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Abstract

This thesis presents the design of a dynamically configurable Fast Fourier

Transform (FFT) processor built around a continuous flow, mixed-radix architecture.

Complex FFTs/inverse FFTs (IFFTs) of size 16- to 4096-point can be performed,

with the option to turn on/off block floating point (BFP), and to divide the input

data by 2 (to prevent overflow in the butterfly). An addressing scheme is presented

to accomodate performing FFTs of any size. Minimizing twiddle factor data storage

is discussed with a method to improve FFT accuracy and reduce the number of

multiplications performed within an FFT. The datapath for this processor varies

between 16- to 34-bits. Built in a 65 nm technology, a 1024-point FFT is performed

in 1.29 µs and a 4096-point FFT is performed in 6.11 µs at a clock speed of 1.01 GHz.

The accuracy is 80 dB for a 64-point FFT and 73 dB for a 1024-point random-data

FFT. The processor consumes 250 mW at 1.3 V, and takes up an area of 1.01 mm2.
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Chapter 1

Introduction

The Fast Fourier Transform (FFT) is a fundamental component of many multi-

ple digital signal processing (DSP) systems. Applications such as 802.11a/g/n [1] [2] [3],

802.16 [4], digital audio/video broadcasting [5] [6], and asymmetrical digital subscriber

line/very-high-speed digital subscriber line (ADSL/VDSL) [7] with high real-time data

throughput needs have resulted in the development of several dedicated high-speed FFT

processing engines. Recent advancement in FFT processors has resulted in increased com-

putational efficiency and reduced area requirements. In this thesis, we present a dedicated,

dynamically configurable complex FFT processor capable of performing variable-size FFTs

(from 16- to 4096-point) that combines these advancements with a dual-memory architec-

ture and addressing scheme that allows for even greater throughput. The FFT processor

utilizes a mixed radix-2/4, in-place single butterfly, continuous flow architecture with a

symmetrically-reduced, accuracy-increased twiddle-factor ROM.

This processor was designed with two operating environments in mind: indepen-

dent operation, and integration into a separate processing architecture, such as the Asyn-

chronous Array of Simple Processors (AsAP) [8] [9]. The I/O requirements of separate

processing architectures can be compensated for by a simple restructuring of the FFT pro-

cessor’s I/O controllers. The FFT processor design maintains full functionality in both

environments, and can be modified simply to allow for a greater range of FFT size, differing

FFT configuration, and reduction of area (through memory reduction). The FFT processor
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includes a dual-clock FIFO that allows it to asynchronously interface with external modules

upstream and downstream from itself.

One of the first FFT processors was the Honeywell chip in 1988 [10]. Since then,

a variety of FFT processors have been built, ranging in technologies from 1.5 µm [11] to

0.065 µm (this work). Prior to the implementation of this work, FFT processors could

perform as many as 156,000 1024-pt FFTs per second [12], and could consume as little as

600 nW [13]. FFT sizes capable of being performed range from as small as 2-point [14] to

as big as 8192-point [15]. Unfortunately, the SNR of FFT processors is seldomly reported,

but can be as accurate as 65 dB for a 64-point FFT [16].

The goal of this project is to develop an FFT processor that is capable of perform-

ing a wide range of configurability options, including an FFT size range of 16- to 4096-point,

complex FFT/inverse FFT (IFFT) functionality, dynamic configurability, block floating

point (BFP)/fixed point, and the ability to scale input data to prevent overflow/saturation.

Secondary goals of being able to perform 1,000,000 1024-point FFTs per second and achieve

at least 70 dB SNR of accuracy for a 1024-point FFT were also established. While the actual

performance of the FFT processor falls short of the speed goal (774,000 1024-point FFTs

per second), the average SNR of a 1024-point FFT is 74.13 dB, and the chip hosts the

specified range of configurability options. This chip was not designed with the philosophy

of minimizing power consumption or chip area foremost in consideration, though achieved

reasonable measures of both, primarily due to the technology used.

The first generation of the Asynchronous Array of Simple Processors (AsAP) men-

tioned in this thesis was jointly developed by Zhiyi Yu, Michael Meeuwsen, Ryan Apperson,

Omar Sattari, Michael Lai, Jeremy Webb, Eric Work, Tinoosh Mohsenin, Mandeep Singh,

and advisor Bevan Baas. The second generation of AsAP was developed by Dean Truong,

Tinoosh Mohsenin, Zhiyi Yu, Wayne Cheng, Zhibin Xiao, Paul Mejia, Christine Watnik,

Gouri Landge, Eric Work, Jeremy Webb, myself (Anthony Jacobson), and advisor Bevan

Baas. The design for the FFT processor was built primarily upon the ideas of Bevan Baas.

Layout was performed by Dean Truong. My contribution to this project includes the design,

simulation, synthesis and testing of the FFT processor, including the creation of address

generation algorithms, the continuous flow architecture control, the design of the datapath
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pipeline, the mixed-radix butterfly module, and the optimization of the SNR of FFTs.

This thesis assumes a basic-level knowledge of the FFT algorithm as presented by

Cooley and Tukey [17], and will only briefly cover relevant FFT background and previous

FFT processor information in Chapter 2. An overview of the chip’s architecture will then

be given in Chapter 3, focusing on the FFT butterfly and dual-memory configuration.

This will be followed by an indepth look at the input data-control and configurability

options, the addressing scheme, and the twiddle-factor ROM architecture. After this, the

chip’s specifications will be given in Chapter 4, along with a comparison to other recent

dedicated FFT processor’s speed, power, and FFT accuracy specifications. Finally, potential

improvements and future work will be covered, followed by a brief summary of the processor

and concluding remarks in Chatper 5.
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Chapter 2

Background

The FFT is a common method of computing the Discrete Fourier Transform

(DFT) [18]. The Cooley-Tukey algorithm is a very common FFT which recursively di-

vides the DFT into smaller DFTs with multiplication by complex unity-magnitude num-

bers known as twiddle factors; organizations of DFTs into arrays of 2 or 4 smaller DFTs

are known as radix-2 and radix-4 FFTs, respectively. A mixed-radix FFT (MRFFT) com-

bines multiple radices (typically radix-2 and radix-4). Due to the lower number of complex

multiplications needed when performing radix-4 computations (25% fewer) [19], efficient

mixed-radix FFT’s perform radix-4 calculations whenever possible. In an FFT, when N

(generally complex) samples are inputted, N samples will be outputted after computation

has taken place.

2.1 Butterfly Architecture

The primary computational unit in the FFT is the butterfly, which performs both

complex multiplication by the twiddle factors with pieces of data in the sequence and the ad-

dition/subtraction of these products. A single radix-4 butterfly performs the computational

equivalent of four radix-2 butterflies; a radix-4 butterfly can also be modified to function as

a radix-2 butterfly. Figure 2.1 shows a radix-2 decimated in time (DIT) butterfly structure.

Figure 2.2 shows a DIT radix-4 butterfly structure. The MRFFT architecture has been

utilized in previous FFT processors [12] [20] [21] [16].
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A

B

W

X = A+BW

Y = A - BW

Figure 2.1: A radix-2 DIT butterfly.

A

B

C

D

Wb

Wc

Wd

U = A + BWb + CWc + DWd

V = A -iBWb – CWc + iDWd

X = A – BWb + CWc - DWd

Y = A + iBWb – CWc - iDWd

Figure 2.2: A radix-4 DIT butterfly.

2.2 Memory-Based Architecture

The FFT algorithm consists of several stages of computation. Data storage is

required between these stages, and can be handled several ways. The larger the FFT being

performed, the larger the amount of data storage required. This relationship is linear.

To achieve high throughput, pipelined FFT architectures have been proposed that

rely on additional processing elements in lieu of memory banks [22] [23]. These additional

processing elements consume considerably more area than memory-based FFT processors

[16], particularly if the “in-place” addressing scheme (where data is sent back to the same

location in memory where it was retrieved) presented by Johnson [24] is implemented. As

a result, the scale of the architecture expands rapidly as the size of the FFT increases, as
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I/O

Processing
Element

Memory
Bank 1

Figure 2.3: A single memory FFT processor architecture. Only the I/O or the processing
element can access the memory. While the I/O is accessing memory, the processing element
cannot operate, thus restricting system throughput.

the processing elements carry the burden of storing the extra scope of FFT data.

Single memory bank architectures have been proposed by Bidet [25], Baas [26] and

more recently Sung [15] (see Figure 2.3). The benefit of a single memory bank architecture

lies primarily in its smaller chip size. Additionally, accessing only a single memory bank

requires less control than having to regulate memory accesses between multiple memory

banks. The primary draw-back of this architecture is a lack of continuous operation of

the processing element when the memory is busy receiving input data and sending output

data via I/O. This results in a setback to throughput, as data cannot be sent to the FFT

processor while the processor is computing the FFT.

A continuous flow architecture is one where the processing element (the butterfly)

is constantly computing data, with no breaks between FFTs to accommodate I/O require-

ments. The idea of a continuous flow architecture is presented by Radhouane [27]; this

continuous flow architecture allows for non-stop operation of the FFT processing element,

though for a radix-2 butterfly. This idea is expanded upon by Baek [21], for an MR archi-

tecture, using two memory banks, each consisting of four separate memories of size N/4,

where N is the size of the desired FFT.

In this architecture (see Figure 2.4), data is sent from I/O to memory bank 1.

When all the data has been sent, the FFT processing element can begin computing the

FFT on this data and the I/O can begin sending another set of data to memory bank 2.
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I/O

Processing
Element

Memory
Bank 1

Memory
Bank 2

Cross-bar

Figure 2.4: A continuous flow FFT processor architecture. While the I/O is connected to
memory bank 1, the processing element is connected to memory bank 2. After the I/O and
processing element have finished, they switch memory bank access; the I/O connects to
memory bank 2 and the processing element connects to memory bank 1. Both the I/O and
the processing element can never access the same memory simultaneously. As long as the
I/O can supply enough data, the processing element can be continuously active, increasing
throughput.

Once the FFT processing element has finished computing the FFT on the data in memory

bank 1, it can begin to compute the FFT on the data in memory bank 2. While this new

FFT is being computed, the I/O can read the data from memory bank 1, and, once this is

finished, send a new set of data back to memory bank 1. The FFT processing element thus

alternates between memory banks, and as long as new data is sent to the non-active memory

bank, continuous operation of the processing element occurs, maximizing the throughput

of the FFT processor.

2.3 Twiddle Factors

The twiddle factors needed in the computation of the FFT are represented by

integer powers of the following equation:

WN = e−i2π/N (2.1)

where N is the size of the FFT desired. This can be restated as:

WN = e−iθN (2.2)
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where θN is equal to 2π/N , and restated again utilizing Euler’s identity:

WN = cos(θN ) + i sin(θN ) (2.3)

Numbers in the form of Equation 2.3 lay on the unit circle. FFT’s require multiplication

by various powers of twiddle factors [17]:

W y
N = e−iyθN (2.4)

As y in W y
N increases linearly, the twiddle factor value rotates clockwise around the unit

circle at a constant rate.

One method of attaining twiddle factors is to generate them; the CORDIC al-

gorithm presents one such method of doing so [15]. A more common method is to store

the twiddle factors in an on-chip ROM. A 4096-point FFT/IFFT requires 4096 distinct

complex twiddle factor values, resulting in the need for a very-large ROM (often referred

to as a W-ROM). The size of this ROM can be reduced considerably by manipulating the

symmetry of the twiddle factors between 0 and 2π. A W-ROM storing just the twiddle

factors from 0 to π/2 was used by Chang [28]. Symmetry was exploited further in [29],

storing just the twiddle factor values from 0 to π/4, reducing the size of the ROM needed by

an additional factor of 2. Thus, for a 4096-point FFT, a W-ROM consisting of 512 complex

twiddle factors along with decoding logic can be used.
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Chapter 3

Design

Our dynamically configurable, variable-length FFT processor features a mixed

radix-2/4 continuous-flow architecture, a corresponding input data control scheme and ad-

dress generating scheme, and a symmetrically-reduced twiddle-factor ROM. These com-

ponents and the overall system design will be discussed below with analysis of associated

performance, accuracy, and speed trade-offs. The FFT processor is capable of performing

16- to 4096-point complex FFTs/IFFTs, with or without block floating point(BFP) arith-

metic, and with or without dividing incoming data by 2 (not dividing data by 2 could allow

overflow in the butterfly; saturation occurs in this case).

3.1 Architecture Overview

The FFT processor is composed of an I/O half and a butterfly half, centered around

two memory banks (see block diagram, Figure 3.1). The I/O half contains the modules that

control the interface between the FFT processor and the user. The butterfly half contains

the address generator, twiddle factor ROM (W-ROM), and the butterfly module. The

memory banks are composed of simple mux logic and four 1k-word memories.

Additionally, the I/O component of the FFT processor interfaces with upstream

and downstream modules asynchronously through the use of a dual-clock FIFO [30]. The

upstream and downstream modules are assumed to operate on independent clock domains.

These two modules are also assumed to contain their own dual-clock FIFOs, and be respon-
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eg.

Data Write (I/O)
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Figure 3.1: FFT Processor Block Diagram. This diagram highlights the top-level internal composition of the FFT processor, including
the complete datapaths for both the I/O and butterfly portions of the processor. Memory bank 1 & 2 are identical. The component
‘Mux, Reg.’ consists of a multiplexor immediately followed by a register.
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Upstream Module Downstream ModuleFFT Processor

Osc.Osc. Osc.

Data Data

StallStall

Dual-
clock
FIFO

Dual-
clock
FIFO

Dual-
clock
FIFO

Upstream Clock 
Domain

FFT Clock
Domain

Figure 3.2: FFT processor clock domain. This figure shows the interface between the FFT
processor and the upstream and downstream modules. Data is sent from the upstream
module in the upstream module’s clock domain, and arrives at the FFT processor’s FIFO,
as long as the FFT processor’s stall signal is low. Likewise, the FFT processor sends data
to the downstream module in its own clock domain so long as the downstream module’s
stall signal is low.

sive to stall signals (in the event of data congestion leading to the filling of a FIFOs buffer).

This interface can be seen in Figure 3.2.

3.2 System Datapath

At the core of the FFT processor is the primary functional component, a radix-4

butterfly. The radix-4 butterfly is composed of 3 complex multipliers, 12 complex adders,

and rounding logic. The butterfly input and output utilizes a 16-bit real and 16-bit imag-

inary word width. The processor can handle FFTs varying in size from 16-point to 4096-

point. For FFTs of length 2m with m even (16, 64, 256, 1024, 4096; integer powers of 4), the

butterfly performs standard radix-4 functionality throughout the entire FFT. For m-odd

sized FFTs (32, 128, 512, 2048), the butterfly functions as a radix-4 butterfly for the first

(m − 1)/2 stages, and then switches functionality to act as a radix-2 butterfly for the final

needed radix-2 stage. This is easily done, since the equations for a radix-2 butterfly [19]:

X = A + BW (3.1)

Y = A − BW (3.2)
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* * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *+

32 bits

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
+ 1

A (real/imag)
+/- BWb (real/imag)
+/- CWc (real/imag)
+/- DWd (real/imag)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0½ LSB

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

16 bits
A(real/imag) +/- BWb(real/imag) +/- CWc(real/imag) +/- DWd(real/imag)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 3.3: Rounding within the butterfly. After the real portions of A and the products
BWb, CWc, and DWd are summed, 1/2 an LSB is added to the sum, and the 16 most
significant bits are kept, truncating and discarding the rest. For cases where subtraction is
necessary, the values are first inverted, and then addition occurs similarly.

are functionally equivalent to the following radix-4 butterfly output equations (Figure 2.2):

X = A − BWb + CWc − DWd (3.3)

Y = A + iBWb − CWc − iDWd (3.4)

when the inputs B and D in Equations 3.3 and 3.4 are tied to zero. This occurs throughout

the entire radix-2 stage.

The complex multipliers within the butterfly produce the products BWb, CWc,

and DWd. To achieve the highest level of accuracy, the maximum number of bits are

preserved throughout the butterfly stage. After going through the multipliers, the real and

imaginary parts of the products are each 32 bits long. Adding the real components of A,

BWb, CWc, and DWd together yields a sum that is 34 bits long. Rounding this data back

to the 16 most significant bits involves adding 1/2 of a least significant bit of the future 16

bit sum and truncating the rest of the bits. Figure 3.3 shows the rounding performed after

the addition of the real portions of the complex products are added together. Rounding is

performed identically after the addition of the imaginary portions of the complex products

are summed.

The butterfly is fed with data read from one of two banks of memory on chip.

These two memory banks are each composed of four 1K x 32-bit memories, and are the
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Data bit Configurability function

15 Configuration enable
14 1 = IFFT, 0 = FFT
13 1 = divide input data by 2, 0 = do not divide input by 2
12 1 = fixed point arithmetic, 0 = block floating point arithmetic

11-8 size of FFT (see Table 3.2)
7-0 unused

Table 3.1: Composition of configuration word by bit. Bit 15 must be high in order for the
FFT processor to recognize the configuration word.

foundation for the continuous-flow architecture. So long as the chip is fed with enough

data, the continuous-flow architecture guarantees that the butterfly will be 100% active.

An address generator controls accessing data from memory by producing memory read

enable signals and sending addresses to memory to read the appropriate data. The address

generator also sends the appropriate index value to the twiddle-factor ROM and controls

the butterfly computation with an enable signal. The addresses for reading memory and

the twiddle factor ROM depend on the type and size of the FFT being computed, which is

determined by the configuration of the processor.

The configuration information is contained in the first valid piece of data sent

to the FFT processor by the upstream module in a given data set. The breakdown of

configuration bits is seen in Table 3.2. The configuration information, once received, is sent

to the address generator by the FFT processor’s I/O control logic. The I/O is also informed

by the address generator when an FFT has been completed.

Each piece of data stored in memory is composed of a 16-bit real word concatenated

with a corresponding 16-bit imaginary word. Four such 32-bit pieces of data are read from

the memory bank simultaneously, one from each 1K memory, in order to keep the butterfly

fed with data. This is accomplished by writing data to memory in such a way that regardless

of the stage or butterfly the current FFT is on, each of the four butterfly inputs is fed with

a piece of data from a separate memory in the memory bank. This data storage scheme is

discussed below. The four words of data from memory are fed into four multiplexors, and

the address generator creates select line values to send each piece of data to the appropriate

butterfly input. Likewise, the four butterfly outputs are fed into four multiplexors, and the
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Configuration word11:8 Size of FFT

4’b0000 16-pt
4’b0001 32-pt
4’b0010 64-pt
4’b0011 128-pt
4’b0100 256-pt
4’b0101 512-pt
4’b0110 1024-pt
4’b0111 2048-pt
4’b1000 4096-pt

Table 3.2: Configuration size encoding. Bits 11:8 of the configuration word sent to the FFT
processor before computing an FFT are encoded this way.

same select line values and memory addresses (both pipe-delayed) are used to send each

piece of data to the correct memory and address (possible because of the nature of the

in-place algorithm).

The continuous-flow architecture allows for one memory bank to be read from and

written to by system I/O, while the other memory bank is read from and written to by

the processing element. When an FFT on a set of data in one memory bank is complete,

the processing element begins computing the FFT on the data in the other memory bank,

if the data set has been completely written. This switching is handled by a a series of

multiplexors controlled by a select signal from the FFT address generator. The signal is

sent to multiplexors on the I/O side of the memory banks, and inverted to control the

multiplexors on the processing side of the memory banks, guaranteeing that each memory

bank will only be accessed by either the user or the processor (never both simultaneously).

The system I/O is kept to a minimum, consisting of input and output data buses,

data valid signals, and stall signals. In order to accommodate the FFT processor’s inte-

gration into AsAP, the data buses are limited to 16-bits wide. Each 32-bit data word is

sent over two clock cycles, the 16-bit real portion, followed by the 16-bit imaginary portion.

Each data word input must be accompanied by a valid signal in order to be recognized by

the FFT processor. Likewise, each piece of data output by the processor will be accompa-

nied by a valid signal. The output stall signal indicates to the module upstream that the

FFT processor cannot presently accept additional data. The input stall signal from the

downstream module is used to tell the FFT processor to halt outputting computed data.
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The first word in a given data set sent to the FFT processor contains the configuration

information for the FFT to be computed.

Within the butterfly, the output values are shifted by 2 bits in order to accommo-

date signal growth by a factor of 4. However, in a radix-4 architecture, there is a chance

that data coming out of the butterfly can grow by more than a power of 4. This can occur

because although the twiddle factors lie on the unit circle, the data on the butterfly inputs

is not guaranteed to; as a result, the products in the equations seen in Figure 2.2 are not

guaranteed to lie within the unit circle, and thus may have a magnitude of greater than

1. After thousands of simulations with random data, we have not had this occur, but the

possibility led us to include the option to divide input data by 2, guaranteeing that multi-

plication by twiddle factors would result in products that lie within the unit circle, and that

data coming out of the butterfly will be no more than 4 times greater than data going in.

This allows us to keep the maximum number of bits in each word of data every FFT stage.

If the user chooses not to divide the data by 2 initially, in the event of overflow within the

butterfly, the data will be saturated to maintain the maximum amount of accuracy.

In order to further optimize accuracy within the FFT processor, block floating

point (BFP) is included, with the configuration option to disable it if desired. BFP is

performed by checking each piece of data coming out of the butterfly in any given stage and

forwarding the minimum number of same-bits at the beginning of each word per stage ahead

to the butterfly inputs of the next stage. The data entering the butterfly in the next stage

is shifted by the minimum same-bit value of the previous stage in order to maximize the

magnitude of the data set (preserving the maximum number bits during truncation within

the butterfly). This is done once per stage, and immediately before the FFT is computed.

One advantage of doing so is the ability to receive a set of data with a very small maximum

magnitude and shift the data prior to computation so that the greatest number of significant

bits is maintained throughout processing. This is exemplified by the case of a sinusoidal

pulse input with magnitude 1/4. Without BFP, the SNR of a 1024-point FFT with this

input is 25.2 dB, while with BFP the SNR is 76.3 dB. The FFT processor tracks the total

number of bits shifted during BFP and concatenates it to the configuration information for

output after the FFT is complete.
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Mixed-Radix
Butterfly

Memory Bank

Shifter
Leading

Bits
Detector

Minimum Number of Leading Bits 
in a Set of Data (7 bits)

Figure 3.4: Block floating point diagram. After computation of each piece of data in a
given data set, the number of identical leading bits in each of the butterfly output words
is recorded. After the data set has been computed, the minimum number of leading bits
in the entire data set is forwarded to a shifter, and the data is shifted to the left by this
number (prior to entering the butterfly).

After the FFT has been computed, the first piece of data the processor outputs is

the configuration information for the data set which was just processed. The structure of

the word is the same as the input configuration word, except the last eight bits of the bus

represent the number of bits the data was shifted due to BFP. After this, the computed data

is read from memory and sent out to the downstream module (as long as the downstream

module’s stall signal is low).

3.3 Input Data Control

For an FFT, bit reversal must take place within the FFT, or at the input or output

in order to correctly compute the FFT [31]. In this DIT FFT processor, bit reversal is done

initially, which to simplifies outputting the computed data (data will be read out serially).

For FFTs of size 2n where n is even, bit reversal is done as follows (for a data word m):

mn−1mn−2...m3m2m1m0 => m1m0m3m2...mn−1mn−2 (3.5)
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For FFTs of size 2n with n odd, where a radix-2 stage of butterflies is needed at the end of

the FFT, bit reversal is done as follows:

mn−1mn−2...m4m3m2m1m0 => m0m2m1m4m3...mn−1mn−2 (3.6)

The index used to identify each piece of data for bit reversal is implemented with

an incrementer. The size of the incrementer is dependent on the size of the FFT being

performed. In addition, the incrementer counts up for an FFT, and down for an IFFT;

indexing data this way allows an IFFT to be performed with the exact same data writing

and address generation scheme presented here for an FFT. It is this index that is bit reversed

to determine the address and memory to which the associated piece of data will be written.

The four 1k memories within each memory bank have one read port and one write

port. This restricts us to reading and writing one word of data per clock cycle; since each

butterfly requires four words of input data and outputs four words of data per clock cycle,

achieving maximum throughput is accomplished when each memory is written to and read

from every clock cycle within an FFT stage. In order to satisfy this requirement, a scheme

was developed independently from but similar to [16] for writing input data to memory.

The pattern of this scheme is found in Table 3.3. Such a pattern ensures that regardless of

the current stage within the FFT, each of the four pieces of data needed for a particular

butterfly will come from different memories. This is seen in part by examining the sample

butterfly inputs presented in Table 3.4.

This scheme is easily realized in hardware. The resulting indices are as follows:

dataindex = mn−1mn−2 ... m3m2 m1m0 (3.7)

The address each piece of data will be written to is equal to the first n−2 bits of the index:

address = mn−1mn−2...m3m2 (3.8)

Determining which memory the data will be written to is more difficult. Adding together

each pair of grouped bits in the index, and then employing mod-4 arithmetic to the sum

yields the desired memory:

memory = (mn−1mn−2 + ... + m3m2 + m1m0)mod4 (3.9)
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Address in Memory 0 Memory 1 Memory 2 Memory 3
Memory

0 0 1 2 3

1 7 4 5 6
2 10 11 8 9
3 13 14 15 12

4 19 16 17 18
5 22 23 20 21
6 25 26 27 24
7 28 29 30 31

8 34 35 32 33
9 37 38 39 36
10 40 41 42 43
11 47 44 45 46
12 49 50 51 48

13 52 53 54 55
14 59 56 57 58
15 62 63 60 61

16 67 64 65 66
17 70 71 68 69
18 73 74 75 72
19 76 77 78 79
20 82 83 80 81
21 85 86 87 84
22 88 89 90 91
23 95 92 93 94

24 97 98 99 96
25 100 101 102 103
26 107 104 105 106
27 110 111 108 109
28 112 113 114 115
29 119 116 117 118
30 122 123 120 121
31 125 126 127 124

32 130 131 128 129
...

...
...

...

Table 3.3: FFT input data index addressing scheme, post bit reversal. This addressing
scheme shows to which memory each piece of input data is written, and which address in
the memory that the data is written to. This scheme is the same regardless of the length of
FFT desired. The bold indices represent the first four pieces of data sent to the butterfly
at the beginning of each FFT stage.
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Stage Butterfly # Inputs

0 0 0, 1, 2, 3

0 1 4, 5, 6, 7
0 2 8, 9, 10, 11
0 3 12, 13, 14, 15

... ... ...

1 0 0, 4, 8, 12

1 1 1, 5, 9, 13
1 2 2, 6, 10, 14
1 3 2, 7, 11, 15

... ... ...

2 0 0, 16, 32, 48

2 1 1, 17, 33, 49
2 2 2, 18, 34, 50
2 3 3, 19, 35, 51

... ... ...

3 0 0, 64, 128, 196

3 1 1, 65, 129, 197
3 2 2, 66, 130, 198
3 3 3, 67, 131, 199

... ... ...

Table 3.4: The first four butterfly input indices for the first four stages of an FFT. The
highlighted indices in the first butterfly of each stage correlate with the highlighted indices
in Table 3.3.

Implementing Equation 3.8 is trivial, and implementing Equation 3.9 requires no more than

six 2-bit adders (the modular arithmetic is performed by simply discarding the overflow and

keeping the two least-significant bits).

Data is read out similarly. After the configuration information of the computed

FFT is sent out to the user, the computed data is sent out. Since bit reversal has already

taken place, the memory and address generation is identical to Equations 3.8 and 3.9.

3.4 Address Generation

The address generator is the primary controller behind the actual FFT computa-

tion itself. When a valid configuration word is received, the address generator initializes

itself to begin an FFT of the requested size and specifications, once the entire data set has

been written to memory. The address generator is responsible for producing the addresses
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Stage Address Incrementer Composition

0 grgr−1...g1g0

1 gr−2...g1g0b1b0

2 gr−4...g0b3...b0
...

...
x-2 g1g0bs−2...b1b0

x-1 bsbs−1...b1b0

Table 3.5: Composition of the address incrementer. The address incrementer signal is
separated into a group (g) and butterfly (b) counter for an x-stage FFT.

needed to read data from memory (the same addresses are used to write computed data

back to memory due to the in-place structure of the FFT algorithm, and are pipe-delayed

accordingly), the memory write enable signals, the index needed to access the appropri-

ate twiddle factor ROM values, and the select values for the multiplexors that distribute

data between the memories and the butterfly inputs and outputs. Additionally, the address

generator indicates to the FFT processor’s I/O control when an FFT has been completed.

Each stage of the FFT (regardless of the size of the FFT being computed) has a

unique group counter and butterfly counter. The values of these counters are derived from

the value of a primary address incrementer. After every address generation, the incrementer

advances. The first stage of an N -point FFT is comprised of N/4 radix-4 butterflies within

a single group. The second stage consists of N/16 radix-4 butterflies in each of 4 groups,

and so forth. If needed, a last radix-2 stage will be broken down into one group of radix-2

butterflies. The composition of the incrementer signal is broken down as seen in Table 3.5.

As mentioned previously, a scheme has been implemented to write data to memory

so that regardless of stage and butterfly, all four butterfly inputs will come from different

memories. With each progressive stage, the data needed for each butterfly comes from

progressively distant memory locations. Additionally, outside of the first stage (where for

each butterfly, memory read addresses are constant across all 4 memories), addresses rotate

in groups of 4 butterflies. For instance, if the addresses a, b, c, and d are generated for the

first butterfly in a group of 4:

(addr0, addr1, addr2, addr3) = a, b, c, d (3.10)
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then the next three sets of butterfly addresses will look like:

(addr0, addr1, addr2, addr3) = d, a, b, c (3.11)

(addr0, addr1, addr2, addr3) = c, d, a, b (3.12)

(addr0, addr1, addr2, addr3) = b, c, d, a (3.13)

respectively.

The addresses within each group of butterflies have a common prefix. To simplify

address generation, this common prefix is assigned the value of the group number. The

remainder of the address is assigned a base value for the first butterfly input with an offset

added to the other butterfly inputs outside of the first stage. The address thus takes the

form:

address = {group number, (base + offset)} (3.14)

The base value grows in size by 2 bits with each progressive FFT stage. The first two bits

of the correct base value for each butterfly is determined by subtracting each group of 2

bits of the group and butterfly counters from an initial base value of 0 (where g represents

the value of the group counter, and b represents the value of the butterfly counter):

base(n−1):(n−2) = 00 − grgr−1 − ... − g1g0 − bsbs−1 − ... − b1b0 (3.15)

The additional bits of the base signal (only needed for stages 3-6) are assigned the value of

all but the last two bits of the butterfly signal:

base(n−3):0 = bsbs−1...b3b2 (3.16)

The offset added to each base value is determined by which memory is being read from; the

length of the offset is dependent on the current stage in the FFT and is equal to the length

of the base signal. The first two bits of the offset are:

(memory 0 offset)(n−1):(n−2) = 00 (3.17)

(memory 1 offset)(n−1):(n−2) = 01 (3.18)

(memory 2 offset)(n−1):(n−2) = 10 (3.19)
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Butterfly # 1st Input Index 2nd Input Index

1 1 (N/2) + 1
2 2 (N/2) + 2
... ... ...

N/2 N/2 N

Table 3.6: Radix-2 stage butterfly inputs indices. In an N-point FFT, if a radix-2 stage is
needed, the inputs indices for that stage are generated this way.

(memory 3 offset)(n−1):(n−2) = 11 (3.20)

The remaining bits of the offset (if needed) are assigned to 0.

This addressing scheme operates independently of the length of the FFT being

performed. The address generator keeps track of the FFT’s current stage; as the FFT

progresses from one stage to the next, the appropriate adjustments to the length of the

base values, offsets, and butterfly and group counters are made. When reading and writing

occurs, the address generator produces the necessary memory enable signals. After the

final stage of the FFT, the address generator indicates to the FFT I/O that the FFT has

finished.

The index required for the twiddle factor ROM is dependent on the butterfly count

signal, and as a result is dependent on the current stage of the FFT. The index takes the

form:

twiddle factor index = {bsbs−1...b1b0, 000...} (3.21)

The index is 10 bits long; (10−s) 0’s are concatenated at the end to make up the difference

in length between the index signal length and the butterfly count signal length.

For instances where a radix-2 stage is needed (at the end of odd power of 2 sized-

FFTs), addresses are generated slightly differently. As seen in Table 3.6, the data index for

the second butterfly input is always (N/2) above the first input. The addressing scheme

used to write the data to memory initially accounts for this, and guarantees that both inputs

to the butterfly will come from different memories. Determining which memory to read the

first input’s data from is identical to the method in Equation 3.9. The second input’s data

is read from the next sequential memory, as seen in Table 3.7.
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1st Input Memory 2nd Input Memory

Memory 0 Memory 1
Memory 1 Memory 2
Memory 2 Memory 3
Memory 3 Memory 0

Table 3.7: Radix-2 stage input data memory locations. This table shows which memory
the second butterfly input data is stored, given the memory of the first.

W-ROM
512x32b

W
Decoder

W Index

Wb Index

Wc Index

Wd Index

Shifter/
Adder

Wb_enc
Wc_enc
Wd_encWb, Wc, Wd

Index[11:9]

Wb

Wc

Wd

Figure 3.5: Twiddle factor ROM architecture

The address for the first input of an FFT of size N is:

radix-2 butterfly input 1 address = butterfly count (3.22)

and the address for the second input, found by adding an offset of N/2 is:

radix-2 butterfly input 2 address = butterfly count + N/2 (3.23)

The twiddle factor index is determined similarly to Equation 3.21.

3.5 Twiddle Factor ROM

In a radix-4 FFT, the twiddle factors Wb, Wc, and Wd, are all of the form of

Equation 2.4. Wc and Wd can be calculated if Wb is known by using the following relation-

ships [32]:

Wc = W 2
b (3.24)
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Wd = W 3
b (3.25)

Writing Wb in the form:

Wb = e−iθb (3.26)

yields:

Wc = (e−iθb)2 = e−i2θb = e−iθc (3.27)

and:

Wd = (e−iθb)3 = e−i3θb = e−iθd (3.28)

which makes it is easy to see:

θc = 2θb (3.29)

θd = 3θb (3.30)

Thus, squaring and cubing Wb is performed by rotating around the unit circle two and

three times the angle of Wb. Since this angular rotation increases linearly, θb, θc, and θd

are used to index the desired twiddle factor in the twiddle factor ROM, and are calculated

from the index in Equation 3.21. The twiddle factor ROM (seen in Figure 3.5) first takes

the twiddle factor index from the address generator and produces these three indices based

upon it. These indices (Equations 3.31, 3.32 and 3.33) are easily calculated in binary. The

index for Wb is equivalent to the index produced by the address generator:

Wb index = {00, w index} (3.31)

Squaring Wb doubles the rotation of Wb around the unit circle, and as a result, the value

of Wc is found in the twiddle factor ROM at the index that is twice that of Wb. Thus, the

index for Wc is easily determined by shifting the index of Wb by one bit:

Wc index = 2(Wb index) = {1′b0, w index, 1′b0} (3.32)

Wd is calculated in a similar fashion, by tripling the index of Wb. This is done by adding

the indices for Wb and Wc:

Wd index = Wb index + Wc index = {1′b0, w index, 1′b0} + {2′b00, w index} (3.33)

All of these equations are implemented easily in hardware with a shifter and an adder.
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w index Location on Decoded Decoded
(11:9) unit circle (θ) (real) (imag)

3’b000 0 < θ ≤ −π/4 α[31:16] -α[15:0]
3’b001 −π/4 < θ ≤ −π/2 α[15:0] -α[31:16]
3’b010 −π/2 < θ ≤ −3π/4 -α[15:0] -α[31:16]
3’b011 −3π/4 < θ ≤ −π -α[31:16] -α[15:0]
3’b100 π < θ ≤ 3π/4 -α[31:16] α[15:0]
3’b101 3π/4 < θ ≤ π/2 -α[15:0] α[31:16]
3’b110 π/2 < θ ≤ π/4 α[15:0] α[31:16]
3’b111 π/4 < θ ≤ 0 α[31:16] α[15:0]

Table 3.8: Twiddle factor decoding at angle θ and ROM value α. When the twiddle factor
index is sent to the W-ROM, the first three bits are used to decode the value read from the
ROM (in this case α). This table shows the decoding for each possible octant of the unit
circle.

The first three bits of each of these indices are sent ahead to a decoder; these bits

represent the unit circle octant that the twiddle factor lays in. The trailing nine bits of these

indices are sent to the symmetrically-reduced encoded twiddle factor ROM. The ROM itself

only stores the positive magnitude of the twiddle factor values from 0 to −π/4, so these

nine-bit pieces of the W -indices reference a value stored within this range. Every twiddle

factor not found in this range correlates with a value of equivalent magnitude located within

this range. This value is read from the W-ROM and sent to the decoder along with the

first three bits of the indices (the octant indicators). The decoder then analyzes the octant

indicators and decodes the ROM values to the appropriate format. This decoding is shown

in Table 3.8, where the encoded value read from the ROM is “α”. Storing the data in this

way reduces the ROM to 1/8 the size it needs to be otherwise.

To represent all possible twiddle factor values from -1 to +1, a 2.14 number format

must be used. To improve accuracy, a 1.15 number format was used to store twiddle factor

values; this allows for greater accuracy in computation at the cost of not being able to

store the value “+1” in the ROM. Detecting when a twiddle factor of “+1” is needed and

bypassing multiplication altogether solves this problem and saves a large number of power-

consuming multiplications within the butterfly. When multiplying by “+1”, or “1 + 0i”,

in a complex multiplier, the product is equal to the multiplicand. The multiplier can be

bypassed then by forwarding the multiplicand to the output of the multiplier. The amount

of multiplications this saves varies based on FFT size. The total number of multiplications



C
H

A
P

T
E

R
3
.

D
E

S
IG

N
26

  16   32   64  128  256  512 1024 2048 4096
70

75

80

85

Size of FFT

S
N

R

1.15 FFT
2.14 FFT
1.15 FFT Average
2.14 FFT Average

Figure 3.6: 1.15 vs. 2.14 W-ROM FFT accuracy. This figure shows the increase in accuracy seen when a 1.15 number format W-ROM
table is used vs. when a 2.14 number format W-ROM table is used. Ten runs of each size FFT were made for each number format,
and the average SNR was mapped for each size. The dotted line indicates the 1.15 format W-ROM SNR average, and the dashed line
represents the 2.14 format W-ROM SNR average.
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FFT Size Mults. by 1 Total Mults. % Mults. by 1

16 15 24 62.50%
32 31 64 48.44%
64 63 144 43.75%
128 127 352 36.08%
256 255 768 33.20%
512 511 1792 28.52%
1024 1023 3840 26.64%
2048 2047 8704 23.52%
4096 4095 18432 22.22%

1,048,576 1,048,575 7,864,320 13.33%

1,073,741,824 1,073,741,823 12,079,595,520 8.89%

Table 3.9: Multiplications by +1 by FFT size. This table shows the number of multipli-
cations by +1 in for a variety of FFT sizes, and what fraction of the total multiplications
in the FFT they represent. Multiplications by +1 for a 1-million point and 1-billion point
FFT were included for perspective.

in an even power-of-2 FFT is (for an N -point FFT):

Mults. per FFT(even) = (N/4)(3)(log4(N)) (3.34)

For an odd power-of-2 FFT, the number of multiplications is:

Mults. per FFT(odd) = (N/4)(3)(log4(N/2)) + N/2 (3.35)

For even power-of-2 FFTs, the number of multiplications saved by bypassing multiplications

by “+1” is:

Mults. saved(even) = 3(N/4 + N/42 + ... + N/4log
4

N ) (3.36)

For odd power-of-2 FFTs, the number of multiplications saved is:

Mults. saved(odd) = 3(N/4 + N/42 + ... + N/4log
4

N/2) + 1 (3.37)

The percentage of multiplications saved is shown in Table 3.9. Because of the lack

of multiplications by “+1” in the radix-2 stage of odd power-of-2 FFTs (1 per stage), the

percentage of multiplications saved relative to even power-of-2 FFTs is somewhat reduced.

Further, to achieve the same amount of accuracy while maintaining the 2.14 number format

would require a 17-bit ROM table, and a 16 x 17 multiplier. Synthesizing components of

these specifications results in an increase of area of 4% in the butterfly, and 6% in the

twiddle factor ROM.
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FFT Size 1.15 Number Format 2.14 Number Format Difference

16 82.94 dB 81.58 dB 1.35 dB
32 82.08 dB 79.81 dB 2.26 dB
64 80.17 dB 78.71 dB 1.46 dB
128 79.24 dB 76.91 dB 2.33 dB
256 77.65 dB 75.96 dB 1.69 dB
512 76.59 dB 74.48 dB 2.11 dB
1024 74.13 dB 72.76 dB 1.36 dB
2048 72.54 dB 71.18 dB 1.36 dB
4096 71.90 dB 70.55 dB 1.35 dB

Table 3.10: Average SNR for 10 FFTs of size 16- to 4096-point for 1.15 and 2.14 W-ROM
formats. This table indicates the increase in SNR for FFTs of all sizes when a 1.15 number
format is used in a twiddle factor ROM.

Input data 
received

Memory
address bus

Written to 
memory

Input data 
control module, 

input address 
generated

Figure 3.7: Input data pipeline. This pipeline shows the datapath of signals involved in
writing input data to memory.

The increase in SNR accuracy due to the 1.15 twiddle factor format (in lieu of

the 2.14 number format) is shown in Figure 3.6. Note that for the odd power-of-2 FFTs,

the average SNR increase is 2.02 dB, which is greater than the average for even power-of-2

FFTs, which is 1.45 dB (see Table 3.10). This difference is due to a difference between the

radix-2 butterfly and the radix-4 butterfly; in the radix-2 butterfly, the outputs are shifted

only one bit, whereas in the radix-4 butterfly, outputs are shifted 2 bits to compensate for a

greater data magnitude increase within the butterfly. As a result, the radix-2 outputs lose

less data to truncation and rounding than the radix-4 outputs, and a greater SNR increase

is seen.

3.6 Data Pipelines

Data is received from an external source and written to memory. If a valid piece

of data is received, the address generator produces the next index in the FFT sequence,

and both are sent to memory. The input data pipeline is seen in Figure 3.7.
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address bus
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Figure 3.8: Output data pipeline. This pipeline shows the datapath of signals involved in
outputting data from the FFT processor to an external source.

Similarly, to send data out to an external source, the address generator produces

the next index in the sequence, and the address is sent to memory. Once the piece of data

is read from memory, it is sent to the mux/register component. From there, it travels to

the output data control module. The data, along with a valid signal, is then sent out to an

external source as long as the stall output signal is low. When the stall output signal goes

high, the data output control module will finish sending the data word it is currently sending

and wait for the stall signal to go low. The output data pipeline is seen in Figure 3.8.

More complicated than the I/O pipelines is the butterfly pipeline, which high-

lights the datapath of signals involved in computing a butterfly within the FFT. Memory

addresses corresponding to the correct data indices are generated by the address generator.

Simultaneously, the address generator produces the twiddle factor ROM index. The mem-

ory addresses are pipe-delayed 6 clock cycles for use in writing the computed data back to

memory (due to the in-place algorithm). The correctly encoded twiddle factors are then

read from the ROM, and the butterfly input data is read from memory. The butterfly input

data is sent to the mux/register module as the twiddle factors are decoded. Both the twid-

dle factors and the butterfly input data arrive at the butterfly at the same time. Regardless

of whether the butterfly is performing as a radix-2 or radix-4 butterfly, 3 complex multi-

plications occur. If acting as a radix-2 butterfly, two of the complex multiplications have

multiplicands of 0. In the next pipe stage, 12 complex additions are performed, with the

proper rounding occurring afterwards. Finally, the pipe-delayed addresses are sent along

with the butterfly output data to memory, where it is written back to the same location it

was accessed from. The butterfly pipeline is seen in Figure 3.9.



C
H

A
P

T
E

R
3
.

D
E

S
IG

N
30

Data addresses 
generated,
W index 
generated

Address
pipe-delay
register 1

Address
pipe-delay
register 2

Address
pipe-delay
register 3

Address
pipe-delay
register 4

Address
pipe-delay
register 5

Address
pipe-delay
register 6

W-index
Read encoded 

W-values
Decode W-

values

Data addresses
Read butterfly 

input data

Butterfly
output data, 
pipe-delayed

data addresses

Write butterfly 
output data

W-values,
butterfly input 

data

Complex
multiplications 

(3)

Complex
additions (12), 

rounding

Butterfly
input data

Address
Generator

W-ROM

Memory
Bank

Butterfly

Mux/
Register
Module

Figure 3.9: Butterfly data pipeline. This pipeline shows the datapath of signals involved in reading data from memory, reading twiddle
factors from the W-ROM, sending both to the butterfly for computation, and sending the computed data back to its original location in
memory.
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Chapter 4

Performance

This chip was synthesized using the ST 65 nm cell library with Design Compiler,

and layout was performed with Encounter. To the best of our knowledge this is the first

dedicated FFT processor to be built in a 65 nm technology. The processor’s layout is shown

in Figure 4.1. This chapter highlights the area and performance specifications of this work.

4.1 Area composition

Module Synthesized % of Total
Area Area

Address Generator 2520 0.5%
Butterfly 61484 11.6%

Input Data Control 5702 1.1%
Output Data Control 5866 1.1%
Block Floating Point 1960 0.4%
Twiddle Factor ROM 18060 3.4%

Multiplexor Logic 19440 3.7%
Delay Registers 3382 0.6%

Memory (8) 412341 77.6%
Area(Total) 530755 100%

Table 4.1: Area composition of synthesized FFT processor by module, µm2. This table
shows the relative sizes of the individual modules within the FFT processor, not including
the FIFO or oscillator.

The area breakdown by module of the synthesized chip is seen in Table 4.1. The

memory and the butterfly account for almost 90% of the total chip area. As a result, the
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addition of features such as block floating point arithmetic and the variable-length address

generator come at a negligible cost.

4.2 Performance & Comparison

It is difficult to compare this FFT processor with other recent FFT processors, as

the technologies used in other recent processors are 2-5 generations apart from our processor.

This makes normalization of performance difficult and less accurate. As a result, explicit

comparisons will be made between processor features, FFT accuracy, and clock cycles per

FFT only (all unrelated to the technology used), with more a general analysis of FFTs per

second, clock rate, power, and chip area. Only dedicated FFT processors built in a 0.350

µm or smaller technology will be considered. An FFT processor built in an FPGA is also

analyzed for additional comparison.

Smaller technologies inevitably lead to smaller chip areas, faster clock speeds, and

less power within a chip. Our processor’s clock speed is 1.01 GHz, and can perform a 1024-

point complex FFT in 1.29 µs, or roughly 774,000 1024-point FFTs per second. Similarly,

a 4096-point FFT takes only 6.11 µs, and 164,000 transforms can be performed per second.

The chip, when operating at 1.3 V and 1.01 GHz, dissipates 250 mW. The total chip area

for our processor is 1.01 mm2.

Among the group of FFT processors analyzed, our chip is the only processor that is

dynamically configurable. This is important, as it allows real-time flexibility in performance

between applications requiring differing configurations of FFTs without having to reset the

FFT chip. Dynamic configuration was one of the primary goals of this project.

FFT processor size range was another important criteria to consider in designing

the FFT processor. Some of the chips in Tables 4.2, 4.3, and 4.4 have the capability to

perform 8- and 8192-point FFTs, which our chip does not, but none of the chips has the

capability to perform the range of sizes ours can (9 different sizes between 16- and 4096-

point).

Very few of the chips listed possess a continuous flow architecture, and none with

the exception of [16] perform continuous flow processing with the minimum amount of
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Metric Wang [33] Miyamoto [34] Lin [29] Kuo [35] DoubleBW [36]

CMOS Technology 0.35 µm 0.35 µm 0.35 µm 0.35 µm 0.35 µm
Clock Frequency 16 MHz 133 MHz 45 MHz, 17.8 MHz 80 MHz 128 MHz
Memory Size 8 Kword 512 word est. 2 Kword 2 Kword -
Complex Word Length 16 bits 36 bits 24 bits 32 bits 48 bits
Continuous Flow No No No No -
Dynamically Configurable - No No No -
FFT Size Range 2048, 8192 512 512-2048 64-2048 at least 1024
Time for 128-pt FFT - - - - -
128-pt FFTs/second - - - - -
Time for 512-pt FFT - 23.2 µs - est. 9.8 µs -
512-pt FFTs/second - 43.1K - est. 102K -
Cycles for 1024-pt FFT - - - - -
Time for 1024-pt FFT - - 22.5µs @ 45 MHz est. 40 µs 10 µs

57 µs @ 17.8MHz
1024-pt FFTs/second - - 44.4K @ 45 MHz est. 25K 100K

17.5K @ 17.8 MHz
Cycles for 4096-pt FFT - - - - -
Time for 4096-pt FFT - - - - -
4096-pt FFTs/second - - - - -
64-pt FFT SNR - - - - -
Power 535 mW - 640 mW @ 45 MHz 574 mW 8000 mW

176 mW @ 17.8 MHz
Voltage 3.3 V - 3.3 V @ 45 MHz 3.3 V 3.3 V

2.3 V @ 17.8 MHz
Chip Size 33.75 mm2 - 21.45 mm2 6.76 mm2 429 mm2

Table 4.2: FFT Processor Specifications Table, part 1. These tables compare all known FFT processors built in a technology 0.35 µm or
smaller. The table metrics vary as information given for a particular chip may differ. A ’-’ indicates information for a particular metric
was not available.
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Metric Drey [12] Currie [14] Lin [37] Power FFT [38] Jo [16]

CMOS Technology 0.25 µm 0.25 µm 0.18 µm 0.18 µm 0.18 µm
Frequency 200 MHz 100 MHz 250 MHz 128 MHz 100 MHz
Memory Size 16 Kword - - - 8 Kword
Complex Word Length 32 bits 32 bits - 64 bits 32 bits
Continuous Flow Yes - Yes - Yes
Dynamically Configurable - - No - No
FFT Size Range 8-1024 2-4096 128 at least 1024 64-1024
Time for 128-pt FFT - - 312 ns - -
128-pt FFTs/second - - 3.2 M - -
Time for 512-pt FFT - - - - -
512-pt FFTs/second - - - - -
Cycles for 1024-pt FFT 1280 - - - 1280
Time for 1024-pt FFT 6.4 µs Initial: 11 µs - 10 µs 12.8 µs

Subsequent: est. 5.1 µs
1024-pt FFTs/second 156K Initial: 91K - 100K 78.1K

Subsequent: 196K
Cycles for 4096-pt FFT - - - - -
Time for 4096-pt FFT - Initial: 42 µs - - -

Subsequent: 20.5 µs
4096-pt FFTs/second - Initial: 24K - - -

Subsequent: 49K
64-pt FFT SNR - - - - 65 dB
Power - 2600 mW 175 mW 1000 mW -
Voltage - 2.5 V 3.3 V 1.8 V -
Chip Size - 400 mm2 3.1 mm2 - -

Table 4.3: FFT Processor Specifications Table, part 2.
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Metric Sung [15] Wang [13] Amphion [20] Chao (FPGA) [39] TM-44 [40] This Work

CMOS Technology 0.18 µm 0.18 µm 0.18 µm 0.13 µm 0.13 µm 65 nm
Frequency 150 MHz 164 Hz-6 MHz 100 MHz 127 MHz 100 MHz 1.01 GHz
Memory Size 8 Kword 1 Kword 4 Kword n/a - 8 Kword
Complex Word Length 32 bits 16-32 bits 32 bits 32 bits 64 bits 32 bits
Continuous Flow No No No No - Yes
Dynamically Configurable No No No No No Yes
FFT Size Range 2048-8192 128-1024 8-1024 1024 at least 64, 1024 16-4096
Time for 128-pt FFT - - - - - -
128-pt FFTs/second - - - - - -
Time for 512-pt FFT - - - - - -
512-pt FFTs/second - - - - - -
Cycles for 1024-pt FFT - - 5175 est. 1280 - 1305
Time for 1024-pt FFT - - 51.75 µs 10.1 µs 8.04 µs 1.29 µs
1024-pt FFTs/second - - 19.3K 100K 119K 774K
Cycles for 4096-pt FFT est. 10.4K - - - - 6174
Time for 4096-pt FFT 69 µs - - - - 6.11 µs
4096-pt FFTs/second 14.5K - - - - 164K
64-pt FFT SNR - - - - - 80 dB
Power 350 mW 0.6 mW (@10KHz) - - 8 W 250 mW
Voltage 1.8 V 0.35 V (@10KHz) - - - 1.3 V
Chip Size 38 mm2 5.46 mm2 - - - 1.01 mm2

Table 4.4: FFT Processor Specifications Table, part 3.
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Figure 4.1: FFT processor layout. Since Encounter was used to perform layout, the only visible components in the layout are the
memories (which are pre-made macros by ST), and the FIFO and oscillator (also pre-made by VCL).
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FFT Size Clock Cycles per FFT Time per FFT FFTs per second
(@ 1.01 GHz) (@ 1.01 GHz)

16 13 12.87 ns 77.7M
32 37 36.63 ns 27.3M
64 58 57.42 ns 17.4M
128 170 168.3 ns 5.94M
256 271 268.3 ns 3.73M
512 783 775.2 ns 1.29M
1024 1305 1.289 µs 774K
2048 3609 3.573 µs 280K
4096 6174 6.113 µs 164K

Table 4.5: Performance of our FFT processor. This table breaks down the speed perfor-
mance of our FFT processor at every size FFT the processor is capable of computing. The
chip was run at 1.01 GHz.

memory required to do so (twice the size of the largest FFT capable of being performed).

Minimizing chip area and power were not primary considerations of this design,

but due to the advanced technology used, both metrics performed very well relative to the

chips built in older technologies.

The goal of being able to perform 1,000,000 1024-point FFTs per second was not

met; the actual number of 1024-point FFTs capable of being performed in a second is

774,000. This is still roughly 4-5 times faster than [12], the next fastest chip. The complete

breakdown of performance by FFT size is found in Table 4.5.
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Chapter 5

Conclusion

This thesis introduces a dynamically configurable, continuous-flow, mixed-radix

complex FFT processor. Complex FFTs and IFFTs of size 16- to 4096-point can be per-

formed, and configuration options allow the user to turn on/off block floating point, and to

divide the input data by 2 (to prevent overflow in the butterfly). This processor was built in

ST’s 65 nm cell library, which allows 17,400,000 64-point FFTs, 774,000 1024-point FFTs

or 164,000 4096-point FFTs to be performed every second. To the best of our knowledge,

this is the fastest FFT chip available academically. Therefore, this processor shows the

speed potential of smaller technologies, the benefits of expanding configuration options for

real-time processing, and the accuracy potential of an FFT engine.

5.1 Problems & Challenges

Several problems and challenges surfaced throughout the duration of this project.

One problem in particular was the result of an improper design method that I employed.

Instead of reading the literature concerning similar FFT processor design prior to designing

this chip, I designed it almost exclusively around ideas that Professor Baas and I had. This

oversight was crippling because I spent months developing addressing algorithms that much

work had already been done on. In particular, the ideas found in Jo’s work [16] could have

been very useful to me had I done research in the field of FFT processor design prior to

beginning my design. This typically would be crippling, but since FFT processors are a
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fairly new and under-utilized venture, it did not hamper my results significantly.

Another challenge that I had to overcome was the development of the addressing

algorithms themselves. Knowing the desired outcome of the algorithm but not knowing how

to create the algorithm was in particular challenging. I am seldom faced with a situation

where the answers are known and the questions have to be invented. This style of thinking

took a while to get used to, since as an engineer I am typically faced with the opposite

task. Regardless, the combination of reverse-engineering and trial & error delving into the

unknown equipped me with the ability to see a problem from a different perspective than

I was previously able.

5.2 Future Work

In the future, it would be ideal if the source for this processor was opened to

promote the advancement of this FFT processor in particular and FFT processors in general.

Additionally, there are several aspects of this processor that could be improved.

The complex multiplier used in the mixed-radix butterfly could be enhanced to be more

accurate and faster, as the data path was automatically generated by the synthesizer. The

datapath between the memory banks and the I/O and processing element of the chip could

also be designed to be more efficient, as the critical path of our chip was here. For the

radix-2 butterfly processing, the radix-4 butterfly could have been modified to perform two

radix-2 butterflies simultaneously, which would have significantly improved the performance

of FFTs with a radix-2 stage at the end. The complex word length could be expanded to

allow for greater SNR accuracy throughout the chip.

Finally, the configurability capability of the chip can be enhanced in a number of

ways. FFTs smaller than 8-point and greater than 4096-point could easily be computed

due to the scalability of the processor. Static configuration could be included for jobs where

real-time configuration fluctuation is not needed. The I/O interface of the processor could

be expanded upon to allow for a greater data throughput rate (more than one 16-bit piece

of data accepted from upstream module and sent to downstream module simultaneously).
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