
Fine-Grained Energy-Efficient Sorting on a Many-Core Processor Array

Aaron Stillmaker, Lucas Stillmaker and Bevan Baas
Electrical and Computer Engineering Department

University of California, Davis
Davis, United States of America

{astillmaker, lstillmaker, bbaas}@ucdavis.edu

Abstract—Data centers require significant and growing
amounts of power to operate, and with increasing numbers
of data centers worldwide, power consumption for enterprise
workloads is a significant concern. Sorting is a key computa-
tional kernel in large database systems, and the development
of energy efficient sorting capabilities would therefore signif-
icantly reduce data center power usage. We propose highly
parallel sorting algorithms and mappings using a modular
design for a fine-grained many-core system that greatly de-
creases the amount of energy consumed to perform sorts of
arbitrarily large data sets. The memory, computational, and
nearest-neighbor inter-processor communication hardware of
the many-core processor array require relatively small die
area. We present the design and implementation of several
sorting variants that perform the first phase of an external sort.
They are built using program kernels operating on independent
processors in a many-core array with 256 bytes of data memory
and fewer than 128 instructions per processor. The algorithms
employed are simple and the vast majority of processors
contain identical programs. Compared to a quicksort imple-
mentation on an Intel Core 2 Duo T9600 the highest throughput
design achieves up to 27× higher throughput per chip area,
and the most energy efficient sort yields a 330× reduction
in energy dissipated per sorted block. Compared to a radix
sort implementation on a GPU, the highest throughput design
achieves up to 22× higher throughput per chip area, and the
most energy efficient sort yields a 750× reduction in energy
dissipated per sorted block.

Keywords-parallel processing; external sorting; streaming
sorting; fine-grained many-core; processor array; modular
programing;

I. INTRODUCTION

Energy efficiency is becoming increasingly important in
today’s data centers with their growing size and power con-
sumption [1]. Sorting functions are a critical computational
kernel as they are one of the most used functions in database
systems [2].

Data centers in the United States spent a combined $4.5
billion in 2006 for electrical power, accounting for 61 billion
kilowatt-hours and 1.5% of the total United States electricity
consumption [3]. Power consumption of database systems
can be so high that after a few years of running a common
database system, the amount of money spent to power the
system can easily exceed the price of the hardware [4].
Power consumption is such a significant cost in database
center operation that low power rates and weather conditions

are sometimes factors in the selection of the location of new
database centers, such as Google’s selection of Finland for
a new data center in 2009 [5] and Facebook’s proposed data
center in Sweden [6].

Data centers generally perform sorts on data sets that are
too large to be contained inside of main memory. This type
of sorting is called external sorting and is generally done
in two phases. The first phase creates sorted lists that can
be as large as the size of some memory. The second phase
merges these lists into one final sorted list [7].

A. Contributions

We present sorting approaches and algorithms for the first
phase of an external sort, which are targeted to operate on
a low power fine-grained many-core processor array. While
CPUs attain ever increasing performance, their performance
per watt has stayed relatively constant [4]. It is well known
that workloads can be more efficiently executed on plat-
forms with algorithm-specific hardware. The presented sorts
operate on a many-core co-processor array which is fully
programmable, contains no algorithm-specific hardware, and
is smaller than a general purpose CPU.

The contributions of this paper are as follows:
• several high throughput, area efficient, and energy effi-

cient sorts for fine-grained many-core systems
• sorts do not require a large shared memory
• sorts are simple to program on independent MIMD

cores, they can run on a globally asynchronous sys-
tem, and each processor’s program is fewer than 128
instructions with identical programs on most processors
and

• the proposed sorts are highly modular—they can be
easily scaled without changes to the algorithm

B. Related Work

External sorting has been well explored such as in work by
Vitter [9], who looked specifically at making external sorting
more efficient from an I/O perspective, though the work gen-
erally focuses on common CPUs with either single cores or
multi-cores. Smaller sized internal sorting has been heavily
researched on uni-core and multi-core systems resulting in
fast sorting algorithms that process small 4-byte keys, which
are smaller than what databases would typically utilize, such

as the work by Chhugani et al. [10] and Gedik et al. [11].
Both use sorts specialized for their target architectures,
taking advantage of architecture-specific SIMD instructions,
large shared memories, and special instructions that reduce
computation time and access time, respectively, to achieve
high throughputs. GPUs contain large processor arrays and
have been explored as a platform to sort data [12].

Sorting theory of mesh-connected computers have been
explored extensively [8]. Such works focus on theory of
internal sorting on an arbitrary mesh-connected computer,
which does not transfer to our chosen platform, and cannot
be compared against our realized results.

Work has been done on creating systolic processor arrays
for sorting [13]. While the idea of a data driven processor
array is shared in this implementation, systolic arrays are
generally not fully general in their inter-processor communi-
cation which makes them a much less flexible platform than
what was utilized in this work. Design and fabrication of a
integrated circuit chip is costly, so programable processors
are able to spread out the cost, making them much cheaper
than Application Specific Integrated Circuits (ASICs) [14].
A sorting ASIC could also undesirably limit configurability.

With multi-core and many-core systems becoming more
prevalent, there has been some research in parallel sorting on
database systems, as presented by Taniar and Rahayu [15],
[16]. The work focuses on general purpose CPUs, assuming
each processor has large available memories. The GPUTer-
raSort [17] was shown to be a effective many-core sort, but
their platform benefited from large shared memories. The
JouleSort benchmark [18] specifically considers the energy
efficiency of large database sorts.

II. EXTERNAL SORTING AND THE TARGETED
MANY-CORE ARCHITECTURE

A. External Sorting Overview

External sorting is a sort in which the data set is too large
to fit into main memory [7]. This means that the data set
must be stored on a secondary storage, such as a hard drive.
With access times to secondary storage typically far longer
than to main memory, it is generally advantageous to sort
the large data sets into smaller sorted lists, or runs, which fill
the available main memory. This is termed the first phase of
the external sort. All of these data sets are combined into a
final complete sorted data set in secondary memory, which
is termed the second phase of the external sort, as shown in
Figure 1.

The second phase is typically executed by a type of
merge sort, of which there are many serial implementations
that accomplish this efficiently as well as several multi-
core implementations [12], [15], [16]. Because the first
phase is more likely CPU-bound and the second merging
phase is likely to be I/O bound, we focus on the first
phase only performed on a co-processor. With the main

9
10
42
61

2
14
17
33

3
18
26
27

1
20
39
53

1
2
3
9
10
14
17
18
20
26
27
33
39
42
53
61

Phase One!

Sort!

Sort!

Sort!

Sort!

Phase Two!

Merge!

17
33
2
14
9
10
61
42
18
3
27
26
53
39
1
20

Figure 1. An example external sort where 16 data values are first sorted
into four lists of four items each in the first phase, and the four intermediate
lists are merged into a final sorted list in the second phase.

processor performing the second phase, we leave it out of
this discussion.

B. Sorting a Stream of Data

Most of the effort put into researching sorting on many-
core systems has been spent on arrays with access to large
local memories [10], [17], [12], [15], [16]. Conversely,
this work looks into sorting with many-core arrays where
the data is streamed through a processor array that is not
attached to a large global memory. In particular, we utilize
a large 2-D mesh-connected processor array with nearest
neighbor communication and without global access to a
large shared memory. Many sorts that require swaps from
opposite sides of a list, such as the bitonic merge sort,
are not efficiently implementable on this type of platform.
Our target platform contains many small, low-power pro-
cessors, with limited instruction and data memories. With
a reduced instruction set, many of the more complicated
sorting methods such as quicksort were ruled out. The sort
should be modular; making it simple to change the size
of the processing array without having to create a new set
of programs. Along with being simple, the processor array
should operate without any knowledge of how large the list
length is going to be, allowing for modules, such as regular-
expression filters or statistics calculators, to be added to the
processing array.

We target database systems, so we use standard 100-byte
records with 10-byte keys, which are commonly used to
benchmark large database sorts [19].

C. Targeted Platform: Fine-Grained Many-Core Processor
Array

The targeted platform for this work is a fine-grained
many-core system. These sorts were implemented on the
second version of the Asynchronous Array of Simple Pro-
cessors, or AsAP2 [20]. The chip contains 164 general

purpose processors that use a simple instruction set with
only sixty-three instruction types. The chip also includes
three 16 kB memories with the entire chip connected via
a 2D-mesh, allowing for nearest neighbor communication
and long distance communication. The chip was fabricated
using 65 nm CMOS technology, with each programmable
core in the array occupying 0.17 mm2 of area, and the
processors can operate up to 1.2 GHz at 1.3 V. Each
processor contains 128×35-bit instruction memory, 128×16-
bit data memory, and two dual clock 64 × 16-bit FIFO
buffers for communication between processors. This chip
has Globally Asynchronous Locally Synchronous (GALS)
clocks where each of the 167 processors in the array has its
own fully-unconstrained oscillator. Each processor has the
ability to turn off its oscillators while stalled, require ring
negligible energy when stalled.

III. SORTING PROGRAM KERNELS

Many different methods of sorting were tested; the most
interesting are presented here. With the desire to keep the
program modular, different program kernels were created.
Each kernel needs no information about the run, they will
reset when a reset signal is sent at the end of a run. In this
way, the sort does not require reconfiguration for different
runs, and can be easily scale to any sized array without the
need for a different program.

A. SAISort

The main programing kernel is a Serial Array of Insertion
Sorts, or SAISort. It is a simple program that is an insertion
sort in the micro view (one processor) and a bubble sort in
the macro view (entire chip) [21]. As long as a reset signal is
not received by the processor, inputs into each processor will
populate a sorted list on that processor’s data memory. Once
the data memory is full, the processor passes the lowest entry
to the next processor in the snake. In an effort to make sure
the sort can be executed without knowledge of how large
the sort is, a tag system was implemented. Each record was
preceded by a non-reset tag, any bit combination other than
the reset tag. At the end of the run, a reset tag was attached.
When a reset signal is received by the SAISort kernel, it
will pass along the reset signal to the next processor, as
well as the number of entries that will be passed without
the need to sort. Then it will flush all entries, starting with
the lowest. After the internal memory has been flushed, it
will pass the number of inputs it was told to pass, without
sorting, to the output. The pseudo code of the algorithm
of the SAISort is shown in Algorithm 1. Any number of
processors can be connected in a chain and can use the exact
same program to produce a sorted list. SAISort will compare
only two bytes at a time, the size of one word in the AsAP2
processor. So it would not need to compare subsequent
lower significant bits if a result was achieved from more
significant bits. A significant portion of the code length was

Algorithm 1 SAISort
while true do

if inputTag 6= Reset then
if recCount 6= Full then

Place input in appropriate position
recCount + +

else if input ≤ lowest then
output← input

else
output← Lowest record on processor
Place input in appropriate position

end if
else

Save the incoming recsToPass
output← Reset
output← (recsToPass + recCount)
for int i; i < recCount; i + + do

output← Lowest record on processor
end for
for int i; i < recsToPass; i + + do

output← input
end for
Reset appropriate variables

end if
end while

dedicated to dealing with administrative overhead of sorting
keys that are larger than our platform’s 16-bit data word
length. The algorithm, when implemented on the AsAP2
chip, utilized 126 assembly instructions out of the available
128, and has a throughput of around 160 clock cycles per
record. Keep in mind that 50 clock cycles are taken just
to transmit the 100 byte (50 word) record between cores.
The code is unoptimized, and was written in a relatively
short amount of time. Further optimization could lead to
decreased code length, decreased energy consumption and
higher throughput.

B. Distribution

The second modular program kernel is the distribution
kernel, shown in Algorithm 2. This program will evenly
distribute entries between one of the outputs from the
processor. The program would be set up prior to run time
with the ratio of how many SAISort kernels are going to
use each of the output streams. If for example there were
four times as many SAISort kernels using the records from
the south output, it would output four out of five entries
to the south. This algorithm was written with 50 assembly
instructions providing a throughput of 55 clock cycles per
record.

C. Merge

The last modular program kernel is the merge kernel,
shown in Algorithm 3. The merge kernel will output the
lower of its two inputs. If it receives a reset signal from either
input, then it will just pass the input which is not finished
until that input also gives a reset signal, at which point the

Algorithm 2 Distribution
while true do

if inputTag 6= Reset then
if count < ratio then

outputdirection = south
output← input
count + +

else
outputdirection = east
output← input
count = 0

end if
else

outputdirection = south
output← Reset
outputdirection = east
output← Reset

end if
end while

Algorithm 3 Merge
while true do

if input1Tag = Reset then
while input2Tag 6= Reset do

output← input2
end while

else if input2Tag = Reset then
while input1Tag 6= Reset do

output← input1
end while

else
if input1Key ≥ input2Key then

output← input2
else

output← input1
end if

end if
end while

kernel will output a reset signal and wait for another set of
inputs. This kernel was written in 80 assembly instructions
and found to have a throughput of around 70 clock cycles
per record.

IV. SORTING IMPLEMENTATIONS AND VARIATIONS

The kernels are used as building blocks to construct
the two presented sorting schemes, described in Sec-
tions IV-A, IV-B and IV-C. Thusly little extra program-
ing was required above writing the previously mentioned
kernels, as identical programs were simply repeated across
the array. Each processor works independently of the others
throughout the sort. Unsorted data will be streamed into the
chip, and sorted data is streamed out. In each version, each
chain of SAISort processors can take one extra record, which
will be stored in the input FIFO of the first processor in the
chain. This allows for 329 records in the Snake Sort.

As previously mentioned, smaller internal sorts are re-
quired to make sorted lists that are merged together to

eventually make one large list. This sort would be run on
a large data set, making numerous successive sorted lists,
or runs, of the sorting program. As soon as a processor is
done with one run, it can proceed to the next run, even if
the following cores are still processing the previous run.

On the target AsAP2 chip, there are two 64 byte FIFO
buffers between processors, which means that processors
are not required to strictly synchronize read and writes. A
processor will not stall so long as the FIFO is empty before
a second entry is output. Therefore, processor throughput is
limited by its ability to sort one entry.

A. Snake Sort

The simplest way to implement a sort using the SAISort is
to use all available processors connected in one long chain,
which resembles a coiled snake. The specific mapping is
arbitrary as long as each processor is included in the chain.
One such mapping on the AsAP2 chip is shown in Figure 2a.
The same SAISort program is used on each of the 164
general purpose processors.

With the 256 byte internal data memory, two 100 byte
records could be stored in each processor along with some
control data. Different ways to use the FIFOs between
processors as storage were explored. Initial attempts were
made to use these FIFOs a storage space, but this cannot be
implemented. Given a processor array, shown in Figure 2a,
with each processor containing two records, when one more
record is added, the last processor will have to output a
record, which will be the lowest entry of that sorted list. Any
subsequent attempts to push in more data will run the risk
of creating an unsorted list. Other options, such as utilizing
both FIFOs in the processor to allow the next processor to
grab the smallest record, require more instruction memory
than is available on the AsAP2 chip. This would also be
counter productive towards the goal of a simple program and
would have made the kernels platform specific. In one run
through this Snake Sort, an AsAP2 chip processing 100 byte
records can sort 329 records per run. The measured average
throughput of the Snake Sort is about 240 clock cycles per
record. The throughput is lower than the individual kernel
throughput because the time required for flushing entries
from the array depends on the length the sorted run.

B. Row Sort

In an effort to make a sorting scheme with a shorter
data path, the Row Sort is proposed. This version uses the
distribution kernel in the first column of processors in the
array to spread records evenly to each row in the array. Each
row then uses the code as shown in Algorithm 1 to create a
sorted list. After a reset signal is received, and records begin
to flush through their respective rows. The last column of
processors will merge the multiple lists into one larger list.
This mapping is shown in Figure 2b.

 Slide 4 Slide 4

Unsorted
data Sorted

data

SAISort Snake

16#kB# 16#kB# 16#kB#

(a) Data flow in the Snake Sort with each processor using the
same SAISort kernel

 Slide 1 Slide 1

Unsorted
data

Sorted
data

Distribution

SAISort

Merge

SAISort Row

16#kB# 16#kB# 16#kB#

(b) Data flow in the Row Sort using Distribution, SAISort, and
Merge program kernels

Figure 2. Data flow diagrams for the two sorting algorithms mapped onto an AsAP2 many-core processor array.

With twenty two processors used for distribution and
merging and the remaining 142 used to sort, 296 records
can be sorted per run. The Row Sort takes about 120 clock
cycles per record.

C. Inclusion of Chip Memories

The target platform, AsAP2, has three 16 kB memory
modules at the bottom of the chip, only accessible by two
processors adjacent to each of the memories. An adjacent
processor can be used to read and write data to a neighboring
memory using certain configuration signals.

Runs can be stored in these memories. When the mem-
ories are full, all of the separate sorted lists will merge
and be sent off chip. To communicate with the memories,
processors need to merge and transfer the data. With these
memories, the size of the sorted list can be increased by 480
records (160 in each 16 kB memory). This allows for 785
records per run for the Snake Sort with 285 clock cycles per
record and 753 records per run with the Row Sort at 162
clock cycles per record.

The mappings of the Snake and Row sort schemes us-
ing the on chip memories are similar to those shown in
Figures 2a & 2b, except the bottom row of processors are
required for communication between the array and the 16 kB
memories. There are three added memory administrating
processors, which deal with storing the data and reading the
data from the memory modules, as well as five processors
that are just used to transmit records to and from the
memory administrative processors. Finally, there are three
processors that use the merge kernel to merge the four runs
into the final output. Each memory module can hold 160
records, so in the execution of the sort, three runs, each
sized to 160 records, will be individually stored in the three
memory modules. When the fourth run is finished sorting
the maximum number of records, two of the stored runs
will merge, which will then be merged with the third run,

which in turn is merged with the fourth run. This method
repeats for all of the data to be sorted.

V. ANALYSIS

A. Processor Activity Percentage

The percentage of time that each processor is actively
processing information varies among the different processors
in the array, highlighting bottlenecks in the sorts. Figure 3a
shows the activity percentage of each processor when one
run is sent through the Snake Sort. The first processors’
lack of activity would be filled up by successive runs when
running sorts on a large set of data, allowing runs to overlap.
The processors are not fully utilized because they are stalled
waiting for a new input or waiting to output a record.
The activity level decreases starting at around the 120th

core reaching an activity percentage near 17% at the last
processor in the snake. These last processors see a reduced
amount of utilization because they pass a majority of the list
through without needing to sort the data.

Figure 3b shows the activity percentage of the Row Sort
while sorting one run of data. The merging processors are
between 7% to 41% active. The 41% active merge processor
at the bottom of that column is the bottleneck, as every
entry needs to be merged through this one processor, while
the other merging processors only work on subsets of the
run. The distribution processors in Figure 3b are stalled
waiting for more input records. With multiple runs of data,
the activity of the distribution processors and the sorting
processors would increase, again showing overlap that exists
between runs.

The activity percentages are all below 100% utilization
since they wait for neighboring processors, which decreases
the throughput. However, as each processor in the array can
completely halt its oscillator, the stalling of the processors
has a negligible affect on the total energy consumed.

30%$ 28%$ 25%$ 22%$ 20%$ 17%$

(a) Processor activity levels while executing the Snake
Sort.

40%$ 33%$ 19%$ 12%$ 5%$26%$

(b) Processor activity levels while executing the Row
Sort.

Figure 3. “Heatmaps” showing processor activity levels highlighting bottlenecks and processors that are consuming low amounts of power while stalled.

B. Comparisons

While there has been a lot of research on sorting, none
that we found is straightforward to compare with this work.
Most papers researching external sorting do not share their
results for the first phase, nor do they contain a run size
that would match those generated in these proposed sorts.
Comparison sorts were written in C++ as well as CUDA
and we generated our own data for comparison purposes.

We used quicksort [22] as it is simple, commonly known,
and highly efficient. No attempt was made to optimize the
quicksort code that was written, and no special processor-
specific instructions were used. The C++ program was
executed on an Intel Core 2 Duo T9600 with a clock
frequency of 2.8 GHz and compiled using the gcc compiler,
with the optimization flag set to -O3, utilizing both cores on
the chip. As the average power of the Intel processor was not
obtainable, the conservative value of one half the 35 W TDP,
or 17.5 W was used as the power for the processor [23].

For a many-core comparison, we used the radixsort for
the GPU, written by Satish et al. [12] and included in the
Nvidia CUDA SDK. The program was modified to match
our sorting parameters. 10 byte keys and 90 byte payloads
were loaded and sorted completely on a laptop GPU, a
Nvidia GeForce 9600M GT with a core clock frequency
of 500 MHz and a maximum power draw of 23 W.

Thousands of runs with the same number of records per
run as those of the proposed sorts were run through the
program to record an average throughput. The program fills
up main memory, and then a timer is started. The sorts are
performed, and then the timer is stopped before the results
are written to secondary memory, in an effort to remove
system I/O speeds from the results. The random data was
created by the gensort program [24]. The results of the Intel
sorts were scaled from 45 nm to the 65 nm technology
node to match the AsAP2 and Nvidia platforms [25]. Due to

the simplicity and modular format of the many-core sorting
versions, programing each of these comparison sorts took
more time then programing each of the AsAP sort versions.

C. Experimental Results

A version of the proposed many-core sort was run on
a physical AsAP2 chip. Unfortunately, the laboratory setup
does not have a method to stream data into the processor, as
is required by the test conditions. The version of the sorts
run on the physical chip contain a random record-generating
program on the first processor on the chip, which has a
lower throughput than what is required to avoid stalling the
sorting processors. This occurs since at the beginning of
each run, each processor will take in two records to fill
its memory, which requires data to be input as fast as it
can be transmitted. Thus, any timing numbers would be
invalid. Therefore, all timing measurements are obtained
from a cycle-accurate Verilog simulator, running the same
Verilog code that was used to create the chip. It is possible to
connect input and output to the chip with a different setup
and could easily be implemented as a co-processor on a
database system. All of the power numbers are calculated
in the Verilog simulator, using measured power numbers
for different operations. The metrics of throughput (rec/sec),
throughput per area ((rec/sec)/mm2), and energy dissipated
per record (nJ/rec), are used. The chip die size of each
platform was used to calculate the throughput per area.

The throughput and energy efficiency for the 100 byte
record sorts are shown in Table I. Figure 4 compares the
presented work with the sorts ran on the Intel and Nvidia
platforms, with energy efficiency on the vertical axis and
throughput on the horizontal axis. The AsAP2 processor
operated with a clock speed of 1.07 GHz at 1.2 V and a
clock speed of 260 MHz at 0.75 V. The highest throughput is
over twice the number of records per second and over twenty
seven times the number of records per second per mm2

Table I
THROUGHPUT AND ENERGY DISSIPATION FOR 100-BYTE DATA RECORDS

Records Processor Throughput Throughput Energy per
Per Block (1,000 rec/sec) per Area ((rec/sec)/mm2) Rec (nJ/rec)

296

Intel Core 2 Duo quicksort 1,300 8,100 6,700
Nvidia 9600M GT radixsort 1,500 10,000 15,000

AsAP2, Row Sort 1.2 V 8,900 220,000 90.8
0.75 V 2,200 55,000 19.8

329

Intel Core 2 Duo quicksort 1,300 8,100 6,700
Nvidia 9600M GT radixsort 1,500 10,000 15,000

AsAP2, Snake Sort 1.2 V 4,400 110,000 670
0.75 V 1,070 27,000 146

753

Intel Core 2 Duo quicksort 1,200 7,500 7,200
Nvidia 9600M GT radixsort 1,500 10,000 15,000
AsAP2, Row Sort 1.2 V 6,600 170,000 108
w/ On-chip Memories 0.75 V 1,600 41,000 25.6

785

Intel Core 2 Duo quicksort 1,200 7,500 7,200
Nvidia 9600M GT radixsort 1,500 10,000 15,000
AsAP2, Snake Sort 1.2 V 3,800 95,000 646
w/ On-chip Memories 0.75 V 910 23,000 143

104 105 10610−2

10−1

100

101

102

Throughput per Area ((Rec/Sec)/mm2))

R
ec

or
ds

 p
er

 E
ne

rg
y

(R
ec

/µ
J)

Core 2 Duo −
296 & 329 Recs
Core 2 Duo −
753 & 785 Recs
9600M GT − 296, 329,
753 & 785 Recs
AsAP2 (1.2 V)
RowSort − 296 Recs
AsAP2 (1.2 V)
SnakeSort − 329 Recs
AsAP2 (0.75 V)
RowSort − 296 Recs
AsAP2 (0.75 V)
SnakeSort − 329 Recs
AsAP2 (1.2 V)
RowSort − 753 Recs
AsAP2 (1.2 V)
SnakeSort − 785 Recs
AsAP2 (0.75 V)
RowSort − 753 Recs
AsAP2 (0.75 V)
SnakeSort − 785 Recs

Figure 4. Comparison of sorting 100-byte records on AsAP2, a Nvidia
9600M GT, and a Core 2 Duo (scaled to 65 nm [25]).

higher than the sort on the Intel processor. From Table I,
it can be seen that the AsAP2 throughput is higher than the
Intel sort’s, and it does this at less than half the clock speed
of the Intel processor. The most energy efficient sort is 330
times more efficient than the sort on the Intel processor.

Table I shows that the fastest AsAP2 sort throughput is
over twenty-two times higher than the GPU radixsort and
the lowest energy consuming AsAP2 sort is over 750 times
more efficient than the the Nvidia GPU sort. It should be
noted that to make the GPU sort comparable to this work,
it was necessary to sort a data set that is suboptimal for the
SIMD architecture of the GPU. The GPU would preform
best with all all 512 threads in a block full, so run sizes
of either multiples of 512 or sufficiently large so that the
blocks could be packed for multiple runs would have been

more efficient. To change the run size to be optimal for the
GPU would have given incomparable results to this work.
In Table I it can be seen that all of the throughputs are the
same for the GPU, this again can be attributed to the SIMD
architecture. With similar run sizes, the number of blocks
run in the CUDA program were nearly identical, meaning
the effort for the GPU was about the same for all of the
sorts with varying amounts of empty threads running.

Figure 4 clearly indicates that the Row Sort has the highest
throughput and lowest energy usage per record. It can also be
seen that adding the memories increases the size of the run
without a significant change to throughput or energy usage
per record. The Snake Sort recognizes a small decrease
in energy used per record, which occurs as the sorting is
shifted to fewer merge processors. The Row Sort sees a
small increase in energy per record as it already uses series
of of merges, The largest difference in the sorts which used
the memories are the costs associated with powering the on
chip memories, and merging more records.

VI. CONCLUSION

In this paper, we have presented several sorts to produce
sorted lists for the first phase of an external database sort
using a fine-grained many-core processor array. The highly
parallel sorts work on large 2D mesh processors without
access to large shared memories. The program kernels pre-
sented are modular and independent of neighboring proces-
sors, allowing for scaling the sort to work on different sized
processor arrays. The results show that using the proposed
system, the highest throughput per area is up to 27× higher
and the lowest energy per record sort is more than 330×
smaller than the energy per record of a similar quicksort on
a general purpose CPU. The highest throughput per area is
also up to 22× higher and the lowest energy per record sort

is more than 750× smaller than the energy per record of a
similar radixsort on a GPU. Therefore, these sorts can be
implemented on a co-processor in a large database system,
providing a large energy savings.

ACKNOWLEDGMENT

The authors gratefully acknowledge support from C2S2
Grant 2047.002.014, ST Microelectronics, NSF Grant
1018972 and 0903549 and CAREER Award 0546907, SRC
GRC Grant 1598 and 1971 and CSR Grant 1659, Intel, UC
Micro, SEM, and Fudan University, and thank Kimberly
Stillmaker, Zhibin Xiao, Jon Pimentel, Bin Liu, and Brent
Bohnenstiehl.

REFERENCES

[1] R. K. Sharma, R. Shih, C. Bash, C. Patel, P. Varghese,
M. Mekanapurath, S. Velayudhan, and M. Kumar, V, “On
building next generation data centers: energy flow in the
information technology stack,” in Proceedings of the 1st
Bangalore Annual Compute Conference, ser. COMPUTE ’08.
New York, NY, USA: ACM, 2008, pp. 8:1–8:7. [Online].
Available: http://doi.acm.org/10.1145/1341771.1341780

[2] G. Graefe, “Query evaluation techniques for large databases,”
ACM Comput. Surv., vol. 25, pp. 73–169, June 1993. [Online].
Available: http://doi.acm.org/10.1145/152610.152611

[3] EPA, “EPA report to congress on server and data
center energy efficiency,” U.S. Environmental Protection
Agency, Tech. Rep., 2007. [Online]. Available:
http://www.energystar.gov/ia/partners/prod development/
downloads/EPA Datacenter Report Congress Final1.pdf

[4] L. A. Barroso, “The price of performance,” Queue,
vol. 3, pp. 48–53, September 2005. [Online]. Available:
http://doi.acm.org/10.1145/1095408.1095420

[5] Google, “Hamina data center,” 2011, http://www.google.com/
datacenter/hamina/. [Online]. Available: http://www.google.
com/datacenter/hamina/

[6] R. Miller, “Facebook goes global with data
center in Sweden,” 2011. [Online]. Avail-
able: http://www.datacenterknowledge.com/archives/2011/10/
27/facebook-goes-global-with-data-center-in-sweden/

[7] D. E. Knuth, The Art of Computer Porgraming. Reading,
Massachusetts: Addison-Wesley, 1973, vol. 3 - Sorting and
Searching.

[8] S. Rajasekaran, “Mesh connected computers with fixed and
reconfigurable buses: Packet routing and sorting,” IEEE
Transactions on Computers, vol. 45, pp. 529–539, 1996.

[9] J. S. Vitter, “External memory algorithms and data structures:
Dealing with massive data,” ACM Comput. Surv., vol. 33,
no. 2, pp. 209–271, 2001.

[10] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy,
M. Hagog, Y.-K. Chen, A. Baransi, S. Kumar, and
P. Dubey, “Efficient implementation of sorting on multi-
core SIMD CPU architecture,” Proc. VLDB Endow.,
vol. 1, pp. 1313–1324, August 2008. [Online]. Available:
http://dx.doi.org/10.1145/1454159.1454171

[11] B. Gedik, R. R. Bordawekar, and P. S. Yu, “Cellsort: high
performance sorting on the cell processor,” in Proceedings
of the 33rd international conference on Very large data
bases, ser. VLDB ’07. VLDB Endowment, 2007, pp.
1286–1297. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1325851.1325998

[12] N. Satish, M. Harris, and M. Garland, “Designing efficient
sorting algorithms for manycore GPUs,” in IPDPS ’09:
Proceedings of the 2009 IEEE International Symposium on
Parallel&Distributed Processing. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 1–10.

[13] Y. Zhang and S. Zheng, “Design and analysis of a systolic
sorting architecture,” in Parallel and Distributed Processing,
1995. Proceedings. Seventh IEEE Symposium on, oct 1995,
pp. 652 –659.

[14] “International technology roadmap for semiconductors 2011
edition,” ITRS, Tech. Rep., 2011.

[15] D. Taniar and J. W. Rahayu, “Sorting in parallel database
systems,” in Proceedings of the The Fourth International
Conference on High-Performance Computing in the Asia-
Pacific Region-Volume 2 - Volume 2, ser. HPC ’00.
Washington, DC, USA: IEEE Computer Society, 2000, pp.
830–. [Online]. Available: http://portal.acm.org/citation.cfm?
id=822078.822580

[16] ——, “Parallel database sorting,” Inf. Sci. Appl., vol.
146, pp. 171–219, October 2002. [Online]. Available:
http://portal.acm.org/citation.cfm?id=634802.634815

[17] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha, “GPUT-
erasort: High performance graphics co-processor sorting for
large database management,” in SIGMOD ’06: Proceedings
of the 2006 ACM SIGMOD International Conference on
Management of Data. New York, NY, USA: ACM, 2006,
pp. 325–336.

[18] S. Rivoire, M. A. Shah, P. Ranganathan, and C. Kozyrakis,
“Joulesort: a balanced energy-efficiency benchmark.”
in SIGMOD Conference, C. Y. Chan, B. C. Ooi,
and A. Zhou, Eds. ACM, 2007, pp. 365–376.
[Online]. Available: http://dblp.uni-trier.de/db/conf/sigmod/
sigmod2007.html#RivoireSRK07

[19] C. Nyberg, M. Shah, and N. Govindaraju, “Sort benchmark
home page.” [Online]. Available: http://sortbenchmark.org/

[20] D. Truong, W. Cheng, T. Mohsenin, Z. Yu, A. Jacobson,
G. Landge, M. Meeuwsen, C. Watnik, A. Tran, Z. Xiao,
E. Work, J. Webb, P. Mejia, and B. Baas, “A 167-processor
computational platform in 65 nm CMOS,” Solid-State Cir-
cuits, IEEE Journal of, vol. 44, no. 4, pp. 1130–1144, Apr.
2009.

[21] L. Stillmaker, “Saisort: An energy efficient sorting algorithm
for many-core systems,” Master’s thesis, University of
California, Davis, CA, USA, Sep. 2011. [Online]. Available:
http://www.ece.ucdavis.edu/vcl/pubs/theses/2011-2/

[22] C. A. R. Hoare, “Algorithm 64: Quicksort,” Commun.
ACM, vol. 4, pp. 321–, July 1961. [Online]. Available:
http://doi.acm.org/10.1145/366622.366644

[23] M. Butler, “AMD Bulldozer Core - a new approach to
multithreaded compute performance for maximum efficiency
and throughput,” in IEEE HotChips Symposium on High-
Performance Chips (HotChips 2010), Aug. 2010.

[24] C. Nyberg, “Sort benchmark data generator and output
validator.” [Online]. Available: http://www.ordinal.com/
gensort.html

[25] A. Stillmaker, Z. Xiao, and B. Baas, “Toward more
accurate scaling estimates of cmos circuits from 180 nm
to 22 nm,” VLSI Computation Lab, ECE Department,
University of California, Davis, Tech. Rep. ECE-VCL-2011-
4, Dec. 2011. [Online]. Available: http://www.ece.ucdavis.
edu/cerl/techreports/2011-4/

