS VS. SYNCHRONOUS

0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

Number of processors

R
el

at
iv

e
sy

st
em

 p
ea

k
pe

rf
or

m
na

ce

GALS array processor
Synchronous array processor

Figure 6.13: The peak performance of GALS processor arrays scale linearly with the number of
processors, and they scale almost linearly for synchronous array processors, assuming the clock
period is 15 FO4 delays for logic, plus clock skew only

The globally synchronous clock becomes worse when system parameter variations which

are not included in the Encounter tool simulation are included. Parameter variations have increas-

ingly impacted system performance along with advancing technologies. The main parameter vari-

ations include process variation, voltage variation and temperature variation [18]. These variations

affect circuit delay and hence affect clock tree uncertainty. Different clock trees are affected differ-

ently by parameter variations. For example, clock trees with fewer inserted buffers [142] and fewer

fanout loads [143] are less affected by parameter variations.

Supply voltage variation is one of the most important parameter variations. The simula-

tion result from Encounter shows the peak voltage drop is 0.041 V for our single processor. There

will be a larger voltage drop when the chip size increases, and the situation when the voltage is

reduced from 1.8 V to 1.7 V due to the voltage variation is investigated. Figure 6.14 shows the

increased clock tree delay at the reduced supply voltage for different clock trees by varying clock

tree stages from 3 to 10, and clock buffer loads from 4 FO4 to 7 FO4. As shown in Fig. 6.14, the

increased clock delay is around 5.5% of the original clock tree delay. It means the voltage drop (or

variation) can increase the clock skew by 5.5% of the clock delay.

M. Hashimoto et al. [143] show that voltage variation accounts for approximately 40% of

6.5. POWER ANALYSIS OF ADAPTIVE CLOCK FREQUENCY SCALING 123

0 200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60

70

80

Clock tree delay at 1.8 V (ps)

In
cr

ea
se

d
cl

oc
k

tr
ee

 d
el

ay
 a

t 1
.7

 V
 (

ps
)

Increased tree dly @ 1.7 V =

0.055 x tree dly @ 1.8 V

Figure 6.14: Increased clock tree delay from reducing supply voltage from 1.8 V to 1.7 V for
different clock trees with varying total delays. Data is from transistor-level spice circuit simulations.
Absolute clock skew (in ps) dramatically increases for lager clock trees.

the parameter variation effects among the primary sources: voltage variation, transistor variation,

and temperature variation. According to the voltage variation effect discussed above, it is assumed

that all parameter variations bring an extra clock skew which is 5.5%/0.4 = 13.75% of the clock

delay. Figure 6.15 shows the performance scaling of GALS and synchronous chip multiprocessor

along with the number of processors, including the parameter variation effect. It clearly shows that

the GALS chip multiprocessor can achieve much better performance than the synchronous chip

multiprocessor. When containing 49 processors, the performance of the synchronous multiproces-

sor is 82.7% of the GALS multiprocessor. This performance gap becomes larger as the number of

processors increases. When containing 121 processors, the performance of the synchronous multi-

processor is only 76.8% of the GALS multiprocessor.

6.5 Energy efficiency analysis of adaptive clock frequency scaling

The GALS clocking style provides opportunities for using adaptive clock and voltage

scaling for system submodules [144] and several researchers have reported its high energy efficiency

for GALS uni-processors [136, 48, 137, 133]. The computation load in a GALS chip multiprocessor

124 CHAPTER 6. SYSTEM FEATURE ANALYSIS: GALS VS. SYNCHRONOUS

0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

Number of processors

R
el

at
iv

e
sy

st
em

 p
ea

k
pe

rf
or

m
na

ce

GALS array processor
Synchronous array processor

Figure 6.15: The peak performance of GALS and synchronous array processor where the clock
period calculation includes: 1) the 15 FO4 logic delay, 2) static clock skew, and 3) clock skew equal
to 13% of the total clock tree delay due to variations as shown in Fig. 6.14

can be quite unbalanced which potentially increases the energy efficiency benefit when using clock

and voltage scaling for each processor. It is also found that it is possible to scale down the clock

frequencies for some processors without reducing system performance whatsoever.

Some other clock styles such as rationally-related clocking used by Synchroscalar [98]

can have similar benefits. While this approach avoids the extra hardware for asynchronous com-

munication, it requires extra circuitry such as PLLs to guarantee the same clock phases between

different clock domains and changing the clock frequency can take hundreds of clock cycles.

6.5.1 Related work—adaptive clock scaling of the GALS uniprocessor

Figure 6.16 shows an example of a GALS uniprocessor implementation to illustrate the

concept of adaptive clock scaling in GALS systems, which achieves high energy efficiency by re-

ducing the clock frequency and voltage of modules that are less heavily used. In the figure, the

frequency of the Mem module clockclk4 is reduced when executing the first code block since it has

few Mem instructions. The scheme can be calledstatic clock/voltage scalingif the clock/voltage

won’t be changed at runtime, which is the method addressed in this paper. In order to obtain greater

power savings,dynamic clock/voltage scalingcan be used where the clock and voltage are changed

6.5. POWER ANALYSIS OF ADAPTIVE CLOCK FREQUENCY SCALING 125

IF ID EXE MEM WBsync
circ.

sync
circ.

sync
circ.

sync
circ.

clk1

code block with
few MEM

instructions

code block with
few WB

instructions

clk4 can be
reduced

clk5 can be
reduced

clk2 clk3 clk4 clk5

Figure 6.16: Clock scaling in a GALS uniprocessor

dynamically at runtime along with the program execution; then the reduced clock domain can be-

comeclk5 when executing the second code block since it has few WB instructions. Unfortunately,

reducing the clock of some modules for uniprocessors reduces system performance. The static scal-

ing method reduces energy dissipation by approximately 16% with an approximately 18% reduction

in performance [136]. The dynamic scaling method achieves 20%–25% energy savings along with

a 10%–15% performance reduction [48, 137].

6.5.2 Unbalanced processor computation loads increases power savings potential

Traditional parallel programming methods normally seek to balance computational loads

in different processors. On the other hand, when using adaptive clock methods, unbalanced com-

putational loads are no longer a problem, and in fact give more opportunities to reduce the clock

frequency and supply voltage of some processors to achieve further power savings without degrad-

ing system performance. Releasing the constraint of a balanced computational load enables the

designer to explore wider variations in other parameters such as program size, local data memory

size and communication methods.

Figure 6.17 shows the unbalanced computational load among processors when mapping

our applications onto the chip multiprocessor. The computational load difference for different pro-

cessors in complex applications such as JPEG encoder and 802.11a/g transmitter can be more than

10 times.

126 CHAPTER 6. SYSTEM FEATURE ANALYSIS: GALS VS. SYNCHRONOUS

1 2
0

0.5

1

R
el

. c
om

pu
te

 lo
ad

8−pt DCT

1 2 3 4
0

0.5

1
8x8 DCT

1 2
0

0.5

1
Zig−zag

1 2 3 4 5 6 7 8
0

0.5

1

R
el

. C
ou

m
pt

e
lo

ad

merge−sort

1 2 3 4 5 6 7 8
0

0.5

1
bubble−sort

1 2 3 4 5 6
0

0.5

1
matrix

1 2 3 4 5 6 7 8
0

0.5

1

R
el

. C
ou

m
pt

e
lo

ad

64 FFT

1 2 3 4 5 6 7 8 9
0

0.5

1
JPEG

0 10 20
0

0.5

1
802.11

Figure 6.17: Relative computational load of different processors in nine applications illustrating
unbalanced loads

6.5.3 Finding the optimal clock frequency—computational load and position

When using adaptive clock/voltage scaling, the system performance will be normally fur-

ther reduced; but it is possible to scale the clock frequencies of some processors in the GALS

multiprocessor while still maintaining the same performance. The optimal clock frequency for each

processor depends strongly on its computational load, and also depends on its position and relation-

ship with respect to other processors.

Figure 6.18 shows the system throughput versus the clock frequencies of four processors

in the 8×8 DCT, its implementation is shown in Fig 2.17. The computational load of the four

processors is 408, 204, 408 and 204 clock cycles respectively. The throughput changes with the

scaling of the2nd and4th processor much more slowly than the scaling of the1st and3rd processors.

This illustrates the clear point that a processor with a light computational load is more likely to

maintain its performance with a reduced clock frequency. Somewhat counterintuitively, however,

the 2nd and 4th processors have the same light computational load, but the throughput changes

with the4th processor scaling much more slowly than the2nd processor’s scaling. Minimal power

consumption is achieved with full throughput when the relative clock frequencies are 100%, 95%,

6.5. POWER ANALYSIS OF ADAPTIVE CLOCK FREQUENCY SCALING 127

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Relative clock frequency

R
el

at
iv

e
P

er
fo

rm
an

ce

scale 1st processor
scale 2nd processor
scale 3rd processor
scale 4th processor

optimal clock
scaling points

Figure 6.18: Throughput changes with statically configured processor clocks for the 4-processor
8×8 DCT application

Trans.

F

I

F

O

1-DCT

F

I

F

O

1-DCT

F

I

F

O

Trans.

F

I

F

O

FIFO empty stall of 2nd proc.

FIFO full stall of 2nd proc.

FIFO empty stall of 4th proc.

Figure 6.19: Relationship of processors in the 4-processor 8×8 DCT application illusting the dif-
fering scaling possibilities for the 2nd and 4th processors

100%, and 57% of full speed respectively.

The reason for the different behavior of the2nd and 4th processors comes from their

different positions and FIFO stall styles as shown in Fig. 6.19. The2nd processor has FIFO-empty

stalls when it fetches data too fast from the1st processor, and it has FIFO-full stalls when it sends

data too fast to the3rd processor. The4th processor has only FIFO-empty stalls.

6.5.4 Power reduction of clock/voltage scaling

Reducing the clock frequency allows for a reduction in voltage to obtain further power

savings. The relationship between clock frequency, voltage and power has become much more

128 CHAPTER 6. SYSTEM FEATURE ANALYSIS: GALS VS. SYNCHRONOUS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relative clock frequency

R
el

at
iv

e
po

w
er

Figure 6.20: The relationship between a processor’s power consumption with a varying clock fre-
quency when the supply voltage is the minimum possible voltage for the clock speed [145]

complex in the deep submicron regime because of other parameters such as leakage power. A

model derived from measured data from a 0.18µm technology [145] is used to estimate power

consumption. Figure 6.20 shows the relationship between clock frequency and its corresponding

power consumption after using clock/voltage scaling.

Finding the optimal clock frequency for each processor as described in sec. 6.5.3, and

using the frequency-power model, the relative power consumption of the GALS multiprocessor

compared to the synchronous multiprocessor is estimated after using static clock frequency and

supply voltage scaling for several applications. The result is shown in Fig. 6.21. The GALS system

achieves an average power savings of approximately 40% without affecting performance. This

power savings is much higher than the GALS uniprocessor which is reported to save approximately

25% energy when operating with a performance reduction of more than 10% [136, 48, 137].

6.6 Summary

It shows that the application throughput reduction of the GALS style comes from the

asynchronous boundary communication and the communication loops, and that it is possible to

design GALS multiprocessors without this performance penalty. A key advantage of the GALS

chip multiprocessor with distributed interconnection compared to the other GALS systems is that

6.6. SUMMARY 129

8pt DCT 8x8 DCT zig−zag 64 FFT msort bsort 5x5 matrix JPEG 802.11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
el

at
iv

e
P

ow
er

Figure 6.21: Relative power over several applications for the GALS array processor with static
clock and supply voltage scaling compared to a synchronous array processor

its asynchronous boundary communication and communication loops occur far less frequently and

therefore the performance penalty is significantly lower. The proposed GALS array processor has

a throughput penalty of less than 1% over a variety of DSP workloads, and this small penalty can

be further avoided by large enough FIFOs and programming without multiple-loop communication

links.

Local clock oscillators in GALS multiprocessors simplify the clock tree design and en-

able nearly perfect system scalability. More processors can be inserted into the chip without any

clock tree redesign. As the number of processors increases, the clock skew in the synchronous mul-

tiprocessor system increases quickly due to the more complex clock trees and parameter variations.

When containing 121 processors (around 80 mm2 in 0.18µm technology), the peak performance of

the GALS multiprocessor can be approximately 20% higher than the synchronous multiprocessor.

Unbalanced computational loads in chip multiprocessors increases the opportunity for

independent clock frequency and voltage scaling to achieve significant power consumption savings.

The GALS chip multiprocessor can achieve around 40% power savings without any performance

penalty over a variety of DSP workloads using static clock and voltage scaling for each processor.

These results compare well with a reported 25% energy reduction and 10% performance reduction

130 CHAPTER 6. SYSTEM FEATURE ANALYSIS: GALS VS. SYNCHRONOUS

of GALS uniprocessors for a variety of general purpose applications.

Data presented in this chapter are based on the fabricated AsAP chip. Results from this

work apply to systems with three key features as discussed in section 6.1—namely, 1) multi-core

processors (homogeneous and heterogeneous) operating in in independent clock domains; 2) source

synchronous flow control for asynchronous boundaries communication; and 3) distributed inter-

connect, such as mesh. Which results certainly vary over different applications and specific ar-

chitectures, systems with these features should still exhibit: good scalability, small performance

reductions due to asynchronous communication overhead, and large power reductions due to the

adaptive clock/voltage scaling; over many workloads.

131

Chapter 7

Conclusion

This dissertation discusses the architecture design, physical design, and feature analysis

of a scalable programmable processor array for DSP applications.

The processor features a multi-core architecture, simple single core with small memories,

GALS clocking style, and mesh internetwork. These and other features make the processor array

highly energy-efficient and capable of high throughput, well-suited for future fabrication technolo-

gies, and for the computation of complex multi-task DSP workloads. It is promising that such

systems can compete traditional DSPs to obtain 10 times higher performance with 10 times less

power dissipation in 10 times smaller area.

GALS multi-core systems improve system scalability and simplifies the physical design

flow. At the same time, it imposes some design challenges. These include several timing issues

related to inter-processor communication, inter-chip communication, and asynchronous boundaries

within single processors. By carefully addressing these timing issues, it is possible to take full

advantage of its scalability, and the processor architecture makes it possible to design a high perfor-

mance system with a small design group within a short time period.

An asymmetric inter-processor communication architecture which uses more buffer re-

sources for nearest neighbor connections and fewer buffer resources for long distance connections

can save 2 to 4 times area compared to the traditional NoC while maintaining similar routing ca-

pability. Extending the source synchronization method can support the long distance GALS com-

munication. Several design options are explored. Inserting two ports (buffers) for the processing

132 CHAPTER 7. CONCLUSION

core, and using two or three links at each edge, can achieve good area/performance trade offs for

multi-core systems organized by simple single issue processors; and the optimal number of links is

expected to increase if the chip is organized by larger processors.

The application throughput reduction of the GALS style comes from the asynchronous

boundary communication and the communication loops. A key advantage of the GALS multi-core

systems with distributed interconnection compared to the other GALS systems is that its asyn-

chronous boundary communication and communication loops occur far less frequently and there-

fore the performance penalty is significantly lower. The proposed GALS array processor has a

throughput penalty of less than 1% over a variety of DSP workloads, and this small penalty can

be further avoided by large enough FIFOs and programming without multiple-link loops. Further-

more, the GALS array can achieve around 40% power savings without any performance penalty

over a variety of DSP workloads using static clock and voltage scaling for each processor. GALS

multi-core systems have nearly perfect system scalability. When containing 121 processors (around

80 mm2 in 0.18µm technology), the peak performance of the GALS multiprocessor can be approx-

imately 20% higher than the synchronous multiprocessor whose clock skew increase quickly due to

the more complex clock tree and parameter variation.

7.1 Future work

There are quite a few interesting research topics on many-core processors which are

worthwhile for the further investigation.

Many of them are already implemented in our second version of AsAP chip. For exam-

ple, supporting static/dynamic clock/voltage scaling for each individual processor using hardware

and software; implementing the asymmetric double-links interconnect architecture as proposed in

Chapter 3; adding large shared memory modules to support applications requiring memory more

than AsAP 1 can provide [42]; adding some hardware accelerators such as FFT, Viterbi decoder,

and H.264 motion estimation to broaden the application domain of AsAP platform, etc.

Below are some of the topics I can see in the next couple of years for the research of

many-core processors.

• The design of the optimal single processor. It is found in AsAP project that the array orga-

7.1. FUTURE WORK 133

nized by simple processors can achieve good performance and energy efficiency for many

DSP applications. To answer the question that what is the optimal parameters for the single

processor, such as the pipeline stage, instruction issue width, and instruction set, it requires

more quantitative investigations. In addition, for different domains of applications, the answer

is expected to be different.

• On-chip interconnects. In AsAP project it is found that simple static interconnect architecture

is efficient for many DSP applications. For applications requiring complex communication,

novel interconnection architectures are required to achieve better tradeoffs between flexibility

and cost.

• Clocking. The GALS clocking, which is used in AsAP, is a promising clocking strategy for

many-core processors. In the future, it is worthwhile to investigate the totally asynchronous

clocking style. It has the potential to achieve higher speed and lower power consumption,

although it is not a solid solution yet.

• Power distribution. How to distribute the power supply efficiently will be an important design

issue in the future, due to the larger chip size and lower supply voltage. It is important not

only for many-core processors, but also for other chips.

• Fault tolerance computation. Along with the larger chip size and lower supply voltage, the

probability of failures in chips will increase significantly, and the fault tolerance computation

is expected to be much more important. Many-core processors can be a good solution for

the fault tolerance computation since it provides sufficient duplicated processors, and can use

some of the processors for the failure checking and recovery.

134 CHAPTER 7. CONCLUSION

135

Glossary

AsAP For Asynchronous Array of simple Processors.A parallel DSP processor consisting of a

2-dimensional mesh array of very simple CPUs clocked independently with each other.

BIPS Forbillion instructions per secondwhich is used to indicate the processor performance

CMP ForChip Multi-processor, a computer architecture which integrates multiple processors into

a single chip to improve processor performance.

CPI For Cycles-per-instruction.Normally the CPI for pipelined processor in larger than 1 due to

the pipeline hazard or missed Cache fetch.

DCT For Discrete Cosine Transform, it is used to transforms a signal or image from the spatial

domain to the frequency domain.

dual-clock FIFO A First In First Out. queue with a read clock and a write clock, used to synchro-

nize data across a clock boundary.

DSP Fordigital signal processing or the processors for DSP.

FFT For Fast Fourier transform, an efficient algorithm to compute the discrete Fourier transform

and its inverse.

FO4 For Fanout 4. A method to define the circuit delay using the delay of an inverter with 4

inverters load.

GALS For Globally Asynchronous Locally Synchronous. A design methodology in which major

design blocks are synchronous, but interface to other blocks asynchronously.

H.264 A standard for video compression. It is also known as MPEG-4 part 10.

136 GLOSSARY

JPEG ForJoint Photographic Experts Group, is a commonly used standard method of compression

for photographic images.

Mbps ForMegabit per second, a unit of data transfer rate.

MIMD For Multiple instruction multiple data, a parallel computer architecture where different

instructions with different data can be executed at the same time.

MMX For MultiMedia extension, one of the SIMD techniques designed by Intel in 1990’s in their

Pentium microprocessor.

MTTF ForMean Time to Failures, a common measures of reliability.

NoC For Network on Chip. A in-chip communication architecture which communicates between

modules in the chip using switches/routes, as in the network.

SIMD For Single Instruction, Multiple Data. A data parallelism technique where one single in-

struction can execute multiple data in parallel.

VLIW For Very long instruction word, a computer architecture which fetches multiple indepen-

dent instructions at the same clock cycle to execute them in parallel, to improve the system

performance.

Viterbi decoder An algorithm to decode a bitstream that has been encoded using forward error

correction based on a convolutional code, developed by Andrew J. Viterbi in 1967.

137

Related publications

1. Zhiyi Yu, Michael Meeuwsen, Ryan Apperson, Omar Sattari, Michael Lai, Jeremy Webb,

Eric Work, Tinoosh Mohsenin, Mandeep Singh, Bevan Baas, An Asynchronous Array of

Simple Processors for DSP Applications,IEEE International Solid-State Circuits Conference

(ISSCC), February 2006, pp:428-429.

2. Bevan Baas, Zhiyi Yu, Michael Meeuwsen, Omar Sattari, Ryan Apperson, Eric Work, Jeremy

Webb, Michael Lai, Tinoosh Mohsenin, Dean Truong, Jason Cheung, AsAP: A Fine-grain

Multi-core Platform for DSP Applications,IEEE Micro, March/April 2007, pp:34-45.

3. Ryan Apperson, Zhiyi Yu, Michael Meeuwsen, Tinoosh Mohsenin, Bevan Baas, A Scalable

Dual-Clock FIFO for Data Transfers between Arbitrary and Haltable Clock Domains,IEEE

Transactions of Very Large Scale Integration Systems (TVLSI), October 2007, pp:1125-1134.

4. Michael Meeuwsen, Zhiyi Yu, Bevan Baas, A Shared Memory Module for Asynchronous

Arrays of Processors,EURASIP Journal on Embedded Systems, vol. 2007, Article ID 86273,

13 pages, 2007.

5. Zhiyi Yu, Bevan Baas, Implementing Tile-based Chip Multiprocessors with GALS Clocking

Styles,IEEE International Conference of Computer Design (ICCD), October 2006, pp:174-

180.

6. Bevan Baas, Zhiyi Yu, Michael Meeuwsen, Omar Sattari, Ryan Apperson, Eric Work, Jeremy

Webb, Michael Lai, Daniel Gurman, Chi Chen, Jason Cheung, Dean Truong, Tinoosh Mohs-

enin, Hardware and Applications of AsAP: An Asynchronous Array of Simple Processors,

IEEE HotChips Symposium on High-Performance Chips, (HotChips), August 2006.

138 GLOSSARY

7. Zhiyi Yu, Bevan Baas, Performance and Power Analysis of Globally Asynchronous Locally

Synchronous multi-processor systems,IEEE Computer Society Annual Symposium on VLSI

(ISVLSI), March 2006, pp:378-384.

139

Bibliography

[1] N. Zhang and R. Brodersen. The cost of flexibility in systems on a chip design for signal
processing applications. InUCB EEC225C.

[2] J. Wawrzynek. Reconfigurable computing. InUCB CS294-3, January 2004.

[3] M. S. Hrishikesh, N. P. Jouppi, K. I. Farkas, D. Burger, S. W. Keckler, and P. Shivakumar.
The optimal logic depth per pipeline stage is 6 to 8 FO4 inverter delays. InInternational
Symposium on Computer Architecture (ISCA), pages 14–24, May 2002.

[4] B. Flachs, S. Asano, S. H. Dhong, P. Hofstee, G. Gervais, R. Kim, T. Le, P. Liu, J. Liberty,
B. Michael, H. Oh, S. M. Mueller, O. Takahashi, A. Hatakeyama, Y. Watanabe, and N. Yano.
A streaming processing unit for a CELL processor. InIEEE International Solid-State Circuits
Conference (ISSCC), pages 134–135, February 2005.

[5] A. Harstein and T.R. Puzak. Optimum power/performance pipeline depth. InIEEE interna-
tional Symposium on Microarchitecture (MICRO), pages 117–125, December 2003.

[6] G.E.Moore. Cramming more components onto integrated circuits.Electronics Maganize,
April 1965.

[7] S. Agarwala, T. Anderson, A. Hill, M. D. Ales, R. Damodaran, P. Wiley, S. Mullinnix,
J. Leach, A. Lell, M. Gill, A. Rajagopal, A. Chachad, M. Agarwala, J. Apostol, M. Kr-
ishnan, D. Bui, Q. An, N. S. Nagaraj, T. Wolf, and T. T. Elappuparackal. A 600-MHz VLIW
DSP. IEEE Journal of Solid-State Circuits (JSSC), pages 1532–1544, November 2002.

[8] R.P. Preston, R.W. Badeau, D.W. Balley, S.L. Bell, L.L. Biro, W.J. Bowhill, D.E. Dever,
S. Felix, R. Gammack, V. Germini, M.K. Gowan, P. Gronowshi, D.B. Jankson adn S. Mehta,
S.V. Morton, J.D. Pickholtz, M.H. Reilly, and M.J. Smith. Design of an 8-wide superscalar
RISC microprocessor with simultaneous multithreading. InIEEE International Solid-State
Circuits Conference (ISSCC), pages 266–267, February 2002.

[9] K. Roy, S. Mukhopadyay, and H. Mahmoodi-meimand. Leakage current mechanisms and
leakage reduction techniques in deep-submicrometer CMOS circuits.Proceedings of the
IEEE, pages 305–327, February 2003.

[10] M. Horowitz and W. Dally. How scaling will change processor architecture. InIEEE Inter-
national Solid-State Circuits Conference (ISSCC), pages 132–133, February 2004.

[11] S. Borkar. Low power design challenges for the decade. InAsia and South Pacific Design
Automatic Conference (ASP-DAC), pages 293–296, 2001.

140 BIBLIOGRAPHY

[12] J. Stinson and S. Rusu. A 1.5 GHz third generation Itanium processor. InIEEE International
Solid-State Circuits Conference (ISSCC), pages 252–253, February 2003.

[13] S. Naffziger, T. Grutkowski, and B. Stackhouse. The implementation of a 2-core multi-
threaded Itanium family processor. InIEEE International Solid-State Circuits Conference
(ISSCC), pages 182–183, 592, February 2005.

[14] S. Rusu, S. Tam, H. Muljono, D. Ayers, and J. Chang. A dual-core multi-threaded Xeon pro-
cessor with 16MB L3 cache. InIEEE International Solid-State Circuits Conference (ISSCC),
pages 102–103, February 2006.

[15] H. D. Man. Ambient intelligence: Gigascale dreams and nanoscale realities. InIEEE Inter-
national Solid-State Circuits Conference (ISSCC), pages 29–35, February 2004.

[16] R. Ho, K. W. Mai, and M. A. Horowitz. The future of wires.Proceedings of the IEEE, pages
490–504, April 2001.

[17] International Roadmap Committee. International technology roadmap for semiconductors,
2005 edition. Technical report, ITRS, 2005.http://public.itrs.net/.

[18] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De. Parameter variations
and impact on circuits and microarchitecture. InIEEE International Conference on Design
Automation (DAC), pages 338–342, June 2003.

[19] K. Asanovic, R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Husbands, K. Keutzer, D.A. Patterson,
W.L. Plishker, J. Shalf, S. W. Williams, and K.A. Yelick. The landscape of parallel comput-
ing research: A view from berkeley. Technical Report UCB/EECS-2006-183, University of
California, Berkeley, 2006.

[20] S. Kaneko, K. Sawai, N. Masui, et al. A 600 MHz single-chip multiprocessor with 4.8GB/s
internal shared pipelined bus and 512kB internal memory. InIEEE International Solid-State
Circuits Conference (ISSCC), pages 254–255, February 2003.

[21] T. Takayanagi, J. Shin, B. Petrick, J. Su, and A. Leon. A dual-core 64b ultraSPARC micropro-
cessor for dense server applications. InIEEE International Solid-State Circuits Conference
(ISSCC), February 2004.

[22] T. Shiota, K. Kawasaki, Y. Kawabe, W. Shibamoto, A. Sato, T. Hashimoto, F. Hayakawa,
S. Tago, H. Okano, Y. Nakamura, H. Miyake, A. Suga, and H. Takahashi. A 51.2 GOPS
1.0 Gb/s-DMA single-chip multi-processor integrating quadruple 8-way VLIW processors.
In IEEE International Solid-State Circuits Conference (ISSCC), pages 194–195, February
2005.

[23] D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P. Hofstee, C. Johns, J. Kahle, A. Kameyama,
J. Keaty, Y. Masubuchi, M. Riley, D. Shippy, D. Stasiak, M. Suzuoki, M. Wang, J. Warnock,
S. Weitzel, D. Wendel, T. Yamazaki, and K. Yazawa. The design and implementation of
a first-generation CELL processor. InIEEE International Solid-State Circuits Conference
(ISSCC), pages 184–185, February 2005.

[24] J. Hart, S. Choe, L. Cheng, C. Chou, A. Dixit, K. Ho, J. Hsu, K. Lee, and J. Wu. Implementa-
tion of a 4th-generation 1.8GHz dual-core SPARC v9 microprocessor. InIEEE International
Solid-State Circuits Conference (ISSCC), pages 186–187, February 2005.

BIBLIOGRAPHY 141

[25] A. Bright, M. Ellavsky, A. Gara, R. Haring, G. Kopcsay, R. Lembach, J. Marcella,
M. Ohmacht, and V. Salapura. Greating the BlueGene/L supercomputer from low-power
SoC AISCs. InIEEE International Solid-State Circuits Conference (ISSCC), pages 188–
189, February 2005.

[26] A. Leon, J. Shin, K. Tam, W. Bryg, F. Schumachier, P. Kongetira, D. Weisner, and A. Strong.
A power-efficienct high-throughput 32-thread SPARC processor. InIEEE International
Solid-State Circuits Conference (ISSCC), pages 98–99, February 2006.

[27] M. Golden, S. Arekapudi, G. Dabney, M. Haertel, S. Hale, L. Herlinger, Y. Kim, K. McGrath,
V. Palisetti, and M. Singh. A 2.6GHz dual-core 64b x86 microprocessor with DDR2 memory
support. InIEEE International Solid-State Circuits Conference (ISSCC), February 2006.

[28] E. Cohen, N. Rohrer, P. Sandon, M. Canada, C. Lichtenau, M. Ringler, P. Kartschoke adn
R. Floyd, J. Heaslip, M. Ross, T. Pflueger, R. Hilgendorf, P. McCormick, G. Salem, J. Connor,
S. Geissler, and D. Thygesen. A 64b cpu pair: Dual- and single-processor chips. pages 333–
334, February 2006.

[29] J. Friedrich, B. McCredie, N. James, et al. Design of the POWER6TM microprocessor. In
IEEE International Solid-State Circuits Conference (ISSCC), February 2007.

[30] Y. Yoshida, T. Kamei, K. Hayase, et al. A 4320MPIS four-processor core SMP/AMP with
individually managed clock frequency for low power consumption. InIEEE International
Solid-State Circuits Conference (ISSCC), February 2007.

[31] U.G. Nawathe, N. Hassan, L. Warriner, K. Yen, B. Upputuri, D. Greenhill, A. Kumar, and
H. Park. An 8-core 64-thread 64b power-efficient SPARC SoC. InIEEE International Solid-
State Circuits Conference (ISSCC), pages 108–109, February 2007.

[32] Z. Chen, P. Ananthanarayanan, S. Biswas, et al. A 25W SoC with dual 2GHz PowerTM

cores and integrated memory and I/O subsystems. InIEEE International Solid-State Circuits
Conference (ISSCC), February 2007.

[33] J. Dorsey, S. Searles, M. Ciraula, et al. An integrated quad-core OpteronTM processor. In
IEEE International Solid-State Circuits Conference (ISSCC), February 2007.

[34] N. Sakran, M. Yuffe, M. Mehalel, J. Doweck, E. Knoll, and A. Kovacs. Implementation
of the 65nm dual-core 64b Merom processor. InIEEE International Solid-State Circuits
Conference (ISSCC), February 2007.

[35] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoffman, P. John-
son, W. Lee, A. Saraf, N. Shnidman, V. Strumpen, S. Amarasinghe, and A. Agarwal. A 16-
issue multiple-program-counter microprocessor with point-to-point scalar operand network.
In IEEE International Solid-State Circuits Conference (ISSCC), pages 170–171, February
2003.

[36] Z. Yu, M. Meeuwsen, R. Apperson, O. Sattari, M. Lai, J. Webb, E. Work, T. Mohsenin,
M. Singh, and B. Baas. An asynchronous array of simple processors for DSP applications. In
IEEE International Solid-State Circuits Conference (ISSCC), pages 428–429, February 2006.

[37] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, P. Lyer, A. Singh,
T. Jacb, S. Jain, S. Venkataraman, Y. Hoskote, and N. Borkar. An 80-tile 1.28TFLOPS

142 BIBLIOGRAPHY

network-on-chip in 65nm CMOS. InIEEE International Solid-State Circuits Conference
(ISSCC), pages 98–99, February 2007.

[38] B. Baas, Z. Yu, M. Meeuwsen, O. Sattari, R. Apperson, E. Work, J. Webb, M. Lai, D. Gur-
man, C. Chen, J. Cheung, D. Truong, and T. Mohsenin. Hardware and application of AsAP:
An asynchronous array of simple processor. InHotchips, August 2006.

[39] B. Baas, Z. Yu, M. Meeuwsen, O. Sattari, R. Apperson, E. Work, J. Webb, M. Lai, T. Mohs-
enin, D. Truong, and J. Cheung. AsAP: A fine-grain multi-core plarform for DSP applica-
tions. IEEE Micro, pages 34–45, March/April 2007.

[40] D. M. Chapiro.Globally-Asynchronous Locally-Synchronous Systems. PhD thesis, Stanford
University, Stanford, CA, October 1984.

[41] Ryan W. Apperson, Z. Yu, M. Meeuwsen, T. Mohsenin, and B. Baas. A scalable dual-clock
FIFO for data transfers between arbitrary and haltable clock domains.IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, pages 1125–1134, October 2007.

[42] M. J. Meeuwsen, Z. Yu, and B. M. Baas. A shared memory module for asynchronous arrays
of processors.Eurasip Journal on Embedded Systems, 2007:Article ID 86273, 13 pages,
2007.

[43] M. J. Meeuwsen, O. Sattari, and B. M. Baas. A full-rate software implementation of an IEEE
802.11a compliant digital baseband transmitter. InIEEE Workshop on Signal Processing
Systems (SiPS ’04), pages 124–129, October 2004.

[44] M. Laii. Atithmetic units for a high performance digital signal processor. Master’s thesis,
University of California, Davis, CA, USA, September 2004.

[45] Z. Yu and Bevan Baas. Implementing tile-based chip multiprocessors with GALS clocking
styles. In IEEE International Conference on Computer Design (ICCD), pages 174–179,
October 2006.

[46] Z. Yu and B. Baas. Performance and power analysis of glabally asynchronous locally syn-
chronous multi-processor systems. InIEEE Computer Society Annual Symposium on VLSI,
pages 378–384, March 2006.

[47] J. Oliver, R. Rao, M. Brown, J. Mankin, D. Franklin, F. Chong, and V. Akella. Tile size
selection for low-power tile-based architecture. InACM Computing Frontiers, pages 83–94,
May 2006.

[48] G. Semeraro, G. Magklis, R. Balasubramonian, D. Albonesi, S. Dwarkadas, and M. L. Scott.
Energy-efficient processor design using multiple clock domains with dynamic voltage and
frequency scaling. InIEEE International Symposium on High-Performance Computer Archi-
tecture (HPCA), pages 29–40, February 2002.

[49] S. Y. Kung. VLSI array processors. InIEEE ASSP Magazine, pages 4–22, July 1985.

[50] S. W. Keckler, D. Burger, C. R. Moore, R. Nagarajan, K. Sankaralingam, V. Agarwal, M. S.
Hrishikesh, N. Ranganathan, and P. Shivakumar. A wire-delay scalable microprocessor archi-
tecture for high performance systems. InIEEE International Solid-State Circuits Conference
(ISSCC), pages 168–169, February 2003.

BIBLIOGRAPHY 143

[51] W. Dally and B. Towles. Route packets, not wires: On-chip interconnection networks. In
IEEE International Conference on Design Automation (DAC), pages 684–689, June 2001.

[52] J. H. Ahn, W. J. Dally, B. Khailany, U. J. Kapasi, and A. Das. Evaluating the Imagine stream
architecture. InInternational Symposium on Computer Architecture (ISCA), pages 19–23,
June 2004.

[53] Texas Instruments. DSP platforms benchmarks. Technical report.http://www.ti.
com/.

[54] Berkeley Design Technology.Evaluating DSP Processor Performance. Berkeley, CA, USA,
2000.

[55] The Embedded Microprocessor Benchmark Consortium.Data sheets. www.eembc.org,
2006.

[56] N. Bindal, T. Kelly, N. Velastegui, and K. Wong. Scalable sub-10ps skew global clock distri-
bution for a 90 nm multi-GHz IA microprocessor. InIEEE International Solid-State Circuits
Conference (ISSCC), pages 346–347, 498, February 2003.

[57] T. Olsson and P. Nilsson. A digitally controlled PLL for SOC applications.IEEE Journal of
Solid-State Circuits (JSSC), pages 751–760, May 2004.

[58] E. Beigne and P. Vivet. Design of on-chip and off-chip interfaces for a GALS Noc archi-
tecture. InInternational Symposium on Asynchronous Circuits and Systems (ASYNC), pages
13–15, March 2006.

[59] J.M.Rabaey.Digital Integrated Circuits – A Design Perspective. Prentice-Hall International,
Inc, first edition, 1998.

[60] K. K. Parhi. VLSI Digital Signal Processing Systems. Wiley & Sons, 1999.

[61] G.K.Wallace. The JPEG still picture compression standard.IEEE Transactions on Consumer
Electronics, pages xviii–xxxiv, February 1992.

[62] J. Glossner, J. Moreno, M. Moudgill, J. Derby, E. Hokenek, D. Meltzer, U. Shvadron, and
M. Ware. Trends in compilable dsp architecture. InIEEE Workshop on Signal Processing
Systems, pages 181–199, October 2000.

[63] Eric W. Work. Algorithms and software tools for mapping arbitrarily connected tasks onto
an asychronous array of simple processors. Master’s thesis, University of California, Davis,
CA, USA, in prepreration 2007.

[64] E.A. Lee. Programmable DSP architectures: Part i.IEEE ASSP Magazine, pages 4–19,
October 1988.

[65] I. Kuroda and T. Nishitani. Multimedia processors.Proceedings of IEEE, pages 1203–1221,
June 1998.

[66] A. Peleg and U. Weiser. MMX technology extension to the intel architecture.IEEE Micro,
pages 42–50, August 1996.

[67] Analog Devices. Embedded processing and DSP. Technical report.http://www.
AnalogDevices.com/.

144 BIBLIOGRAPHY

[68] Freescale. Digital signal processors and controllers. Technical report.http://www.
freescale.com/.

[69] EE times. Configurable processor focuses on video sureillance systems. Technical report.
Aug. 23, 2007.

[70] S. Agarwala, A. Rajagopal, A. Hill, T. Anderson, M. Joshi, S. Mullinnix, T. Anderson,
R. Damodaran, L. Nardini, P. Wiley, P. Groves, J. Apostol, M. Gill, J. Flores, A. Chachad,
A. Hales, K. Chirca, K. Panda, R. Venkatasubramanian, P. Eyres, R. Velamuri, A. Rajaram,
M. Krishnan, J. Nelson, J. Frade, M. Rahman, N. Mahmood, U. Narasimha, J. Frade, M. Rah-
man, N. Mahmood, U. Narasimha, S. Sinha, S. Krishnan, W. Webster, D. Bui, S. Moharil,
N. Common, R. Nair, R. Ramanujam, J. Frade, and M. Ryan. A 65nm C64x+ multi-core DSP
platform for communication infrastructure.IEEE International Solid-State Circuits Confer-
ence (ISSCC), pages 262–263, February 2007.

[71] W.A. Wulf and C.G. Bell. C.mmp – a multi-mini-processor. InAFIPS Conference, pages
765–777, 1972.

[72] D. Lenoshi, J. Laudon, K. Gharachorloo, W.D. Weber, A. Gupta, J. Hennessy, M. Horowitz,
and M.S Lam. The stanford DASH multiprocessor.IEEE Computer, pages 63–79, March
1992.

[73] C.L. Seitz. The cosmic cube.Communications of the ACM, pages 22–33, January 1985.

[74] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo, J. Chapin,
D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum, , and J. Hennessy. The stan-
ford FLASH multiprocessor. InInternational Symposium on Computer Architecture (ISCA),
pages 302–313, April 1994.

[75] D.H. Lawrie. Access and alignment of data in an array processor.IEEE Transaction of
Computers, pages 1145–1155, 1975.

[76] H.S. Stone. Parallel processing with the perfect shuffle.IEEE Transaction of Computers,
pages 153–161, 1971.

[77] C. Whitby-Strevens. Transputers-past, present and future.IEEE Micro, pages 16–19, De-
cember 1990.

[78] H. T. Kung. Why systolic architectures? InComputer Magazine, January 1982.

[79] H. T. Kung. Systolic communication. InInternational Conference on Systolic Arrays, pages
695–703, May 1988.

[80] L. Snyder. Introduction to the configurable, highly parallel computer.IEEE Computer, pages
47–56, January 1982.

[81] S. Y. Kung, K. S. Arun, R. J. Gal-Ezer, and D. V. Bhaskar Rao. Wavefront array processor:
Language, architecture, and applications.IEEE Transactions on Computers, pages 1054–
1066, November 1982.

[82] U. Schmidt and S. Mehrgardt. Wavefront array processor for video applications. InIEEE
International Conference on Computer Design (ICCD), pages 307–310, September 1990.

BIBLIOGRAPHY 145

[83] A. Keung and J.M. Rabaey. A 2.4 GOPS data-driven reconfigurable multiprocessor IC for
DSP. InIEEE International Solid-State Circuits Conference (ISSCC), pages 108–110, Febru-
ary 1995.

[84] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank, P. Finch,
R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal. Baring it all to software: Raw machines.
IEEE Computer, pages 86–93, September 1997.

[85] M.B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B. Greenwald, H. Hoffmann, P. John-
son, J. Kim, J. Psota, A. Saraf, N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and
A. Agarwi. Evaluation of the raw microprocessor: An exposed-wire-delay architecture for
ILP and streams. InInternational Symposium on Computer Architecture (ISCA), June 2004.

[86] S. Rixner, W.J. Dally, U.J. Kapasi, B. Khailany, A. Lopez-Laguns, P. Mattson, and J.D.
Owens. A bandwidth-efficient architecture for media processing. InIEEE international
Symposium on Microarchitecture (MICRO), pages 3–13, November 1998.

[87] B. Khailany, W. J. Dally, A. Chang, U. J. Kapasi, J. Namkoong, and B. Towles. VLSI design
and verification of the imagine processor. InIEEE International Conference on Computer
Design (ICCD), pages 289–294, September 2002.

[88] B. Khailany, T. Williams, J. Lin, E. Long, M. Rygh, D. Tovey, and W.J. Dally. A pro-
grammable 512 GOPS stream processor for signal, image, and video processing. InIEEE
International Solid-State Circuits Conference (ISSCC), pages 272 – 273, February 2007.

[89] L. Hammond, B. Hubbert, M. Siu, M. Prabhu, M. Chen, and K. Olukotun. The stanford
Hydra CMP.IEEE Micro, pages 71–84, March 2000.

[90] H. Zhang, V. Prabhu, V. George, M. Wan, M. Benes, A. Abnous, and J. M. Rabaey. A 1-V
heterogeneous reconfigurable DSP IC for wireless baseband digital signal processing.IEEE
Journal of Solid-State Circuits (JSSC), 35(11):1697–1704, November 2000.

[91] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz. Smart memories: A
modular reconfigurable architecture. InInternational Symposium on Computer Architecture
(ISCA), pages 161–171, June 2000.

[92] K. Mai, R. Ho, E. Alon, D. Liu, Y. Kim, D. Patil, and M. Horowitz. Architecture and circuit
techniques for a reconfigurable memory block. InIEEE International Solid-State Circuits
Conference (ISSCC), pages 500–501, 2004.

[93] K. Sankaralingam, R. Nagarajan, H. Liu, J. Huh, C.K. Kim, D. Burger, S.W. Keckler, and
C.R. Moore. Exploiting ILP, TLP, and DLP using polymorphism in the TRIPS architec-
ture. InInternational Symposium on Computer Architecture (ISCA), pages 422–433, Febru-
ary 2003.

[94] M. Saravana, S. Govindan, D. Burger, S. Keckler, et al. TRIPS: A distributed explicit data
graph execution (EDGE) microprocessor. InHotchips, August 2007.

[95] H. Schmit, D. Whelihan, M. Moe, B. Levine, and R. R. Taylor. PipeRench: A virtualized
programmable datapath in 0.18 micron technology. InIEEE Custom Integrated Circuits
Conference (CICC), pages 63–66, May 2002.

146 BIBLIOGRAPHY

[96] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin. Wavescalar. InIEEE international
Symposium on Microarchitecture (MICRO), December 2003.

[97] S. Swanson, A. Putnam, M. Mercaldi, K. Michelson, A. Petersen, A. Schwerin, M. Oskin,
and S.J. Eggers. Area-performance trade-offs in tiled dataflow architectures. InInternational
Symposium on Computer Architecture (ISCA), pages 314–326, May 2006.

[98] J. Oliver, R. Rao, P. Sultana, J. Crandall, E. Czernikowski, L. W. Jones, D. Franklin,
V. Akella, and F. T. Chong. Synchroscalar: A multiple clock domain, power-aware, tile-
based embedded processor. InInternational Symposium on Computer Architecture (ISCA),
June 2004.

[99] D.C. Cronquist, P. Franklin, C. Fisher, M. Figueroa, and C. Ebeling. Architecture design
of reconfigurable pipelined datapaths. InConference on Advanced Research in VLSI, pages
23–40, March 1999.

[100] R. Baines and D. Pulley. A total cost approach to evaluating different reconfigurable architec-
tures for baseband processing in wireless receivers.IEEE Communication Magazine, pages
105–113, January 2003.

[101] S. Kyo, T. Koga, S. Okazaki, R. Uchida, S. Yoshimoto, and I. Kuroda. A 51.2GOPS scalable
video recognition processor for intelligent cruise contol based on a linear array of 128 4-way
VLIW processing elements. InIEEE International Solid-State Circuits Conference (ISSCC),
pages 48–49, February 2003.

[102] J. Carlstrom, G. Nordmark, J. Roos, T. Boden, L. Svensson, and P. Westlund. A 40Gb/s net-
work processor with PISC dataflow architecture. InIEEE International Solid-State Circuits
Conference (ISSCC), pages 60–61, February 2004.

[103] W. Eatherton. The push of network processing to the top of the pyramid. InSymposium on
Architectures for Networking and communications systems, 2005.

[104] Intellasys. SEAforth-24B, embedded array processor. Technical report.http://www.
intellasys.net/.

[105] Mathstar. Arrix family product brief. Technical report.http://www.mathstar.com/.

[106] Rapport. KC256 technical overview. Technical report. http://www.
rapportincorporated.com/.

[107] A.M. Jones and M. Butts. TeraOPS hardware: A new massively-parallel MIMD computing
fabric IC. InHotchips, August 2006.

[108] D. Lattard, E. Beigne, C. Bernard, C. Bour, F. Clermidy, Y. Durand, J. Durupt, D. Varreau,
P. Vivit, P. Penard, A. Bouttier, and F. Berens. A telecom baseband circuit based on an asyn-
chronous network-on-chip. InIEEE International Solid-State Circuits Conference (ISSCC),
pages 258–259, February 2007.

[109] V. Yalala, D. Brasili, D. Carlson, A. Hughes, A. Jain, T. Kiszely, K. Kodandapani,
A. Varadhrajan, and T. Xanthopoulos. A 16-core RISC microprocessor with network ex-
tensions. InIEEE International Solid-State Circuits Conference (ISSCC), pages 100–101,
February 2006.

BIBLIOGRAPHY 147

[110] H. Zhang, M. Wan, V. George, and J. Rabaey. Interconnect architecture exploration for low-
energy reconfigurable single-chip dsps. InIEEE Computer Society Workshop on VLSI, pages
2–8, April 1999.

[111] P. P. Pande, C. Crecu, M. Jones, A. Ivanov, and R. Saleh. Effect of traffic localization on
energy dissipation in noc-based interconnect. InIEEE International Symposium on Circuits
and Systems (ISCAS), pages 1774–1777, May 2005.

[112] S. Vangal, A. Singh, J. Howard, S. Dighe, N. Borkar, and A. Alvandpour. A 5.1GHz 0.34mm2

router for network-on-chip applications. InSymposium on VLSI Circuits, pages 42–43, June
2007.

[113] J. Hu and R. Marculescu. Application-specific buffer space allocation for network-on-chip
route design. InIEEE International Conference on Computer Aided Design (ICCAD), pages
354–361, 2004.

[114] M. J. Karol, M. G. Hluchyj, and S. P. Morgan. Input versus output queueing on a space-
division packet switch.IEEE Transactions on Communications, pages 1347–1356, December
1987.

[115] W. J. Dally. Vitual-channel flow control.IEEE Transactions on Parallel and Distributed
Systems, pages 194–205, March 1992.

[116] M. B. Taylor, W. Lee, S. Amarasinghe, and A. Agarwi. Scalar operand networks: On-chip
interconnect for ILP in partitioned architecture. InIEEE International Symposium on High-
Performance Computer Architecture (HPCA), pages 341–353, February 2003.

[117] G. Campobello, M. Castano, C. Ciofi, and D. Mangano. GALS networks on chip: a new
solution for asynchronous delay-insensitive links. InDesign, Automation and Test in Europe
(DATE), pages 160–165, April 2006.

[118] K. Lee, S. Lee, and H. Yoo. Low-power network-on-chip for high-performance SoC design.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, pages 148–160, February
2006.

[119] M. Fukase, T. Sato, R. Egawa, and T. Nakamura. Scaling up of wave pipelines. InInterna-
tional Conference on VLSI Design, pages 439–445, January 2001.

[120] P. Cocchini. Concurrent Flip-Flop and repeater insertion for high performance integrated
circuits. InIEEE International Conference on Computer Aided Design (ICCAD), pages 268–
273, November 2002.

[121] B. R. Quinton, M. R. Greenstreet, and S. J.E. Wilton. Asynchronous IC interconnect network
design and implementation using a standard ASIC flow. InIEEE International Conference
on Computer Design (ICCD), pages 267–274, October 2005.

[122] A. Suga, T. Sukemura, H. Wada, H. Miyake, Y. Nakamura, Y. Takebe, K. Azegami,
Y. Himura, H. Okano, T. Shiota, M. Saito, S. Wakayama, T. Ozawa, T. Satoh, A. Sakutai,
T. Katayama, K. Abe, and K. Kuwano. A 4-way VLIW embedded multimedia processor. In
IEEE International Solid-State Circuits Conference (ISSCC), pages 240–241, February 2000.

[123] R. Witek and J. Montanaro. StrongARM: A high-performance arm processor. InIEEE
COMPCON, pages 188–191, February 1996.

148 BIBLIOGRAPHY

[124] J. Sungtae, M. B. Taylor, J. Miller, and D. Wentzlaff. Energy characterization of a tiled
architecture processor with on-chip network. InInternational Symposium on Low Power
Electronics and Design (ISLPED), pages 424–427, 2003.

[125] C. Kozyrakis and D. Patterson. Vector vs. superscalar and vliw architectures for embedded
multimedia benchmarks. InIEEE international Symposium on Microarchitecture (MICRO),
pages 283–293, November 2002.

[126] B. Gorjiara and D. Gajski. Custom processor design using NISC: a case-study on DCT algo-
rithm. In Workshop on embedded systems for real-time multimedia, pages 55–60, September
2005.

[127] T. Lin and C. Jen. Cascade – configurable and scalable DSP environment. InIEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), pages 26–29, May 2002.

[128] M. Matsui, , H. Hara, Y. Uetani, L.-S. Kim, T. Nagamatsu, Y. Watanabe, A. Chiba, K. Mat-
suda, and T. Sakurai. A 200 MHz 13 mm2 2-d DCT macrocell using sense-amplifying
pipeline flip-flop scheme.IEEE Journal of Solid-State Circuits (JSSC), pages 1482–1490,
December 1994.

[129] K. Maharatna, E. Grass, and U. Jaqdhold. A 64-point fourier transform chip for high-
speed wireless LAN application using OFDM.IEEE Journal of Solid-State Circuits (JSSC),
39:484–493, March 2004.

[130] J. Thomson, B. Baas, E. M. Cooper, J. M. Gilbert, G. Hsieh, P. Husted, A. Lokanathan,
J. S. Kuskin, D. McCracken, B. McFarland, T. H. Meng, D. Nakahira, S. Ng, M. Rattehalli,
J. L. Smith, R. Subramanian, L. Thon, Y.-H. Wang, R. Yu, and X. Zhang. An Integrated
802.11a Baseband and MAC Processor. InIEEE International Solid-State Circuits Confer-
ence (ISSCC), pages 126–127, 451, February 2002.

[131] B. M. Baas. A parallel programmable energy-efficient architecture for computationally-
intensive DSP systems. InSignals, Systems and Computers, 2003. The Thirty-Seventh Asilo-
mar Conference on, pages 2185–2189, November 2003.

[132] S. F. Smith. Performance of a GALS single-chip multiprocessor. InThe International Con-
ference on Parallel and Distributed Processing Techniques and Applicatoins (PDPTA), pages
449–454, June 2004.

[133] E. Talpes and D. Marculescu. Toward a multiple clock/voltage island design style for power-
aware processors.IEEE Transactions on Very Large Scale Integration (VLSI) Systems, pages
591–603, May 2005.

[134] A. Upadhyay, S. R. Hasan, and M. Nekili. Optimal partitioning of globally asynchronous
locally synchronous processor arrays. InGreat Lakes Symposium on VLSI (GLSVLSI), pages
26–28, April 2004.

[135] D. A. Patterson and J. L. Hennessy.Computer Architecture – A Quantitative Approach.
Morgan Kaufmann, second edition, 1999.

[136] A. Iyer and D. Marculescu. Power and performance evaluation of globally asynchronous lo-
cally synchronous processors. InInternational Symposium on Computer Architecture (ISCA),
pages 158–168, May 2002.

BIBLIOGRAPHY 149

[137] E. Talpes and D. Marculescu. A critical analysis of application-adaptive multiple clock pro-
cessor. InInternational Symposium on Low Power Electronics and Design (ISLPED), pages
278–281, August 2003.

[138] G. Semeraro, D. H. Albonesi, G. Magklis, M. L. Scott, S. G. Dropsho, and S. Dwarkadas.
Hiding synchronization delays in a GALS processor microarchitecture. InInternational Sym-
posium on Asynchronous Circuits and Systems (ASYNC), pages 159–169, April 2004.

[139] Omar Sattari. Fast fourier transforms on a distributed digital signal processor. Master’s thesis,
University of California, Davis, CA, USA, September 2004.

[140] C. E. Dike, N. A. Kurd, P. Patra, and J. Barkatullah. A design for digital, dynamic clock
deskew. InSymposium on VLSI Circuits, pages 21–24, June 2003.

[141] P. Mahoney, E. Fetzer, B. Doyle, and S. Naffziger. Clock distribution on a dual-core multi-
threaded Itanium-family processor. InIEEE International Solid-State Circuits Conference
(ISSCC), pages 292–293, February 2005.

[142] D. C. Sekar. Clock trees: differential or single ended? InInternational Symposium on Quality
of Electronic Design, pages 545–553, March 2005.

[143] M. Hashimoto, T. Yamamoto, and H. Onodera. Statistical analysis of clock skew variation
in H-tree structure. InInternational Symposium on Quality of Electronic Design, pages 402–
407, March 2005.

[144] T. Njolstad, O. Tjore, K. Svarstad, L. Lundheim, T. O. Vedal, J. Typpo, T. Ramstad, L. Wan-
hammar, E. J. Aar, and H. Danielsen. A socket interface for GALS using locally dynamic
voltage scaling for rate-adaptive energy saving. InAnnual IEEE International ASIC/SOC
conference, pages 110–116, September 2001.

[145] K.J. Nowka, G. D. Carpenter, E.W. MacDonald, H.C. Ngo, B.C. Brock, K.I. Ishii, T.Y.
Nguyen, and J.L. Burns. A 32-bit PowerPC system-on-a-chip with support for dynamic
voltage scaling and dynamic frequency scaling.IEEE Journal of Solid-State Circuits (JSSC),
pages 1441–1447, November 2002.

150 BIBLIOGRAPHY

