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Abstract—We study the problem of mapping concurrent tasks
of an application to cores of a chip multiprocessor that utilize
circuit-switched interconnect and global asynchronous local syn-
chronous (GALS) clocking domains. We develop a configurable
algorithm that naturally handles a number of practical require-
ments, such as architectural features of the target platform, core
failures, and hardware accelerators, and in addition, is scalable to
a large number of tasks and cores. Experiments with several real
life applications show that our algorithm outperforms manual
mapping, integer linear programming-based mapping after ten
days of solver run time, and a recent packet-switched network
on chip-based task mapper through which, we underscore the
unique requirements of task mapping for circuit-switched GALS
architectures.

Index Terms—Algorithm, chip multiprocessor (CMP), global
asynchronous local synchronous (GALS), task to processor map-
ping.

I. Introduction

CHIP multiprocessor (CMP) platforms are commonplace
in both research and the commercial marketplace. Tech-

nology trends suggest that the trend of integrating more
processor cores per chip will continue into the foreseeable
future, and domain-specific many-core chips with 1000+ cores
seem imminent [2]–[4].

As the number of processors per chip grows, high-speed
communication between cores becomes more challenging. Al-
though packet-switched network-on-chip (NoC) architectures
[5], [6] offer modular and design reusable solutions, their
reliance on a single voltage-clock domain becomes a limiting
factor for both performance and power reduction. Circuit-
switched globally asynchronous locally synchronous (GALS)
interconnects [7], [8] offer a promising alternative to improve
both factors [4], [9].

While domain-specific many-cores promise large gains
in performance and energy efficiency, development of
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application software for their utilization remains a major
challenge [10]–[16]. Furthermore, there is a pressing need
for tools to efficiently map application concurrent tasks to
platform resources. In this paper, we study the problem of
mapping a given application task graph to the processors of
a given CMP platform subject to platform constraints (e.g.,
limited interconnect resources). In this paper, we aim to devise
extensible and scalable mapping algorithms that can: 1) scale
to task graphs/platforms with 1000+ tasks/cores and 2) provide
a judicious balance between solution quality and tool run time.

II. Related Work

The mapping between virtual and physical resources, which
affects application throughput, energy consumption, and qual-
ity of service, is one of the challenges of implementing an
application on a NoC-based platform.

Marcon et al. [17] proposed a simulated annealing algorithm
to solve the mapping problem for mesh based NoC architec-
tures, targeting both throughput and power consumption of
the system. Ascia et al. [18] proposed a multiobjective task
mapping approach using genetic algorithms with similar opti-
mization criteria as used in [17]. Murali and De Micheli [19]
employ traffic splitting as a technique to reduce the required
bandwidth on links of the network. They revisit the problem
in [20] with an emphasis on quality of service (QoS) in the
final mapping solution.

Hu and Marculescu [21] propose a runtime-aware technique
using a branch and bound algorithm, which constructs a
mapping solution with a deadlock-free deterministic routing
function such that the total communication energy is mini-
mized. Srinivasan and Chatha [22] proposed a technique called
MOCA, which utilizes the principles used in [19] with a focus
on the energy consumption of the system. Tosun et al. [23]
formulate the mapping problem using integer linear program-
ming (ILP), and leverage the best solutions found within
tolerable solver time to obtain the optimal or high quality
mapping solutions. Tosun [1] later proposed another technique
called CastNet, which takes advantage of the symmetry in
mesh architecture to improve both energy consumption and
algorithm runtime compared to NMAP [19] and MOCA [22]
algorithms.

The aforementioned approaches target similar packet-based
NoC as the underlying interconnect architecture. Thus, they
do not readily address our problem at hand, which concerns
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circuit-switched interconnection of processors. The compar-
ison between the two approaches to interconnect network
design is out of the scope of this paper, however, one can
find such a comparison in [9].

In our preliminary study [24], we introduced the basic
components of a mapping algorithm called balanced mapping
space exploration (BAMSE). In this paper, we bring practical
considerations, such as usecase scenarios, core failures and
fixed functions, into the mapping context. We also explore the
trade-off between solution quality and the tool run time via
parameter configuration. Furthermore, we statistically analyze
the problem of parameter configuration, and outline develop-
ment of a configuration layer on top of the basic algorithm for
arriving at a solution with acceptable quality.

III. Target Platform and Application Model

The focus of this paper is on AsAP-like platforms with
statically allocated interconnect architecture. Such platforms
offer a promising tradeoff between energy efficiency and
programmability for selected applications [25]. Discussing
AsAP2 as an example in this section would bring clarity and
justification to some of the decisions we make in designing the
algorithm. It should also be noted that our approach is generic
in nature and potentially applicable to other many-core GALS
architectures as well.

AsAP2 [4] is an academic many-core GALS processor
and contains 164 programmable cores, three fixed function
cores, and three fixed memory modules that are interconnected
via mesh topology. Each core in AsAP2 is connected to
a router, and each router is connected directly to its four
nearest neighbor routers with two unidirectional links in each
direction. Longer communications are possible by connecting
a series of links between cores. In theory, each core can
communicate with any other core on the chip.

Fig. 1(a) illustrates the architectural specifications of
AsAP2 [4]. Fig. 1(b) shows the effect of interconnect distance
between communicating processors and the clock frequency
of the source processor in this particular CMP platform
[25]. The drop in source core frequency is due to the fact
that AsAP2 uses circuit-switched interconnection for intercore
communication, in which the clock signal of the source core is
sent along with the data to maintain communication synchrony
[25]. Note that even an infrequent low throughput control
signal would slow down the clock rate at the source core, if
it has to travel far to a destination. The detailed discussion on
the hardware implementation of AsAP2 is beyond the scope
of this paper and is presented in [4].

Another limiting factor in circuit-switched interconnects is
the limited network resources. In AsAP-like circuit-switched
architectures, links are statically allocated between two com-
municating cores at the programming phase after reset when
the application is loaded to the processor. Therefore, these
links cannot be shared by other intercore connections. This
is in contrast to packet-switched networks in which, the
physical resources can be shared and the limitation reduces
to a constraint on total bandwidth allocated to links. Although
in this approach finding deadlock free mappings will not be

Fig. 1. (a) Block diagram of AsAP2 architecture [4]. Each bidirectional
connection depicted in this figure is composed of two separate unidirec-
tional connections in opposite directions. (b) Measured maximum source
core clock frequency for interconnect between AsAP2 processors of various
distances [25].

of any concern (since the resources are not shared), it can also
reduce the number of feasible solutions to a great degree.

For example, in AsAP2 there are only two bidirectional
links between any two neighboring cores. The restricted re-
sources are due to the emphasis on simultaneous extreme
energy efficiency and programmability philosophy of the plat-
form design, which stresses the significance of link resource
management during task mapping.

The platform is particulary efficient in implementing embed-
ded streaming applications, which are primarily characterized
by the requirement to process a steady stream of input data as
they are presented to the system. Such applications, are well
modeled using task graphs in which, graph nodes model tasks
and graph edges represent intertask communication channels.
In our discussion, we assume that application tasks are already
allocated to processors in the system and will be executed
on self timed schedule [26]. That is, graph nodes (tasks)
are viewed as virtual processors that need to be mapped
to physical processors existing on the chip, and all virtual
processors continue execution as long as they have input
data and space available on their input and output queues,
respectively.

IV. Problem Statement

Both application and hardware platform are represented in
the form of graphs

Task Graph: G = < V, E > (1)

Hardware Graph: H = < C, L, CAPL > . (2)

In task graph G, V denotes the set of vertices, which model
tasks, and E is the set of edges, which represents intertask
communication. Unless otherwise noted, we liberally use the
notion of task and intertask communication in G to refer to the
set of application tasks that are assigned to the same virtual
processor (i.e., a coarse-grain task), and the corresponding
interprocessor communication, respectively.

The hardware graph H consists of C, which represents
a set of available cores on the chip, and a set of links
L, which is a subset of C × C. L models possible direct
physical links between cores. Each core is connected to its
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own router, which is responsible for receiving data from and
sending data to other cores. These routers are also connected to
their neighbors, and can be statically configured to implement
longer communication links. CAPL is a function that assigns
a capacity number to links in L.

The mapping solution is characterized by two sets, S and
R, which give the mapped processor and the allocated links
for intertask communication, respectively

map(G, H) →< S, R > (3)

S ⊂ V × C (4)

R = { pathij ∈ P(L) | eij ∈ E} (5)

where P(L) is the power set of L. All tasks must be assigned
to cores, and a core can execute at most one task. Formally

∀ v ∈ V ∃ c ∈ C : (v, c) ∈ S (6)

(v1, c) ∈ S and (v2, c) ∈ S =⇒ v1 = v2 (7)

(v, c1) ∈ S and (v, c2) ∈ S =⇒ c1 = c2 (8)

pathij refers to a lean subset of links that connects vi to vj in
the mapping solution.

The mapping solution must satisfy capacity constraints

∀ l ∈ L : CAP(l) ≤ �R paths that contain l. (9)

That is, at most CAP(l) paths can use the link l in a valid
mapping solution.

It is hard to accurately estimate performance and energy
at the mapping level, however, it is evident that they are
both adversely effected by longer connections [Fig. 1(b)]. We
use two attributes of the mapping solution as proxies for
performance and energy, and use them as the optimization
objective. Specifically, we use the longest connection (LC)
and total number of connections (TC)

LC = max
R

|pathij| (10)

TC = �R |pathij|. (11)

The mapping problem as defined has a multiobjective opti-
mization criteria. We use the tuple (LC, TC) to denote the
cost of a mapping solution. Given the relative importance of
the metrics, different candidate solutions must be compared
lexicographically. That is, the longest connection (LC) has the
highest priority for optimization regardless of total connection
(TC). In comparison of two mappings with equal LC, the
one with smaller TC value would be considered to have a
smaller cost.

V. BAMSE Algorithm

We proceed to present our algorithm, called BAMSE, for
solving the formulated mapping problem. The basic idea is
to maintain a list of partial mapping solutions (initialize to
empty), and incrementally augment the partial mappings by
mapping a new task to an available core, while ensuring that
only a small number of promising partial mapping candidates
are maintained from iteration to the next. In the remainder
of this section, we will discuss these steps in detail. Specif-
ically, we discuss iterative selection of Tasks for mapping
(task selection); augmentation of partial mappings by finding

suitable cores for mapping the task at hand (core selection);
and judicious maintenance of a small subset of partial map-
pings to avoid exponential growth of retained partial solutions
(mapping selection).

A. Task Selection

Task Selection is the process by which tasks are sequentially
labeled for incremental mapping. Since the goal is to map a
task as close as possible to its connected tasks, breadth first
search (BFS) is an intuitive choice for ordering of the tasks.
In BFS, ordering the immediate children of a node are favored
over farther nodes in the graph, however, standard BFS is
silent on the tie breaking strategy when it comes to children
of a node.

To order the tasks, we use the principle leveraged by
Cuthill-McKee variant of the BFS algorithm [27], which
heuristically aims to reduce the bandwidth of the resulting
sequence of tasks. Specifically, the tasks are ordered in BFS
order, while the children of a task are themselves visited in
increasing order of their degree in the graph. In this context,
the term bandwidth is historically used to denote the maximum
distance (the number of tasks) between any parent and its
children in the sequence, and should not be confused with
bandwidth of communication channels. To avoid confusion,
we use maximum distance to children (MDC) to refer to
bandwidth in graph theory, and restrict the use of bandwidth
to communication performance discussions.

Fig. 2(a) shows the generated task sequence using Cuthill-
McKee BFS, while another variant of the BFS is used to
generate the task sequence shown in Fig. 2(b). The difference
is that in the former, node C is selected as the first child of
node A over node B due to its smaller degree, whereas in the
latter, node B has been selected as the immediate child after
node A. These child ordering policies lead to MDC = 2 for
the Cuthill-McKee BFS (only nodes H and D stand between
node B and its farthest child node F ), and MDC = 3 for
the basic BFS algorithm. Intuitively, the task sequence with
smaller MDC gives the advantage of visiting the other tasks
connected to the current task earlier in the process, which
heuristically results in mapping them closer to the current task.

B. Core Selection

A partial mapping (PM) is a mapping for the first k tasks in
the sequence, where k 	= |V |. Let, vnext refer to the next task,
namely task (k + 1), in the sequence. Since the task sequence
is created by BFS of a connected graph, the parents of a task
are visited prior to the task itself. Thus, in any partial mapping
there is a non-zero number of cores (mapped tasks) that are
connected to the next task. Let connected mapped cores refer
to the set of such cores.

In order to assign vnext to a core, the core selection process
identifies a number of unoccupied cores as potentially good
matches based on their distance to the connected mapped
cores. The lower bound on expected number of potential
matches is a configurable parameter, called minimum number
of potential candidate cores (MPC). Smaller values of MPC
would force the algorithm to behave more greedily, while the
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Fig. 2. Snapshots of BAMSE steps on an example task graph.

larger values tilt the balance toward more thorough search of
the solution space.

To create at least MPC potential candidate cores, the
neighboring set of each connected mapped core is created in
levels. From one level to the next, the acceptable radius that
defines neighborhood distance in Manhattan is incremented.
The intersection between the neighboring sets of all connected
mapped cores determines the potential candidate cores at a
particular level, since mapping vnext to any of them would
not create a link longer than the acceptable radius. The
neighboring radius is incremented until enough number (at
least MPC) of potential candidate cores are generated. Once
the list of potential candidate cores are generated, existing
partial mappings are augmented by mapping vnext to all of
them. That is, for every existing partial mapping at least MPC

augmented mappings are created.
In Fig. 2.P2, tasks A, B, C, and H are assumed to have been

mapped in previous iterations. The task that is being mapped
in the current iteration (vnext) is D. Task B is the only task
connected to D among the mapped tasks, thus the connected
mapped cores set in the partial mapping 2.P2.a is {core4},
and in the partial mapping 2.P2.b is {core5}. These two
partial mappings are only shown as examples, and potentially,

there exist many other partial mappings at this iteration. The
potential candidate cores for node D for each partial mapping
are shown in gray color.

If MPC = 1, the closest available cores to the connected
mapped cores set are explored until at least one possible
candidate is found. At radius one, partial mapping 2.P2.a has
one potential candidate core, however, there are two potential
candidate cores for the partial mapping 2.P2.b. If MPC is 2,
we would still have enough candidate cores in the case of
Fig. 2.P2.b. However, the number of potential candidate cores
in 2.P2.a would not be enough (there is only one in the set).
Therefore, the neighborhood radius is incremented, and farther
neighbors are explored to find at least MPC total candidates.
Fig. 2.P2.c illustrates the result of expanded neighborhood.

The process does not favor any of the candidates over the
others, and it accepts all potential candidates. The term mini-
mum number in MPC underscores that the number of potential
candidate cores for augmentation of a partial mapping can be
greater than or equal to MPC.

A subset of processor cores might be unavailable due to
various factors that are discussed in Section V-E. Unavailable
cores are provided to the algorithm as part of platform resource
description. At each step of finding potential candidate cores,
the candidates are compared to the list of unavailable cores
and eliminated from the set if they match the list. After this
elimination the number of remaining potential candidate cores
is compared to MPC to decide if incrementing neighborhood
radius and exploration of farther neighbors is necessary.

C. Mapping Selection

In the first iteration of BAMSE, the first (start) task of the
sequence is mapped to a core. Given the BFS nature of our
task selection process, we ensure that the start task interfaces
to the application input. The location of the start task might
be restricted to a subset of all cores, as it has to interface
with the input data stream. For example in AsAP2, the cores
on the leftmost column of the chip have access to the input
pins of the chip. It follows that the list of partial mappings
is initialized with such possible mapping of the start task.
Mapping of the start node creates a set of partial mappings
to start the process. In subsequent iterations existing partial
mappings are augmented.

For a given partial mapping in a subsequent iteration, the
task under consideration can potentially be mapped on any of
the cores in its corresponding potential candidate cores set.
As a result, multiple augmented partial mappings are created
from an existing partial mappings, and are added to a list,
called mapping list. The mapping list contains all points in
the solution space that might have a chance to evolve into
the final solution. To avoid state explosion, the mapping list
is sorted in ascending order based on the cost of each partial
mapping. The size of the list is also limited by the configurable
parameter window size (WS). If the mapping list has WS
partial mappings, each newly generated augmented partial
mapping with a cost greater than the last partial mapping
in the list (i.e., highest cost) is dropped; otherwise the new
partial mapping is placed in the list based on its mapping cost,
and the last mapping is removed from the list to maintain its
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WS size. Smaller values of window size force the algorithm
to be more greedy, while larger values tilt the balance toward
more thorough exploration of the space at the expense of
longer algorithm runtime.

Fig. 2.P3 shows the number of possible partial mappings,
when mapping task F . There are 12 partial mappings in this
stage, and they all fall into one of the four cost profiles shown
in Fig. 2.P3.a, b, c, and d. For each cost profile, only one
of the partial mappings is depicted as a representative of the
group. The number of partial mappings (PM) in each category
is also reported.

In this example if window size (WS) is 2, only the partial
mappings in Fig. 2.P3.a are passed to the next iteration.
The comparison criteria is the multiobjective cost function
presented in Section IV, which uses longest connection (LC)
as the primary, and total number of connections (TC) as the
secondary cost component. If window size is set to 8, all partial
mappings in Figs. 2.P3.a and b are kept in the mapping list.
In case window size is 12, all of the partial mappings will be
passed to the next iteration, where their augmentation with the
next node (G) is considered.

The algorithm performs under the general assumption that
the input task graph does not violate any immediate feasibility
constraint. For example, we assume that the maximum connec-
tivity degree in the task graph does not exceed the architecture
connectivity limitation. That is, to use AsAP2 as an example,
there exists no task connected to nine other tasks. Similarly, we
assume that the number of input or output tasks are not more
than the number of input or output cores on the chip. Note that
checking for these conditions is rather trivial, so assumption
is practically the same as ensuring that graph does not violate
immediate feasibility constraints.

1) Look Ahead Technique (LAT): In practice many partial
mappings at the end of the list are likely to have identical cost
tuples. In Fig. 2.P3, for example, if window size is 4 then some
of partial mappings in Fig. 2.P3.b must be dropped. In this
section, we introduce a tie-breaking technique that enables us
to differentiate between such partial mappings with identical
costs, based on the likelihood that they will lead to superior
solutions down the road.

A naive way to solve this problem would be to select an
excessively large window size to ensure that most of promising
partial mappings are maintained in the list throughout the
run time of the algorithm. Very large window sizes, how-
ever, have adverse implications on algorithm runtime and
memory requirements. Rather than increasing the window
size, our approach to overcoming this problem is to look
ahead in the task sequence, and quickly estimate the cost of
augmented partial mapping that would result from a given
partial mapping at the current iteration of the algorithm. For
a given partial mapping, our look ahead technique (LAT)
quickly maps a few more of upcoming tasks. The anticipated
cost of such augmented partial mappings, called secondary
costs, is used as the tie-breaker to sort the existing partial
mappings.

Secondary costs are merely needed as a tie-breaking mech-
anism to better sort the partial mappings at the end of the
list. Thus, it is reasonable to use a quick greedy technique

Fig. 3. Both partial mappings lead to equivalent augmented mappings.

to map the upcoming nodes, and to establish the secondary
costs. In particular, we choose to run BAMSE algorithm with
WS = 1 and MPC = 1 settings for a few more steps for
partial mappings that need tie-breaking. Note that the look
ahead technique is only performed to estimate secondary costs,
and estimated mappings are not actually committed.

We use a configurable parameter called forward number
(FN) to indicate the number of upcoming tasks that are mapped
by the look ahead technique. Intuitively, a good choice of
forward number should allow us to consider all children of
the current task in the look ahead phase. Recall from our
discussion in Section V-A that the maximum distance between
a task and its children in the task sequence is readily obtained
by traversing the sequence, and is called maximum distance
to children (MDC). Thus, we set the forward number to the
sequence MDC.

The use of look ahead technique enables us to better
sort the partial mappings in the list, and effectively reduces
the required window size to obtain quality solutions, when
compared to the baseline approach. Although it increases
the complexity of the algorithm in the asymptotic sense,
dealing with a smaller window size has positive effect on the
runtime of every iteration. Thus, its true impact on the overall
algorithm runtime is a balancing act.

2) Redundant Mappings Elimination Technique (RMET):
Although no two partial mappings in the mapping list are
identical, not all of them lead to different mappings in terms
of solution quality. For example, the two partial mappings
shown in Fig. 3 are different, however, they yield equiva-
lent augmented mappings of as the algorithm progresses. As
such, one of them is redundant. Accurate identification of
redundant partial mappings is an instance of graph isomor-
phism, which is a well known NP-hard problem. In order to
avoid the computational cost, we settle for an approximate
test, which in practice identifies redundant partial mappings
with sufficient accuracy. Specifically, we use the cost of a
partial mapping, and the locations of its terminal cores as a
measure of redundancy among partial mappings. The terminal
cores refer to the set of cores in a partial mapping that are
connected to unmapped upcoming tasks in the application
(set {B, H} in Fig. 3). Intuitively, if two partial mappings
have the same cost and their cores with open connection are
at the same locations, it is very likely that one of them is
redundant. Elimination of a redundant partial mapping allows
us to utilize the limited space on the mapping list more
efficiently.
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D. Integrated Link Assignment

Due to limited network resources on many of the circuit-
switched platforms, not all task mappings would result in
feasible implementations with valid link assignment between
connected cores. In our experiments with AsAP, link assign-
ment was a very constraining factor for some benchmark appli-
cations. We conclude that it is more efficient to integrate link
assignment in the task mapping process, to avoid generation of
infeasible mapping solutions. Since link assignment needs to
be applied to the many partial mappings that are considered
by BAMSE, an important design preference is fast runtime
over thorough exploration of the search space.

To this end, we developed a XY link assignment algorithm
that incrementally assigns links to surviving augmented partial
mappings. Our XY link assignment technique only considers
paths that entirely lie in the bounding box of two connected
cores. In mesh interconnects, the length of all such paths
is exactly the Manhattan distance between the two cores.
A book-keeping table records the occupied link resources
for each partial mapping. In each iteration of BAMSE, an
augmented partial mapping inherits the table from its parent
partial mapping, and incrementally adds new information on
allocated links to the table. Subsequently, the capacity of the
allocated links are updated. Infeasible partial mappings, i.e.,
those that cannot successfully establish all required intercore
communications with remaining link resources, are eliminated
from the mapping list.

E. Unavailable Cores and Fixed Functions

Due to a number of reasons such as prior mapped appli-
cations in multiapplication mapping or core failure caused
by imperfect manufacturing yield and exhaustion of on-chip
electronic components, a subset of cores might become un-
available for task mapping. BAMSE can be readily extended
to handle unavailable cores. Specifically, unavailable cores are
considered during construction of potential candidate cores in
the core selection stage of the algorithm. In the example dis-
cussed in Section V-B, the set {core10, core12} is unavailable
for mapping.

Another practical requirement is to map specific tasks of the
application to certain cores that contain special resources, for
example, custom accelerators or memory resources, or other
unique capabilities. For example in AsAP2, only the cores
on the first (last) column of the chip can be connected to
input (output) pins of the chip. In addition, AsAP2 has six
tiles that implement the following functions [Fig. 1(a)]: motion
estimation, Viterbi decoder, fast Fourier transform, and three
shared memory modules. These resources have fixed locations
on the chip, which must be taken into consideration when
corresponding tasks are mapped to cores.

We propose to extend BAMSE to handle such constrained
choices. Let fixed function refer to tasks that have constraints
on matching cores. Intuitively, it is efficient to map fixed
functions early in the process, so the subsequent connected
tasks would be mapped to adjacent cores. As such, we extend
the node selection process to initialize the BFS queue with
the fixed functions. Subsequently, the aforementioned BFS-
based task sequencing scheme orders the remaining tasks by

Fig. 4. (a) Task sequence of the task graph depicted in Fig. 2 after fixing task
H on core11. The input task is always fixed to the first column on AsAP2.
(b) and (c) Example partial mappings created from mapping nodes C and B,
respectively. (d) Final generated mapping.

visiting the children of the existing tasks in the queue. The core
selection process naturally honors the dictated constraints, and
otherwise the algorithm operates as described before.

For example, let us assume that the output task H of the task
graph depicted in Fig. 2 is constrained to be mapped to core11.
Fig. 4(a) illustrates the resulting task sequence. Fig. 4(b) and
(c) show sample partial mappings after mapping tasks C and
B. Fig. 4(d) shows the final mapping generated by BAMSE.
Note that both tasks B and C have connections to tasks A and
H , and the surviving cores for both tasks have the minimum
distance of two to the fixed functions.

F. Complexity Versus Quality

Larger values of WS and MPC increase the algorithm
runtime, albeit in different ways. In addition, more partial
mappings are explored, which should generally lead to better
final mappings. In the merely-hypothetical impractical case
that MPC = |C| and WS = |C||V |, the entire search space
would be exhaustively explored to find the optimal solution.
In finding the proper value of parameters, a simple, though
helpful, observation is that if a partial mapping whose aug-
mentation could lead to an optimal final mapping survives
at each iteration, the optimal solution could be successfully
generated. The issue is further discussed in Section VI-D.

VI. Experiment Evaluation

In this section, we present our empirical study, whose results
showcase the effectiveness of BAMSE in rapid generation of
quality mapping solutions.

A. Setup

We use AsAP2 manycore chip as the target platform for
mapping a number of applications. The relevant architectural
features of AsAP2 are highlighted in Section III.

1) Benchmark Applications: To evaluate the proposed
technique we selected five different streaming applications
as our benchmarks. The benchmark applications, which were
previously reported in a number of technical publications,
are developed, manually optimized (including task mapping)
and validated for correct functionality. They include Viterbi
decoder [28], wireless LAN 802.11a baseband receiver [29],
two different implementations of advanced encryption stan-
dard (AES) encryption algorithm [30], and H.264/AVC video
encoder [31] kernels. These kernels frequently appear in many
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TABLE I

Benchmark Application Set Specifications: D is the Task Graph

Degree, and MDC is the Maximum Distance Between a Parent

and its Children After Sequential Ordering of Tasks Using BFS

higher-level streaming applications that are widely used in
many embedded systems.

Table I reports the number of tasks, number of intertask
communication channels (i.e., task graph edges), task graph
degree D (maximum number of connected tasks to a task), and
MDC (maximum distance between a parent and its children
after tasks are sequentially ordered) for all of the applications.
Wireless LAN 802.11a baseband receiver uses FFT hardware
accelerator, and H.264/AVC encoder utilizes both motion
estimation and FFT hardware accelerators of AsAP2 as fixed
function nodes (Section V-E).

2) System and Algorithm Configuration: BAMSE algo-
rithm uses two configurable parameters: WS and MPC. In
our experiments, we run the algorithm with 2400 different
combinations of these parameters. Specifically, WS = 1, 2, ...,
300 and MPC = 1, 2, ..., 8. Each of these configuration points
(WS, MPC) represents a level of greediness/thoroughness
characteristics of the algorithm.

The objective of the mapping is to minimize the multiob-
jective cost function presented in Section IV, with the priority
order of longest connection (LC) and total connection (TC).
The experiments are performed on a Unix PC with Intel Xeon
CPU running at 3.07 GHZ, 8192 KB of cache, and 6 GB of
main memory.

B. Results

Fig. 5 illustrates the improvement of BAMSE over manual
mapping in longest connection and total connections of the
mapped task graph. All applications were developed and
mapped before the start of our mapping project, and the de-
velopers had the incentive to improve the mapping result as it
simplified their work and impacted their reported performance
and throughput figures in their published work [28]–[31].
Therefore they are representative of what manual mapping
can achieve. This is contrast to the predominant notion of
comparison with manual optimization in CAD community in
which, manual results are derived in parallel to automated
results.

In principle, hand optimized mapping should give the opti-
mal result, however, the sheer size and complexity of solution
space (large applications with 100+ tasks and 150+ links,
and architecture interconnect constraints) prevent humans from
efficient exploration of the search space. Out of 2400 con-
figuration settings, both best case and average case results
are depicted in the figure. The improvements in longest
connection (LC) are as high as 65%. In most cases, the

Fig. 5. Improvement of BAMSE over manual mapping in longest connection
(LC) and total connections (TC).

second objective of total connection (TC) is also improved.
Given the priority-based definition of cost function, it is not
necessarily possible to minimize both LC and TC in the
absolute sense. In fact, sometimes reducing one increases the
other as a compromise. However, Fig. 5 shows that for most
applications manual mappings are improved in terms of both
objectives. The average result of both objectives is also shown
in this figure.

For comparison, we also generated integer linear program
(ILP) instances of the simplified (excluding link assignment)
mapping problem. Details of ILP formulation of the mapping
problem is not presented, for brevity. Although ILP is a
well known NP-hard problem and its runtime scales very
poorly with input problem size, it is potentially helpful in
establishing lower bounds on possible solution quality, and in
quantifying the gap between the generated solutions and the
optimal mappings.

In order to accelerate the ILP solver runtime, we occasion-
ally leveraged knowledge of the problem to expose a smaller
search space to the solver. Specifically, for smaller applications
it is sometimes evident that the optimal solution would only
use cores in a small region of AsAP2. In such cases, a smaller
instance of the hardware mesh was used in generation of the
ILP instance. In case of this paper, in particular, a 6x6 mesh of
cores was used as the target platform for Viterbi decoder and
802.11 baseband receiver. We tried to solve the ILP instances
using CPLEX, a commercial grade ILP solver. The solver was
allowed to run for a maximum of ten days.

In addition to manual mappings and ILP solutions, we also
implement CastNet algorithm [1] introduced in Section II.
CastNet is a fast constructive algorithm specific to packet-
switched NoC platforms with the ultimate goal of reducing
the energy consumption of the system. CastNet uses the
bandwidth information from the task graph and the distance
between the connecting cores in the mapping solution to
calculate the energy consumed for communication in the
mapped application. As it was discussed in Section III,
bandwidth is not an important measure in the context of
circuit-switched GALS architectures. In order to adapt the
benchmark applications for the CastNet algorithm and at the
same time maintain the constraints and requirements of the
AsAP2 architecture, we equally assign a fixed bandwidth on
each edge of the task graph.

Table II shows the comparative study data. In addition
to the longest connection and total connection of mapping,
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TABLE II

BAMSE Versus Alternatives: Results for Longest Connection

and Total Number of Connections are Reported. A Smaller

Hardware Platform (a 6x6 Mesh of Cores) is Used for

Generation of ILP
∗

Instances to Accelerate the Solver

Runtime. The ILP
∗∗

Numbers are Obtained by Terminating the

Solver After Ten days, and are not Optimal

algorithm runtime is reported. As expected, manual mapping
can generate good results for small graphs, however, the
approach does not scale to somewhat more complex task
graphs. In cases that we could solve the ILP formulation,
BAMSE indeed had found the optimal solution dramatically
faster. For the three more complex applications the ILP solver
did not finish after ten days. Interestingly, in these cases the
best solution found by ILP after ten days is far inferior to
BAMSE results generated in fraction of the time.

The CastNet results in Table II suggest that although the
mapping problems in circuit-switched and network-switched
architectures are somewhat similar, the impact on the outcome
can be dramatic if the subtle differences between these two
architectures are not taken into account. For example, one
of the main reasons that CastNet and similar algorithms like
it perform so poorly when it comes to mapping task graphs
for AsAP-like architectures is that their methodology relies
greatly on the bandwidth information of the graph, whereas,
in AsAP-like architectures bandwidth looses its significance
in the problem. When the applications are given to CastNet
with equal bandwidth on all communication channels (each
edge of the task graph), the algorithm performs almost as it
is making random choices at each step.

Another contributing factor which amplifies the effect of
lacking bandwidth information is the size of the benchmark
graphs. When dealing with large graphs, any early mistakes or
bad choices at the beginning of the mapping process can lead
to a great departure at the end. The reported results in Table II
highlight the need for a new approach specific to solving the
mapping problem for circuit-switch GALS architectures.

C. Impact of Core Failures

To demonstrate BAMSE ability to handle mappings in the
existence of unavailable cores, the following three scenarios

TABLE III

Core Failures: Results for Longest Connection and Total

Number of Connections in Three Different Core Failure

Scenarios are Reported

are provided. In one scenario all cores are available, and in the
other two some number of cores are failing thus are avoided in
the mapping process. The failing cores are selected randomly
and kept the same in different applications. In the first failing
case four cores are failing, which is almost 2% of AsAP2
cores, and In the second case nine are failing that is almost 5%
of the cores. In each case we run BAMSE with 50 different
configuration points as follows and choose the best results:
WS = 30, 60, ..., 300 and MPC = 1, 3, ..., 9. The results are
reported in Table III.

The discrepancy between the results in Tables II and III in
the case when none of the cores are failing is because of the
difference between the number of times the algorithm is run
with different configuration points (2400 in Table II versus 50
in Table III).

The discrete nature of mapping optimization problem com-
bined with randomly selected failing cores makes it impossible
to predict the outcome of these scenarios. Moreover, no other
mapping technique handles such cases to be able to compare
our results against their mappings. However, the closeness
of the results between the constrained failing cases and non-
failing cases proves the effectiveness of our approach.

D. Impact and Selection of Configuration Parameters

In this section, we discuss our experimental results on the
impact of configuration parameters WS and MPC on the
algorithm runtime and mapping quality. Since cost of the
optimal mapping solution is not generally known, we measure
the quality of a particular mapping with respect to the best
mapping that we could find in the target parameter space.
Namely, let the Relative Cost of a particular mapping be the
normalized increase in its mapping cost, relative to the best
mapping found in the explored configuration parameter space

Relative Cost
app
(ws,mpc) =

mapping cost
app
(ws,mpc)

min mapping costapp
− 1. (12)

Mapping cost is the multiobjective cost function presented in
Section IV, with the priority order of longest connection (LC)
and total connection (TC), respectively.

The small charts in Fig. 6 show the algorithm runtime at
each configuration point (WS, MPC) in the parameter space.
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Fig. 6. Effect of increasing WS on the quality of mapping solutions for dif-
ferent MPC and benchmark applications. Relative cost numbers are calculated
using (12), and quantify the normalized distance from the best known solution
in the (WS, MPC) configuration parameter space. The effect of increasing WS
on BAMSE runtime for different MPC values and benchmark applications
is also given in the smaller charts. The recursive and application-dependent
nature of link assignment is the primary reason for runtime fluctuations.

The charts for Viterbi and 802.11a baseband receiver appli-
cations are not presented in this figure for brevity. However,
small AES application well represents these two applications
as well since they all consist of relatively small task graphs
compare to the other two bigger applications.

Although the general direction relationship in runtime with
increase in both parameters is evident, the relationship is not
strictly monotonic. This is primarily due to the difference
in the time spent on link assignment, which tends to vary
differently from one partial mapping to another. Within the link
assignment algorithm, BAMSE recursively resolves conflicts
as it allocates links to paths between connected cores. The
conflict frequency and degree of congestion, which determine
the frequency and depth of recursive calls, are highly bench-
mark dependent. Nevertheless from a high level viewpoint, the
general trend is a direct linear relationship with WS and MPC
parameters.

The aforementioned relationship trend between runtime and
parameters holds fairly consistently for solution quality as
well. The charts in Fig. 6 illustrate the relationship between
the Relative Cost of generated mapping solutions, and the

TABLE IV

Mapping Quality and the Number of Acceptable Solutions

(N(θ)) Under Different Thresholds (θ): The Longest and Total

Connection Values Correspond to the Lowest Quality

Mapping that Met the Given Threshold

window size (WS) for different MPC parameters. Similar to
runtime, the data show a general trend of cost decrease with
growth of configuration parameters, although the trend is not
strictly monotonic, due to the discrete nature of the underlying
search space.

For example, in case of small AES, all of (WS, MPC)
configuration points larger than a small threshold result in the
best (known) mapping. In such cases, if the WS are large
enough (e.g., the break point of WS > 40 in small AES), the
best mapping solution is universally found. The same pattern
exists for the other small applications as well. In more complex
applications on the other hand, the anticipated threshold values
might be prohibitively large, in terms of computation time and
memory requirements.

Consequently, an important objective is to select the config-
uration parameters such that a reasonably optimized solution,
as compared to the best mapping solution that exists in
the configuration parameter space, is generated. Clearly, one
would like to accomplish this without explicit knowledge of
the task graph structure, its relevant properties and without
exhausting all points in the configuration parameter space.
Given the discrete nature of the problem, it is not possible
to guarantee optimality in the target parameter space without
exhausting all of their possibilities. Thus, we expect the users
to define their acceptance threshold for degradation in the
quality of the final mapping solution. This decision can be
made by users based on various criteria such as required
throughput, energy budget, and the reasonable tool runtime.

We propose to randomly select different configuration pa-
rameters from the target space, run BAMSE with the selected
parameters, and output the best solution found in the trials. As
the number of trials increases, the probability of reaching an
acceptable solution quickly improves. Specifically, the failure
to find an acceptable solution requires failure in all of the
trials, whose probability quickly decreases for realistic data
sets, e.g., those illustrated in Fig. 7.

Specifically, let θ be the threshold for the acceptable degra-
dation in mapping quality, and N(θ) represent the number of
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Fig. 7. Probability of generating an acceptable solution under a given
acceptance threshold and different number of random parameter trials. 0%
distance represents the solutions with the same cost as the best solution, and
100% distance represents the solutions twice as costly as the best solution.

solutions in the target parameter space, whose cost is not more
than 1 + θ times larger than the best solution in the parameter
space. The probability of not finding an acceptable solution
within this acceptance level can be calculated using

Pk
θ = 1 −

k∏

i=1

N − i + 1 − N(θ)

N − i + 1
(13)

where k is the number of trial runs, and N is the total number
of points in the parameter space. Assuming a lower bound on
the number of acceptable solutions in the space, N(θ), one
can calculate the number of trials that lead to generation of
an acceptable solution with the desired confidence level.

For three different acceptance thresholds θ, Table IV il-
lustrates the number of acceptable solutions in the parameter
space N(θ). For each solution, the mapping cost in terms of
the longest and total connection are reported for comparison.
The value θ = 0 corresponds to the optimal solution in the
target parameter space, which has 2400 points. Note that as
the acceptance threshold is relaxed the number of acceptable
solutions grows, and hence the number of trials required to
find an acceptable solution with 95% confidence is decreased.
Fig. 7 visualizes the relationship between number of runs (k),
acceptance threshold (θ), and the probability of obtaining an
acceptable solution for the benchmark applications.

As a design decision, the user can decide the number of
trial runs and the range in which the tool should explore the
parameters. Given the relatively short runtime of BAMSE,
multiple runs are likely to be justified to improve the mapping
quality in offline mapping scenarios. In the time constrained
online mapping use cases, tool runtime tends to be a hard
constraint, and hence, a small number of runs are appropriate.

VII. Conclusion

In this paper, we studied the unique characteristics of pro-
cessor mapping problem in GALS based CMP architectures.
We presented an algorithm called BAMSE, which generates
high quality mappings of application task graphs for such
platforms. Experiments show that the BAMSE mapping al-
gorithm outperforms the time consuming manual mappings of
real life existing applications up to 65% for the longest inter-
processor communication link, and up to 19% for total length
of the links, when the two criteria are used as primary and
secondary optimization objectives, respectively. Furthermore,
the reported results from employing one of the previously pub-
lished mapping techniques specific to packet-switched NoC ar-
chitectures (CastNet) on the presented benchmark set given the
constraints of a packet-switched GALS architecture demon-
strate the effectiveness of our approach in solving the mapping
problem for GALS platforms. Additionally, BAMSE generates
the mappings very fast, and it matches or beats solutions gen-
erated by solving ILP instances after 10 days of solver runtime.

References

[1] S. Tosun, “New heuristic algorithms for energy aware application
mapping and routing on mesh-based nocs,” J. Syst. Architec., vol. 57,
no. 1, pp. 69–78, 2011.

[2] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubia-
towicz, et al., “A view of the parallel computing landscape,” Commun.
ACM, vol. 52, pp. 56–67, Oct. 2009.

[3] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,
et al., “An 80-tile 1.28tflops network-on-chip in 65 nm CMOS,” in Proc.
ISSCC, 2007, pp. 98–99.

[4] D. Truong, W. Cheng, T. Mohsenin, Z. Yu, A. Jacobson, G. Landge,
et al., “A 167-processor computational platform in 65 nm CMOS,” IEEE
J. Solid-State Circuits, vol. 44, no. 4, pp. 1130–1144, Apr. 2009.

[5] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini,
et al., “Noc synthesis flow for customized domain specific multiproces-
sor systems-on-chip,” IEEE Trans. Parallel Distrib. Syst., vol. 16, no. 2,
pp. 113–129, Feb. 2005.
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