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1. Research Motivation 2. Targeted Many-Core Architecture

* Floating-Point (FP) is the most commonly used method for real number representation [1] * AsAP2 [1]: Fine-grained many-core system AsAP 2 Single Processor
 Certain architectures are limited to fixed-point arithmetic due to the large area and power * Example of a platform whose datapath is limited  Area 0.17 mm?2
requirements for floating-point hardware [2,3] to fixed-point arithmetic | Technology 65 nm low-leakage CMOS
+ The goal: * General purpose and capable of computing Max Freq. 1.2 GHz @ 1.3V
* Increase throughput of floating-point arithmetic without the area overhead of full hardware complex. D_SP W?rkload?‘ e.g 802.11a, 5AR, H.264 Instruction Memory 128 x 35-bit
floating-point units (FPUs) * No specialized instructions :
Data Memory 128 x 16-bit

* 164 programmable processors
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[1] J.-M. Muller et al., Handbook of Floating-Point Arithmetic, 2009. | | | | | [2] S. Gilani et al., ASAP, 2011. ASAPZ Dle PhOto

Processing Core

[3] D. Truong, et al., JSSC, 2009. Additional Area [4] http://www.cpu-world.com/CPUs/80387/ [1] D. Truong, et al., JSSC, 2009.
3. Floating-Point Format Modifications
¢ IEEE'754 IS the tEChn|Ca| Standard for f|OatIng-pOInt [1] ° Another method to increase throughput W|th0Ut the Srcl(l:{O)z 5522(1:0) Srcl(ll{:Ol)z 5221(211:0)
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— Defines data format, rounding modes, operations, exception handling overhead of floating-point hardware is to utilize hybrid st ™ “\(2lsl/ st \2BM)
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 One way to decrease the overhead of floating-point hardware is to modify the floating-point format . orees T FPReg 79
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Exception handling, NaNs, £Inf, and denormal values are not supported + Hybrid of Software/Hardware 1
— Only round to nearest even supported * Fixed-point software SIenat :
* Division and square root can be performed using addition/subtraction and multiplication * Custom FP instructions carryout
e Many multimedia applications do not rely on extra modes/special number support [2,3,4] * Fixed-point Software ) 4 ) | Mantissa
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* |ncreases throughput
* Added to perform part of a floating-point operation

|[EEE-754 32-bit Floating-Point Bit Layout Hardware Portion of

1. Fang et EQRAS e 3002, e Tee 415,10, Los e o, 15025, 2002 Hybrid Multiplication Module
5. Full Software FP Modules 6. Full Hardware FP Modules
 Full software modules are one of the methods used 1/ Compute new sign bit e Full hardware modules are one of the methods used for . N i e T o conm
for performing floating-point arithmetic YOR DI\F/)ILI;M[O] DM?EM 18] DMEM [14] oerforming floating-point arithmetic Comm_ ‘F.géto F'E%O— (tspgjgg—’ﬁ o
* FP harcilware emulated using 16-bit fixed-point ALU « Arithmetic performed using floating-point hardware only N *\74 A ﬂ o
operations | | // Compute the new exponent + 16-bit operands loaded into 32-bit FP registers D“éﬁ”ﬂ L ok
* No custom FP instructions SUB NULL DMEM [16] DMEM [5] - . o L7 k aﬁ waiptier | ace |t | [Tl bon
. Software library created in assembly ADD DMEM [1] DMEM [1] regbp1 * Separate addltlon./subtractlon and multlpllcatloon ool | 2€ | P o
. Addition/Subtraction Modules in Software - modules created in hardware (allows modularity) 16 f
* IMEM usage: 2 cores // Perform multiplication * Fused and cascade multiply-add FPUs have large
* Multiplication Module in Software MACC NULL DMEM [3] DMEM [18] nop1 overhead for this platform #{
* IMEM usage: 1 core // Grab bits that we shift off » High area to implement :
¢ Large program Sizes AND NULL ACC DMEM [6] o) High throughput Full Hardware FP Modules
* No additional area to implement
* Low throughput Section of Full SW Mult Program Full Hardware FP Modules Integrated

into Datapath of a Single Processor

7. Comparison of Floating-Point Modules
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e Areaincrease: 5.1%, Add/Sub speedup: 1.8x cveles per FLOP for all FP Modules* Endpoints of interval bars: min/max
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* Area increase: 6.5%, Add/Sub speedup: 3.6x * Contour lines: throughput per
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+ Full hardware modules: have the highest FLOP | * Implementations with a HFPM or Full HW Add/Sub module have the largest throughput per area.
throughput, but require the most area ~* Endpoints of interval bars: min/max | @ Imp. 1, Full Software FPU: No additional area, 15.6 MFLOPS throughput
 Full software modules: don’t require any additional cycle counts |1l Imp. 12, Full Hardware FPU: ~20% additional area, 92.3 MFLOPS throughput
area, but have the lowest throughput - Contour lines: throughput per | = 9 implementations provide higher throughput/area than Full Software FPU
» Hybrid modules: offer midpoints between full . additional area tradeoffs | | |mp. 7: lowest throughput (due to IMEM usage), 1.7x increase in throughput per area
software and full hardware ¢ Imp. 8: only hybrid modules, 4.1x increase in throughput, 9.95% smaller than Full Hardware FPU
*Results based on synthesis in 65 CMOS with a supply voltage of 1.3 V at 1.2 GHz. *Results based on synthesis in 65 CMOS with a supply voltage of 1.3 V at 1.2 GHz.
9. Summary
* 3 hybrid floating-point modules were presented for a fine-grained processor * Nine increase throughput/area by 1.05-8.5x versus a Full Software FPU
* 12 FPU implementations were synthesized in 65 nm CMOS * Nine use 1.08-12.5x less area than a Full Hardware FPU
 Throughput was increased over a software implementation by utilizing custom FP instructions * The throughput of floating-point arithmetic was increased without incurring the area overhead of
* Area overhead was kept low by reusing the processor’s fixed-point ALU full hardware floating-point units




