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Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp
New data added by B. Baas 3

Optimal Computational Tile Size

• The most efficient implementations (energy, 
throughput, circuit area) have:
– Processor sizes that capture computational kernels with few 

excess circuits

~~~ ~~~

Energy Effic.
Clock rate
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Key Properties of KiloCore

• Very small processor tiles
– Vast numbers of processors per chip
– Processors can be used for non-traditional purposes in 

highly efficient implementations
• Processors dissipate very little energy per workload 

when active
• Processors dissipate very low power when idle
• Essentially no algorithm-specific hardware in the 

programmable processors
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KiloCore Design

• Contains exactly 1,000 processors 
on one chip

• One of the first fabricated chips to 
contain 1,000 processors

• Fastest clock rate processor 
designed at a university

• Didn’t receive all libraries until 
34 days before taping out

• 12 memories containing 64 KB each 
for 768 KB of shared memory
– Memories are accessible by two 

processors directly above each
KiloCore Block Diagram 

Single Processor One 64 KB memory
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GALS Clocking

• KiloCore contains a fully-independent Globally-Asynchronous Locally-
Synchronous (GALS) clock domain in each of its 1000 processors, 
1000 packet routers, and 12 independent memories
– Processor programmable clock oscillators are ~1% of tile area
– Router oscillators are simplified and very small

• Each of the 2012 clock oscillators are placed inside 
their own clock domains—there are no global clock signals 
(except three for configuration and testing)

• Each clock oscillator is fully-unconstrained—oscillators 
may change frequency (below their fmax), halt, and restart 
arbitrarily to minimize power consumption

• Data transfer across clock domains is handled by dual-clock FIFOs
8
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Router
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Inter-Processor Communication

• Source synchronous 16-bit 
communication

• Two layer source-synchronous 
circuit switched network
– Up to 28 Gbps per link, 456 Gbps

total tile I/O
• Single layer dynamic packet 

routing network
– 9.1 Gbps maximum per port
– 45.5 Gbps maximum

Processor 
Core

Circuit Switch 
x2

Packet 
Router
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Bottom-Up Physical Design Flow
Design Flow

Synthesis

Floorplanning/ Power Gridding

Placement

Clock Tree Synthesis

Optimization

DRC & LVS

Timing Analysis

Timing Constraints
HDLMacro 

Block(s)

Routing

Export Macro Block

• Bottom-Up design flow
• Design aspects undecided when 

the physical design was started:
– Routers
– Inter-processor I/O
– Chip I/O
– Memories (both local and global)
– Oscillators
– Configuration
– Number of processors
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Processor Tile Implementation

Single processor with highlighted gates 
(percentage of tile area)

Imem
(33%)Dmem

(29%)

Osc.
(1%)

Core
(20%)

Fifo2
(4%)

Fifo1
(4%)

Router
(9%)

• Relatively simple processor design
– No hard macros
– Osc was pre-placed and routed
– I/O pin locations specified for optimal 

abutment
– Power rails specified

• Quick design iterations
– Easily changed design aspects such as 

memory size or tile size
– Verilog was changing up until 5 days 

before tapeout
• ~580k transistors per processor tile
• 239 μm “wide” × 232.3 μm “tall” 

Circ. Comm.
(1%)
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Global Metal PlanTile Metal Plan

Metal Plan

14

m11
m10
m9
m8
m7
m6
m5
m4
m3
m2
m1

Inter-Std. Cell 
Signals

Local Power Grid

(2.31%)
(4.94%)
(7.02%)
(7.53%)

(18.32%)
(24.71%)
(22.12%)
(12.83%)
(0.21%)

Global Signals

(18.63%)
(6.52%)

(21.49%)
(7.27%)

(15.40%)
(13.56%)
(6.07%)
(8.42%)

(0.13%)
(2.50%)

Power GridStd. Cells IO Pads

Signal percentages are length per layer, per total signal length
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Global Metal PlanTile Metal Plan

Metal Plan
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m11
m10
m9
m8
m7
m6
m5
m4
m3
m2
m1

Inter-Std. Cell 
Signals

Local Power 
Grid

(16.81%)
(6.49%)
(8.41%)
(6.49%)
(4.44%)

(4.44%)
(9.49%)

Global Signals Power Grid

(11.95%)
(9.47%)

Std. Cells IO Pads

Power grid percentage is percentage of max allowable

Processor Level Power Rails

• Used 7 metal layers for local 
power grid
– 39.6 μm horizontal pitch
– 20.0 μm vertical pitch

• Connected local grid 
between all processors
– Including the standard cell level 

power rails
• Manually drew in the grid of 

metal at array level

View focused on single core, showing array painted power 16
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Global Power Rails

• Metal layers 10 and 11 
are used for global 
power grid
– Only connected to 

metal layer 9 power 
rails (top level local 
power grid)

Global power rails at chip level 17

Processor Abutment

• With 1000 homogeneous 
processors, very tight abutment 
is important
– Communication wires were 

constrained with I/O pin 
placement

– 0.4 μm horizontal spacing and
4.5 μm vertical spacing

– Required fabrication cells, such as 
alignment cells cause interruption

• Removing a processor is non-ideal due 
to timing

• Specific rows required added vertical 
space to fit these cells

Configuration North Circuit Comm.

East

South

West

North Router 
Comm.

West South
East

Config.
Processor Address 18
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Processor Timing Paths
• 196 independently timed 

datapaths for direct 
communication up to only two 
tile hops

• Possible timing paths
– Circuit switched (x2 layers):

• Each core has 2 origins:
– One output buffer (Obuf)
– One long-distance buffer (LD)

• Each core has 3 destinations:
– One long-distance buffer (LD)
– Input buffer 0 (Ibuf0)
– Input buffer 1 (Ibuf1)

• Signals can pass through cores
– Packet switched:

• Single hop routers on each processor

19

Obuf

Ibuf0
LD

Ibuf1
Ibuf0
LD

Ibuf1

Ibuf0
LD

Ibuf1

Ibuf0
LD

Ibuf1
Ibuf0
LD

Ibuf1
Ibuf0
LD

Ibuf1

Ibuf0
LD

Ibuf1

Ibuf0
LD

Ibuf1
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Ibuf1

Ibuf0
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Ibuf1

Ibuf0
LD

Ibuf1

Ibuf0
LD
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LD

router router

router

router

router

Figure shows all possible 
inter-processor 
communication paths up to 
two tiles away

Ibuf0

Inter-Processor Communication Wires

Circuit switch circuitry
1% area

(9% including FIFOs)

Packet router circuitry 
9% area
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C4 Routing and Chip I/O

• Premade flip-chip BGA package 
was used
– 564 C4 bumps

• 162 I/O (63 LVDS Pairs)
• 402 Power (Vdd, Gnd, and VddIO)

– Non-ideal C4 placement and 
quantity

• All drivers and ESD clamps 
were on the periphery

• When all cores are at full speed 
and 100% activity, only sufficient 
current for center processors
– Most applications average 50% 

activity 21

Oscillator and Processor Clock Tree

• Inverter ring 
oscillator 
– Inverter chain cells 

were hand selected
– Placed and routed 

before processor to 
maintain timing

• Clock tree with
5,522 leafs to drive 
the flip-flop 
memories

Processor Skew (70 ps max.)

Osc.

22

Average Measured 
Processor Osc.

Frequencies
1.1 V 1.78 GHz

900 mV 1.24 GHz
560 mV 115 MHz
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Array Placement with Memories

• Embedding memories in the array 
placement
– Hard SRAM memory blocks forced the 

shared memory to take a specific shape

• Memories placed on bottom to 
eliminate:
– Configuration signal pass-through
– Non-regular timing for signals over 

memory
– Wasted space

23

Shared Memory

SRAM Cell

24
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KiloCore Chip

Technology 32nm IBM PDSOI CMOS

Num. Procs. 1000

Num. Mems. 12

Die Area 64 mm2

Array Area 60 mm2

Transistors 621 Million

C4 Bumps 564 (162 I/O)

Package 676 Pad Flip-Chip BGA
25
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Applications

• Several applications have been implemented 
for KiloCore:
– Fast Fourier Transform

• 4096 length, 16-bit fixed-point complex data
– Advanced Encryption Standard

• 128-bit keys
– Low Density Parity Check

• 4095 code length
– Sorting

• 100 Byte records with 10 Byte keys
• 1850 records per sorted block

27

Application Comparison

28

• KiloCore operating at 1.1 V

Data:  B. Bohnenstiehl et al., JSSC 2017.
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