Hybrid Floating-Point Modules with Low Area Overhead on a
% Fine-Grained Processing Core

Jon Pimentel and Bevan Baas University of California, Davis: VLSI Computation Laboratory

1. Research Motivation 2. Targeted Many-Core Architecture

* Floating-Point (FP) is the most commonly used method for real number representation [1] * AsAP2 [1]: Fine-grained many-core system AsAP 2 Single Processor
 Certain architectures are limited to fixed-point arithmetic due to the large area and power * Example of a platform whose datapath is limited Area 0.17 mm?2
requirements for floating-point hardware [2,3] to fixed-point arithmetic | Technology 65 nm low-leakage CMOS
+ The goal: * General purpose and capable of computing Max Freq. 1.2 GHz @ 1.3V
* Increase throughput of floating-point arithmetic without the area overhead of full hardware complex. D_SP W?rkload?‘ e.g 802.11a, 5AR, H.264 Instruction Memory 128 x 35-bit
floating-point units (FPUs) * No specialized instructions :
Data Memory 128 x 16-bit

* 164 programmable processors

Full Software ' ' Full Hardware 410 pm
. G ‘.:::;:*,'.'.'.'.'.r:.'.'.‘.r.'.'.'.:'.zm:::::m:: 7.’.’,’;
LOW Area H |gh Area i o : ~ 7 IF ID MemRd EXE 1 EXE 2 WB

Hybrid ‘ e e i 5 To Comm
Low ThroughDUt H| h Th rfrou h ut From o, FFO 1| FIFOL . | E=s
i . i Comm Wrt Rd F ding ¢ pausy
Area-Throughput Tradeoff & R P - """ [Erotrro0) | (s selbmes w
MOVE R2 R4 Software Only Jﬁ;i;. £ ""ff’";“; E‘ E wrt | Rd . .
ADD R1 R2 R3 o 1 1 e | o | wi
SHR R1 R1 R6 — S’) Decode | | DI\R/ng 4 16
SUB R7 R7 R6 % T] I 'B;IlggI:
B Acc |¢ Point
7 A8 PC ' e
Fixed-point = adrGen| | vom |- & em
9 Hardware e Rd wrt
Software Instructions - = Processor [4] 5,516 mm Datapath of Individual
[1] J.-M. Muller et al., Handbook of Floating-Point Arithmetic, 2009. | | | | | [2] S. Gilani et al., ASAP, 2011. ASAPZ Dle PhOto

Processing Core

[3] D. Truong, et al., JSSC, 2009. Additional Area [4] http://www.cpu-world.com/CPUs/80387/ [1] D. Truong, et al., JSSC, 2009.
3. Floating-Point Format Modifications
¢ IEEE'754 IS the tEChn|Ca| Standard for f|OatIng-pOInt [1] ° Another method to increase throughput W|th0Ut the Srcl(l:{O)z 5522(1:0) Srcl(ll{:Ol)z 5221(211:0)
. one . Source » 2:1 Mux Srcl Source » 2:1 l\/_IUX Srel
— Defines data format, rounding modes, operations, exception handling overhead of floating-point hardware is to utilize hybrid st ™ “\(2lsl/ st \2BM)
floating-pOint mOdUIeS Enable3——>| Re'g2 || Re'g16 |<—— Enable 4 Enable 1 ——>| Ré%_z || Re:g16 |<—— Enable 2
 One way to decrease the overhead of floating-point hardware is to modify the floating-point format . orees T FPReg 79
* HFPMs are one of the methods used for performing z l e i A
. _ . . . (7:0)
« Subset of the IEEE-754 standard’s requirements are implemented floating-point arlthmet.lc J x
. : L . * HFPMs are an alternative to Full Hardware or Full & L
— Addition/subtraction, and multiplication are implemented . . i
Software Floating-Point Modules o (10
B . . + :
Exception handling, NaNs, £Inf, and denormal values are not supported + Hybrid of Software/Hardware 1
— Only round to nearest even supported * Fixed-point software SIenat :
* Division and square root can be performed using addition/subtraction and multiplication * Custom FP instructions carryout
e Many multimedia applications do not rely on extra modes/special number support [2,3,4] * Fixed-point Software) 4) | Mantissa
* Keeps area low roonen | Hordure
Sign (1 bit) E t (8 bit Mantissa (23 bit L . . ! (2216 or
e s antissa {23 bits| * Existing ALU is used to perform simple steps " . Mult Ver. 1
O011|0{0|0|0|0|1|] O} 1|0{0(0O}J1(2y2{012]|0f2y2({21y2}1(2)2({2110]1(0]|0O|0}= 12.46092 o ¥ ata
Lo] | | Custom FP Hardware i & Dae
31 30 23 22 0
Zeroflag ¢Output

* |ncreases throughput
* Added to perform part of a floating-point operation

|[EEE-754 32-bit Floating-Point Bit Layout Hardware Portion of

1. Fang et EQRAS e 3002, e Tee 415,10, Los e o, 15025, 2002 Hybrid Multiplication Module
5. Full Software FP Modules 6. Full Hardware FP Modules
 Full software modules are one of the methods used 1/ Compute new sign bit e Full hardware modules are one of the methods used for . N i e T o conm
for performing floating-point arithmetic YOR DI\F/)ILI;M[O] DM?EM 18] DMEM [14] oerforming floating-point arithmetic Comm_ ‘F.géto F'E%O— (tspgjgg—’ﬁ o
* FP harcilware emulated using 16-bit fixed-point ALU « Arithmetic performed using floating-point hardware only N *\74 A ﬂ o
operations | | // Compute the new exponent + 16-bit operands loaded into 32-bit FP registers D“éﬁ”ﬂ L ok
* No custom FP instructions SUB NULL DMEM [16] DMEM [5] - . o L7 k aﬁ waiptier | ace |t | [Tl bon
. Software library created in assembly ADD DMEM [1] DMEM [1] regbp1 * Separate addltlon./subtractlon and multlpllcatloon ool | 2€ | P o
. Addition/Subtraction Modules in Software - modules created in hardware (allows modularity) 16 f
* IMEM usage: 2 cores // Perform multiplication * Fused and cascade multiply-add FPUs have large
* Multiplication Module in Software MACC NULL DMEM [3] DMEM [18] nop1 overhead for this platform #{
* IMEM usage: 1 core // Grab bits that we shift off » High area to implement :
¢ Large program Sizes AND NULL ACC DMEM [6] o) High throughput Full Hardware FP Modules
* No additional area to implement
* Low throughput Section of Full SW Mult Program Full Hardware FP Modules Integrated

into Datapath of a Single Processor

7. Comparison of Floating-Point Modules

Software . . ‘ . R Implementations with e T N @ Implementation 1: Full SW Add/Sub with Full SW Mult
— gﬁt;lmvmggsm 1 : - \ highestthroughput/area N P 50 MFLOPS 2 & Implementation 2: Full SW Add/Sub with HFPM Mult Ver. 1
7 Full SW Add/Sub Range PHFPM Add/Sub Ver. 2 | | i // 1 60 MFLOPS) m szﬂiﬂiﬂiﬂ i Eté'émﬁgfs/fﬁt\’/?ﬁ IfwuiltthFVL\Jllll\glifl\’; Mult
'4%% OEEH W et (32-bit 1/O). 0, 200855 &% B — g 100 T W Implementation 5: HFPM Add/Sub Ver. 1 with HFPM Mult Ver. 1
My u u : o Q <« Implementation 6: HFPM Add/Sub Ver. 1 with Full HW Mult
i SW Mgﬁb’Rgﬁge xEIJIF»anMmtI\t/em g1%0 2 = B - elelm;ementation 7: HFPM Add/Sub Ver. 2 with Full SW Mult
& S TR e Full HW Mult _ S > - m JImplementation 8: HFPM Add/Sub Ver. 2 with HFPM Mult Ver. 1
2 AR HW Mult (32-bit 10) 100r 20 ° P A Implementation 9: HFPM Add/Sub Ver. 2 with Full HW Mult
3 15 Gl; """"""""""""" . P 5 CTT———- PN S SR s SO e s s ﬁ L rr 2002MFLOPSfmm2'--------------------ef; ------------- %= Implementation 10: Full HW Add/Sub with Full SW Mult
S 10 Lopg, e L OGFL ’ - 2 i ST R R 500 E\AFLOPSfmmz-mu IIIIIIIIIIIII R @ Implementation 11: Full HW Add/Sub with HFPM Mult Ver. 1
© - e, 0 m——————areardes v e | & Implementation 12: Full HW Add/Sub with Full HW Mult
- H b d 0 0.4 0.5 0(.)18 0.185 0.19 0.195 0.2
Hybrid Modules Compared Against Full Software SN ol ea fo R)
ri : = —— : : :
Y & 5 Ol opgi Total Area versus Cycles per FLOP for Performing Unfused Multiply-Add using FPUs*
> HFPM Mult Ver. 1 | . L S ———
* Areaincrease: 1.5%, Multiplication speedup: 2.3x Do D00 DO DI itonal Aren (o 2018 D018 B How to read plot:
'HFPM Add/Sub Ver. 1 Additional A ~* Markers: average clock cycles per FLOP
_ itional Area versus . : : o
e Areaincrease: 5.1%, Add/Sub speedup: 1.8x cveles per FLOP for all FP Modules* Endpoints of interval bars: min/max
B>HFPM Add/Sub Ver. 2 yEes b cycle counts
* Area increase: 6.5%, Add/Sub speedup: 3.6x * Contour lines: throughput per
* How to read plot: | additional area tradeoffs
- * Markers: average clock cycles per e
+ Full hardware modules: have the highest FLOP | * Implementations with a HFPM or Full HW Add/Sub module have the largest throughput per area.
throughput, but require the most area ~* Endpoints of interval bars: min/max | @ Imp. 1, Full Software FPU: No additional area, 15.6 MFLOPS throughput
 Full software modules: don’t require any additional cycle counts |1l Imp. 12, Full Hardware FPU: ~20% additional area, 92.3 MFLOPS throughput
area, but have the lowest throughput - Contour lines: throughput per | = 9 implementations provide higher throughput/area than Full Software FPU
» Hybrid modules: offer midpoints between full . additional area tradeoffs | | |mp. 7: lowest throughput (due to IMEM usage), 1.7x increase in throughput per area
software and full hardware ¢ Imp. 8: only hybrid modules, 4.1x increase in throughput, 9.95% smaller than Full Hardware FPU
*Results based on synthesis in 65 CMOS with a supply voltage of 1.3 V at 1.2 GHz. *Results based on synthesis in 65 CMOS with a supply voltage of 1.3 V at 1.2 GHz.
9. Summary
* 3 hybrid floating-point modules were presented for a fine-grained processor * Nine increase throughput/area by 1.05-8.5x versus a Full Software FPU
* 12 FPU implementations were synthesized in 65 nm CMOS * Nine use 1.08-12.5x less area than a Full Hardware FPU
 Throughput was increased over a software implementation by utilizing custom FP instructions * The throughput of floating-point arithmetic was increased without incurring the area overhead of
* Area overhead was kept low by reusing the processor’s fixed-point ALU full hardware floating-point units

