
..

KILOCORE: A FINE-GRAINED
1,000-PROCESSOR ARRAY FOR
TASK-PARALLEL APPLICATIONS

..

KILOCORE IS AN ARRAY OF 1,000 INDEPENDENT PROCESSORS AND 12 MEMORY

MODULES DESIGNED TO SUPPORT APPLICATIONS THAT EXHIBIT FINE-GRAINED TASK-LEVEL

PARALLELISM. EACH PROGRAMMABLE PROCESSOR OCCUPIES 0.055 MM
2

AND SUPPORTS

ENERGY-EFFICIENT COMPUTATION OF SMALL TASKS. PROCESSORS ARE CONNECTED USING

CIRCUIT AND PACKET-BASED NETWORKS. FINE-GRAINED TASKS HAVE LOW

COMMUNICATION LINK DENSITIES, ALLOWING MOST LINKS TO BE ASSIGNED TO THE

ENERGY-EFFICIENT, HIGH-PERFORMANCE CIRCUIT NETWORK.

......Parallel processing offers well-
known benefits in performance and effi-
ciency, with many modern chip designs
focusing on integrating increasing numbers
of processors on a single die instead of increas-
ing the complexity of a smaller number of
processors.1–5 Many current and future com-
puting applications, ranging from embedded
Internet-of-Things devices to cloud datacen-
ters, are placing increased emphasis on
hardware solutions that provide high energy
efficiency alongside high performance.6

Semiconductor fabrication technologies
continue to provide increasing levels of inte-
gration,7 offering opportunities for new
architecture designs. However, increasing
fabrication costs continue to motivate the
development of programmable and/or recon-
figurable architectures, which can address the
needs of a range of applications in varying
computing domains.

In this article, we discuss KiloCore, a chip
containing a many-core programmable pro-
cessor array for applications that exhibit fine-
grained task-level parallelism. KiloCore
addresses the aforementioned factors with a
massively parallel computing platform that is
energy efficient for a wide variety of work-
loads, capable of high performance, easily
scalable to higher processor counts, and suit-
able for a range of applications and critical
kernels, either acting alone or as a coproces-
sor in a heterogeneous system.

KiloCore Architecture
KiloCore consists of an array of 1,000 inde-
pendently programmable processors along
with 12 memory modules each containing
64 Kbytes (768 Kbytes total), connected in
a mesh fabric.8 Figure 1 displays a high-
lighted die photo, along with approximate

Brent Bohnenstiehl

Aaron Stillmaker

Jon Pimentel

Timothy Andreas

Bin Liu

Anh Tran

Emmanuel Adeagbo

Bevan Baas

University of California, Davis

0272-1732/17/$33.00�c 2017 IEEE Published by the IEEE Computer Society

...

63

block boundaries within the processor and
memory tiles.

Processors
Each processor contains a 256-� 16-bit data
memory, a 128- � 40-bit instruction mem-
ory, and a 16-bit datapath, and uses single-
issue, in-order execution of memory-to-
memory instructions.9 Processors support 72
instruction types, branch prediction, predica-
tion, and loop acceleration, and include a
multiply-accumulate unit with a 40-bit accu-
mulator. Data types larger than 16 bits are
supported through carry operations for add
and subtract, or partial product accumulation
for multiplies.

Independent Memories
Independent memory modules are located
along the bottom of the array, with each
module connecting to two neighboring pro-
cessors and providing 64 Kbytes of storage.
The memory can be used to source data or
instructions. When sourcing instructions, the
memory module takes over program control
from a neighboring processor, replacing the
standard 7-bit program counter with a 16-bit
counter and extending the maximum size
of a single program from 128 to 10,922
instructions.

Network
Communication between processors is
handled by complementary circuit and packet
networks. The circuit network is statically
configured during programming to imple-
ment the most-trafficked communication

paths, with any remaining traffic being trans-
ferred using the packet network. Each pro-
cessor tile supports two circuit links and one
packet link per side and per direction, with a
circuit switch and a packet router located in
each of the 1,000 tiles. Packet routers use
wormhole routing, and both networks use
source-synchronous communication.

Clocking
Globally asynchronous, locally synchronous
clocking10 is implemented in KiloCore, with
each processor, packet router, and independ-
ent memory having its own local oscillator,
for a total of 2,012 oscillators. These are self-
timed ring oscillators that do not use phase-
locked loops, contain configurable delay ele-
ments, are configured according to their local
core’s maximum operating frequency, and
may independently halt or restart as they
wish without requiring an external reference
clock.

When cores are idle and waiting for work,
they halt their local oscillator after a short
delay, and restart it when work is available.
An idle processor consumes zero active power,
with leakage amounting to 1.1 percent of its
typical active power. This low leakage is
achieved through heavy use of high-threshold
transistors in the design. This feature allows
KiloCore to maintain energy-efficient opera-
tion when applications are not able to keep all
processors supplied with work.

Chip
KiloCore was fabricated in a 32-nm partially
depleted silicon on insulator technology.

Instruction
memory

128- x 40-bit
Data

memory
256- x 16-bit

Osc

Osc

Pipeline
 and

control

Packet
router

Input

FIFO0

Input
FIFO1

Circuit
switch

SRAM
64 Kbytes

(32,768- x 16-bit)

In
st

st
re

am

Access
control

O
ut

p
ut

FI
FO

0
O

ut
p

ut
FI

FO
0

In
p

ut
FI

FO
2

In
p

ut
FI

FO
0

In
p

ut
FI

FO
1

Figure 1. Die photo of the KiloCore chip, with borders between individual processors and memories highlighted.

Approximated block layouts for a single processor (left) and a single independent memory (right) are shown.

..

HOT CHIPS

..

64 IEEE MICRO

The die occupies 64 mm2, with the processor
and memory array occupying 60 mm2. Kilo-
Core contains 621 million transistors. Some
of the key measurements include the
following:

� Processors, packet routers, and inde-
pendent memories operate from a
maximum voltage of 1.1 V down to
minimum voltages of 560, 670, and
760 mV, respectively.

� Processors support an average clock
rate of 1.24 GHz when operating at
0.9 V, increasing up to 1.78 GHz at
1.1 V, with similar clock rates for the
independent memory modules.

� Circuit network links transfer up to
28.5 Gbits per second (Gbps) each,
packet network links transfer up to
9.1 Gbps each, and the combined
networks support a bisection band-
width of 4.2 Tbits per second (Tbps)
at 1.1 V.

� An individual processor consumes
17 mW when 100 percent active
with a typical workload and operat-
ing at 0.9 V.

KiloCore’s physical design was imple-
mented in 34 days from access to the full
design libraries to tape out. The prototype
chip’s processors, memories, and network are
fully functional, except for hold-time viola-
tions on some network paths. The prototype
chip uses stock packaging designed for a
smaller die, which unfortunately delivers
direct power to only the central portion of
the array. At higher voltages and activities,
processors on the outside of the array operate
at reduced frequencies. Full array perform-
ance estimates are given assuming a custom
package design that would not have this
limitation.

Example Applications
Several applications have been implemented
for KiloCore and expanded to use most of
the array. Application performance is esti-
mated by simulations that are cycle accurate
within a core, use subcycle precision for core
interactions, fully model varied per-core fre-
quencies, and utilize subinstruction energy
measurements. Application code has been

lightly to moderately optimized, and addi-
tional effort would yield significant improve-
ments. Performance is given for operation
at 0.9 V.

An Advanced Encryption Standard (AES)
engine is implemented with 974 processors
for 128-bit keys. It supports a throughput of
14.5 Gbps while using 6.7 W.

A low-density parity-check (LDPC)
decoder is implemented with 968 processors
and 12 independent memories for a 4,095-bit
code length. With four decoding iterations
and a partial fifth for valid code-word detec-
tion, it has a throughput of 138 Mbits per sec-
ond (Mbps) while using 4.1 W.

A 4,096-point complex fast Fourier trans-
form (FFT) application is implemented with
980 processors and 12 independent memories,
operating on 16-bit complex data. It trans-
forms 565 MSamples per second using 4.1 W.

The first phase of an “external” record
sort is implemented with 1,000 processors.
Here, 100-byte records contain a 10-byte
sorting key and are processed into sorted
blocks of 185 Kbytes, in support of the sec-
ond merging phase of the external sort. It
sorts 1.47 Gbytes per second using 1.2 W.

Programming the Array
KiloCore is designed for high cooperation
between processors, in which each processor
executes a task of up to 128 instructions.
Mapping an application to this architecture
involves applying a series of task-partitioning
transformations, wherein the final tasks are
mappable to the processors. These transforms
are loosely categorized as serial and parallel
partitioning.

Application Task Partitioning
Serial partitioning transforms sections of code
into a sequence of tasks that form a computa-
tion pipeline. Live variables at the code sepa-
ration points are transferred between tasks
using message passing. Variables can be trans-
ferred from producers to consumers directly,
through intermediate tasks in the chain, or
using a mixture of these methods. Partition-
ing can produce tasks with as little as one
instruction that directly reads data from the
network, performs an operation, and writes
the result back to the network.

...

MARCH/APRIL 2017 65

Parallel partitioning performs task replica-
tion to increase the throughput of critical
paths in the application that exhibit data par-
allelism. This transform is typically applied to
loop bodies or is used to implement vector
operations. This partitioning introduces over-
head for splitting and joining the data being
processed by the replicas, which can involve
inserting additional data routing tasks if many
replicas are formed. When task execution time
varies significantly with the data, intelligent

distribution can be used to supply data to
tasks as they finish their computations.

Serial and parallel partitioning transforma-
tions are applied to the application multiple
times, progressing from the original code to
that which will be mapped to KiloCore. Figure
2 shows an example of partitioning a task that
processes elements in a 4,096-element data
array. This task is partitioned serially to isolate
the data access tasks from the main workload,
replicating the loop iterator to maintain cor-
rect task execution counts. Parallel partitioning
is then applied to accelerate the address genera-
tion and data computation tasks, with appro-
priate loop count modifications.

Figure 3 shows the number of instructions
required for tasks after partitioning was per-
formed for the sampled applications. All
tasks fit within the 128-word instruction
memory of a KiloCore processor.

Figure 4 shows the amount of data mem-
ory required by these same tasks. 98.7 per-
cent of tasks fit within the 512-byte data
memory of a KiloCore processor. The
remaining tasks include those that access
larger data structures in the FFT and LDPC
applications. These tasks are mapped to the
24 processors neighboring the 12 independ-
ent memories in KiloCore.

Task partitioning introduces overhead for
intertask data transfers. This overhead is
partially hidden in KiloCore by allowing
instructions to directly access the network

for(i=0; i<4096; i++){
addr = GetAddr(i);
data = data_array[addr];
result = Compute(data);
data_array[addr] = result;}

for(i=0; i<4096; i++)
addr = GetAddr(i);

for(i=0; i<4096; i++)
data = data_array[addr];

for(i=0; i<4096; i++)
result = Compute(data);

for(i=0; i<4096; i++)
data_array[addr] = result;

addr

data

result

for(i=0; i<4096; i += 2)
addr1 = GetAddr(i+1);

for(i=0; i<4096; i += 2){
data0 = data_array[addr0];
data1 = data_array[addr1];}

for(i=0; i<4096; i +=2)
result1 = Compute(data1);

for(i=0; i<4096; i += 2){
data_array[addr0] = result0;
data_array[addr1] = result1;}

addr0

data1

result1

for(i=0; i<4096; i +=2)
addr0 = GetAddr(i);

for(i=0; i<4096; i +=2)
result0 = Compute(data0);

data0

result0

addr1

Serial
partitioning

Parallel
partitioning

addr0, addr1

Figure 2. Example of serial and parallel task partitioning. Serial partitioning reduces instruction counts per task and isolates

large data structures, whereas parallel partitioning improves the throughput of critical paths.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1–15 16–31 32–47 48–64 65–80 81–96 97–112 113–128

Ta
sk

 fr
eq

ue
nc

y

Instructions required

AES Sort FFT LDPC

Figure 3. Number of instructions required by tasks in the example

applications after task partitioning. All tasks fit within the 128-word

instruction memory of a single processor. (AES: Advanced Encryption

Standard; FFT: fast Fourier transform; LDPC: low-density parity check.)

..

HOT CHIPS

..

66 IEEE MICRO

links as part of their source and destination
fields. In the sampled applications, after
partitioning, communication overhead
accounts for 30 percent of overall energy
usage, including network energy, along with
instructions for reading or writing the net-
works. This energy partially replaces that
which would be spent on writing and subse-
quently reading variables from local data
memories. In some situations, partitioning
will directly lower application energy, as a
variable transferred using the circuit net-
work over a short distance requires as little
as 25 percent of the energy used when stor-
ing and reading the same variable from a
local data memory.

Figure 5a shows throughput scaling for
the sampled applications as the core count
increases. Figure 5b shows the corresponding
energy efficiency of the applications. AES,
FFT, and LDPC show approximately linear
growth in throughput with core count, with
energy efficiency remaining steady when
going to large numbers of cores. We omit the
Sort algorithm here because it uses additional
cores to increase the size of sorted blocks, and
the amount of work being done at different
core counts is not directly comparable.

Programming
Program code is written in Cþþ or assembly
language. We use a many-core simulator, writ-
ten in Cþþ and customized for KiloCore, to
verify program correctness during develop-
ment, estimate performance, and generate
code profiles to be used for optimization.

Early profiling, using unpartitioned or
partially partitioned task code, is used to
gather code execution statistics that identify
hot spots and help guide the partitioning
effort. The profile includes network traffic
measurements to aid in assigning core links
to the circuit or packet networks.

Once the final partitioned task code has
been generated, the tasks are mapped to pro-
cessors using an automated mapping tool.
This tool includes considerations such as
avoidance of faulty or partially functional
processors; optimizations to take advantage
of process, voltage, and temperature varia-
tions; self-healing for failures due to wear-out
effects; and organization of packet traffic to
reduce congestion and energy usage.

Network Design
An important consideration for many-core
architectures is how to transfer data between
cores in a manner that is energy efficient,
avoids network congestion, and supports
intertask synchronization.

An application’s communication require-
ments depend heavily on the implementation
method. In our sampled applications,

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ta
sk

 fr
eq

ue
nc

y

Data memory required (bytes)

51
3+

44
8–

51
2

38
4–

44
7

32
0–

38
3

25
6–

31
9

19
2–

25
5

12
8–

19
1

64
–1

27
0–

63

AES Sort FFT LDPC

Figure 4. Amount of data memory required by tasks in the example

applications after task partitioning. Most tasks fit within the 512-byte data

memory of a single processor, with a small number of tasks requiring the

assistance of the independent memory modules.

0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

th
ro

ug
hp

ut

AES FFT LDPC

0.7

0.8

0.9

1.0

0 250 500 750 1,000

N
or

m
al

iz
ed

w
or

k
p

er
 e

ne
rg

y

Available cores

0 250 500 750 1,000
Available cores

(b)

(a)

Figure 5. Normalized application (a) throughput and (b) energy efficiency as

the number of cores available to the application is increased to 1,000.

...

MARCH/APRIL 2017 67

algorithms were chosen that, once parti-
tioned into fine-grained tasks, exhibited low
densities of intertask communication links.
When mapping one task to each processor,
on average only 0.15 percent of possible links
are used, as compared to maximally dense
all-to-all communication.

In Figure 6, tasks are categorized by their
number of required input or output connec-
tions. The figure shows that 95 percent of
the tasks have a fan-in of two or fewer, and
93 percent have a fan-out of one or two. This
result is partially influenced by the partition-
ing algorithms used, which favor reducing
the number of links needed.

KiloCore uses complementary circuit and
packet networks to efficiently support these
links. The low-area, low-energy, high-
throughput circuit network supports two
inputs and up to eight outputs per processor.
This network supports 95 percent of links in
the sampled applications. The remaining links
are assigned to the packet network, which is
designed for medium throughput to reduce
packet router area overhead. The packet net-
work is also used to support general adminis-
trative signaling.

Task synchronization occurs during com-
munication, with any network write instruc-
tion being matched to a read instruction at
the destination. Processors attempting to
read an unavailable input will pause and wait
for the data to arrive. Interprocessor first-in,
first-out data buffers11 hold 32 words each
and allow a transmitting processor to continue

its program after a write, forcing a pause only
when a buffer is full.

I t is near certain that more chips with
1,000 or more independent processors

will be designed and built in the future.6,12

These chips will need to consider challenging
questions regarding how these processors will
communicate and synchronize with each
other and with external system components,
as well as how software will be developed for
them, in light of their targeted applications.
Our KiloCore chip explores some answers to
these questions, demonstrating the feasibility
and potential advantages of these many-core
architectures. MICRO

Acknowledgments
We gratefully acknowledge support from
DoD and ARL/ARO grant W911NF-13-1-
0090; NSF grants 0903549, 1018972,
1321163, and CAREER Award 0546907;
SRC GRC grants 1971 and 2321, and CSR
grant 1659; and C2S2 grant 2047.

..
References
1. Z. Yu et al., “AsAP: An Asynchronous Array of

Simple Processors,” IEEE J. Solid-State Cir-

cuits, vol. 43, no. 3, 2008, pp. 695–705.

2. S. Vangal et al., “An 80-Tile Sub-100-W

TeraFLOPS Processor in 65-nm CMOS,”

IEEE J. Solid State Circuits, vol. 43, no. 1,

2008, pp. 29–41.

3. D.N. Truong et al., “A 167-Processor Com-

putational Platform in 65 nm CMOS,” IEEE

J. Solid-State Circuits, vol. 44, no. 4, 2009,

pp. 1130–1144.

4. S. Bell et al., “TILE64 Processor: A 64-Core

SoC with Mesh Interconnect,” Proc. IEEE Int’l

Solid-State Circuits Conf., 2008, pp. 88–89.

5. M. Butts and A.M. Jones, “TeraOPS Hard-

ware and Software: A New Massively-Paral-

lel, MIMD Computing Fabric IC,” Proc. IEEE

Hot Chips Symp., session 5, 2006.

6. K. Kim, “Silicon Technologies and Solutions

for the Data-Driven World,” IEEE Int’l Solid-

State Circuits Conf., 2015, pp. 1–7.

7. W.M. Holt, “Moore’s Law: A Path Going

Forward,” Proc. IEEE Int’l Solid-State Cir-

cuits Conf., 2016, pp. 8–13.

0.
61

44
.3

9

49
.8

0

5.
20

0.
00

0.
00

0.
00

57
.5

2

35
.9

8

4.
11

2.
09

0.
31

0

10

20

30

40

50

60

70

80

0 1 2 3 4–8 9+

Ta
sk

 fr
eq

ue
nc

y
(%

)

No. of links

Inputs
Outputs

Figure 6. Across sampled applications, partitioned tasks exhibit a low

density of intertask communication, with a large majority of tasks having

fewer than three inputs and fewer than three outputs.

..

HOT CHIPS

..

68 IEEE MICRO

8. B. Bohnenstiehl et al., “KiloCore: A 32 nm

1000-Processor Array,” Proc. IEEE Hot

Chips Symp. High-Performance Chips, ses-

sion 8, 2016.

9. B. Bohnenstiehl et al., “A 5.8 pJ/Op 115 Bil-

lion Ops/Sec, to 1.78 Trillion Ops/Sec 32 nm

1000-Processor Array,” Proc. Symp. VLSI

Circuits, 2016, pp. 1–2.

10. D.M. Chapiro, “Globally-Asynchronous

Locally-Synchronous Systems,” PhD disser-

tation, Computer Science Dept., Stanford

Univ., 1984.

11. R.W. Apperson et al., “A Scalable Dual-

Clock FIFO for Data Transfers between Arbi-

trary and Haltable Clock Domains,” IEEE

Trans. VLSI Systems, vol. 15, no. 10, 2007,

pp. 1125–1134.

12. S. Borkar, “Thousand Core Chips: A Technol-

ogy Perspective,” Proc. 44th Ann. Design

Automation Conf., 2007, pp. 746–749.

Brent Bohnenstiehl is a PhD student in
electrical and computer engineering at the
University of California, Davis. His research
interests include processor architecture,
VLSI design, hardware–software codesign,
dynamic voltage and frequency scaling algo-
rithms and circuits, and many-core com-
pilers and other programming and simula-
tion tools. Bohnenstiehl received a BS in
electrical and computer engineering from
the University of California, Davis. Contact
him at bvbohnen@ucdavis.edu.

Aaron Stillmaker is an assistant professor in
the Electrical and Computer Engineering
Department at California State University,
Fresno. His research interests include many-
core processor architecture, many-core appli-
cations, and VLSI design. Stillmaker received
a PhD in electrical and computer engineer-
ing from UC Davis, where he completed
the work for this article. Contact him at
astillmaker@ucdavis.edu.

Jon Pimentel is a PhD candidate in electrical
and computer engineering at the University
of California, Davis. His research interests
include floating-point architectures, VLSI
design, synthetic aperture radar imaging,
scientific applications, and many-core pro-
cessor architecture. Pimentel received an MS

in electrical and computer engineering from
the University of California, Davis. Contact
him at jjpimentel@ucdavis.edu.

Timothy Andreas is a PhD student in elec-
trical and computer engineering at the Uni-
versity of California, Davis. His research
interests include energy-efficient and high-
performance machine learning algorithms
and processor architectures. Andreas received
a BS in electrical and computer engineering
from the University of California, Davis.
Contact him at tjandreas@ucdavis.edu.

Bin Liu is a software engineer on the
machine learning and risk team at Uber. His
research interests include high-performance
many-core processor architecture, dynamic
supply voltage and frequency scaling algo-
rithms and circuits, and parallel encryption
engine implementations. Liu received a
PhD in electrical and computer engineering
from UC Davis, where he completed the
work for this article. Contact him at
binliu@ucdavis.edu.

Anh Tran is a lead hardware research engineer
at Cavium. His research interests include
VLSI designs, multicore architectures, on-
chip interconnects, and reconfigurable systems
on chip. Tran received a PhD in electrical and
computer engineering from UC Davis, where
he completed the work for this article. Con-
tact him at anhtr@ucdavis.edu.

Emmanuel Adeagbo is a physical design
engineer with Intel Platform Engineering
Group’s Big Core division. His research
interests include energy-efficient regular
expression applications, VLSI, and digital
architecture design. Adeagbo received an
MS in electrical and computer engineering
from UC Davis, where he completed the
work for this article. Contact him at
eoadeagbo@ucdavis.edu.

Bevan Baas is a professor in the Electrical
and Computer Engineering Department at
the University of California, Davis. He leads
projects in architectures, hardware, applica-
tions, and software tools for VLSI computa-
tion. Baas received a PhD in electrical engi-
neering from Stanford University. Contact
him at bbaas@ucdavis.edu.

...

MARCH/APRIL 2017 69

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

