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Abstract— 2-Dimensional meshes are the most commonly used
Network-on-Chip (NoC) topology for on-chip communication in
many-core processor arrays due to their low complexity and
excellent match to rectangular processor tiles. However, 2D
meshes may incur local traffic congestion for applications with
significant levels of traffic with non-neighboring cores, resulting
in long latencies and high power consumption. In this paper, we
propose an 8-neighbor mesh topology and a 6-neighbor topology
with hexagonal-shaped processor tiles. A 16-bit DSP processor
and the corresponding processor arrays are implemented in all
three topologies. The hexagonal processor tile and arrays of tiles
are laid out using industry-standard CAD tools and automatic
place and route flow without full-custom design, and result in
DRC-clean and LVS-clean layout. A 1080p H.264/AVC residual
video encoder and a 54 Mbps 802.11a/11g OFDM wireless LAN
baseband receiver are mapped onto all topologies. The 6-neighbor
hexagonal grid topology incurs a 2.9% area increase per tile
compared to the 4-neighbor 2D mesh, but its much more effective
inter-processor interconnect yields an average total application
area reduction of 21%, an average power reduction of 17%,
and a total application inter-processor communication distance
reduction of 19%.

I. INTRODUCTION

Tiled architectures that integrate two or more independent
processor cores are called multi-core processors. Manufactures
typically integrate multi-core processors into a single inte-
grated circuit die (known as chip multiprocessors or CMP).
CMPs that integrate tens, hundreds, or thousands of cores per
die are called many-core chips and those that utilize scalable
interconnects and avoid long global wires will attain higher
performance [1].

NoCs are used to connect large numbers of processors in
many-core processor architecture because they perform better
than less scalable methods such as global shared buses. Among
all NoC design parameters, NoC topologies define how nodes
are placed and connected and greatly affect the performance,
energy efficiency, and circuit area of many-core processor
arrays. Due to its simplicity and the fact that processor tiles
are traditionally square or rectangular, 2D mesh is mostly
used for existing on-chip networks. However, efficiently map-
ping applications can be a challenge for cases that require
communication between processors that are not adjacent on
the 2D mesh. This condition could require processors to act
as routing processors for static interconnection architectures,
and intermediate routers for dynamic router-based NoCs. The
power consumption and communication latency also increase
as the number of routing processors or routers between two

communicating cores increase.
For many applications mapped onto homogeneous chip mul-

tiprocessors, communication within processors is often largely
localized [2], which may result in local mapping congestion.
An increase of local connectivity can ease such congestion,
which results in application mappings with smaller application
area and lower power consumption. This motivates us to pro-
pose new topologies with increased local connectivity while
keeping much of the simplicity of a mesh-based topology.

The main contributions of this paper can be summarized as
three points. First, we have proposed a 6-neighbor topology
with hexagonal-shaped processor tiles and a 8-neighbor mesh
topology, which are compared to the common 4-neighbor
2D mesh topology. Second, commonly available commercial
CAD tools are used to implement tiled CMPs for all three
topologies. Three processors including a hexagonal-shaped
processor tile and their corresponding many-core processor
arrays are physically implemented in 65 nm CMOS and are
DRC and LVS clean. Third, a complete functional H.264/AVC
residual encoder and an 802.11a baseband receiver are mapped
onto all three topologies for realistic comparisons.

The remainder of this paper is organized as follows.
Section II describes the related work. Section III presents
the proposed inter-processor communication topologies. Sec-
tion IV shows the mapping of two complex applications to
all discussed topologies. In section V, the physical design of
the hexagonal-shaped processor tiles is presented. Section VI
presents the chip implementation results and section VII
concludes this paper.

II. RELATED WORK

Many topologies have been used for on-chip inter-processor
communication, such as buses, meshes, tori, binary trees,
octagons, hierarchical buses and custom topologies for specific
applications. The low complexity 2D mesh has been used
by most fabricated many-core systems including RAW [3],
AsAP [4], TILE64 [5], AsAP2 [6] and Intel 48-core Single-
Chip Cloud Computer (SCC) [7].

Allen studies the two-dimensional regular processor arrays
which are geometrically defined based on nearest-neighbor
connections and space-filling properties [8]. He theoretically
proves the hexagonal array is the most efficient topology in
emulating other topologies by analyzing the geometric charac-
teristics. Chen et al. theoretically explored the addressing, rout-
ing and broadcasting in hexagonal mesh multiprocessors [9].
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Fig. 1. Examples of three hexagonal networks (a) a 6-neighbor off-chip
hexagonal network; (b) a 3-neighbor on-chip honeycomb network [12]; (c)
the proposed 6-neighbor on-chip hexagonal grid network.
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Fig. 2. The three inter-processor communication topologies considered in
this work: (a) baseline 4-neighbor mesh (b) 6-neighbor hexagonal tile and
interconnect, and (c) 8-neighbor mesh.

Decayeux and Seme proposed a 3D hexagonal network as an
extension of 2D hexagonal networks [10]. Their work focuses
on off-chip 6-neighbor hexagonal network where each node is
located at the vertex of the network as shown in Figure 1(a).
Stojmenovic proposed efficient coordinate system and routing
algorithms for the 3-neighbor honeycomb mesh networks as
shown in Figure 1(b) [11]. Compared to previous work, we
have designed a hexagonal-shaped processor that can be tiled
together as a hexagonal mesh for on-chip inter-processor
communication as shown in Figure 1(c). The advantages of
hexagonal-shaped processor topology are demonstrated by
real-world application mappings and physical implementations
of a fully functional many-core processor array.

III. PROCESSOR SHAPES AND TOPOLOGIES

As shown in Fig. 2, three different topologies are studied
and the well-known 4-neighbor mesh is used as the baseline
topology for comparison as shown in Figure 2(a).

Figure 2(b) shows a 6-neighbor processor array using
hexagonal-shaped processor tiles. The processor center-to-
center distance is

√
3 ∗w if the length of the hexagon edge is

w. The hexagonal grid is commonly used in mobile wireless
networks due to its desirable feature of approximating circular
antenna radiation patterns and its optimal characteristic of six
nearest neighbors. The symmetry and space-filling property
make the hexagonal-shaped processor tile an attractive design
option for many-core processor arrays.

Due to limitations of current wafer sawing machines, chips
on round wafers are traditionally square or rectangular. In fact,
the opportunities and limitations of non-rectangular processors
on a chip are analogous to non-rectangular chips on a wafer.
For the case of a rectangular chip composed of hexagonal-

TABLE I
LINK LENGTH FOR THE THREE STUDIED TOPOLOGIES WITH THE AREA OF

EACH PROCESSOR TILE EQUAL TO ONE UNIT OF LENGTH SQUARED.

Topology Nearest-neighbor Link Longer Link
Number Length Number Length

4-neighbor mesh 4 1.00 – –
6-neighbor hex grid 6 1.07 – –
8-neighbor mesh 4 1.00 4 1.41

Fig. 3. A 2D mesh processor array connected by a dynamic five-port routers
each with one port connected to the processor core.

shaped processors, there are areas on the periphery of the
chip in which processors can not be placed. If the hexagonal
processor array size is larger than 30 x 30, this area overhead
becomes less than 2.7% of the total chip area. In practice,
this area could be filled with other chip components such as
decoupling capacitors, or portions of hardware accelerators,
memory modules, I/O circuits or power conversion circuits.

Another logical extension of the 2D mesh is to include four
diagonal processors in an 8-neighbor arrangement as shown in
Figure 2(c) where each rect tile can directly communicate with
8 neighbors. This approach has increased routing congestion
in the tile corners due to the four (uni-directional) links that
pass through each corner (the dashed lines in Figure 2(c)).

The center-to-center distance can be used to represent the
communication link length between two “touched” processors.
Table I shows the number of different types of communi-
cation links and the corresponding link length for the three
topologies. The area of a processor tile is assumed to be one
squared unit. As shown in Table I, the 4-neighbor mesh and
6-neighbor hex grid have only one type of communication
link due to equal center-to-center tile distance. The 8-neighbor
mesh topology has two types of links.

IV. APPLICATION MAPPING

A. Target Interconnect Architecture

Fig. 3 shows the inter-processor communication in a typical
2D mesh processor array using dynamic routers. As the
diagram shows, the processor array is connected by 5-port
routers and the communication logic includes five buffers and
one 5x5 crossbar. There might be more control logic to support
the communication flow control which is not drawn. The
static circuit-switch interconnection has smaller area, lower
power dissipation and lower complexity than dynamic router
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Fig. 4. A 2D mesh processor array connected by circuit switches each
with four nearest-neighbor inter-processor communication links and one port
connected to the processor core.

interconnection while trading off routing flexibility [13]. Fig. 4
shows another 2D mesh array connected by circuit switches
each with four nearest-neighbor interconnection links and
one port connected to the processor core. The circuit switch
communication logic has only one buffer and one 4x1 crossbar.
The long distance communication is performed by software in
the intermediate processors. In this work, we use the static
configurable circuit switch architecture which is suitable for
applications with steady communication patterns. We also
extend the architecture in Fig. 4 by adding one more port
to the processor core due to the fact that processors normally
have a two-operand instruction format. Thus, the processor
can read two words from two buffers in one instruction at the
same time.

B. Application Mapping Results

Parallel programming on fine-grained many-core systems
includes two steps: 1) Partitioning the algorithms at a fine-
grained level; 2) Mapping the tasks to the nodes of the
processor array and connecting the nodes with available links
defined by the topology [14]. The algorithm partitioning and
mapping can be conducted either manually or automatically.
The partitioning problem is out of the scope of this paper
and the details are not discussed. This section focuses on the
second step – application mapping.

Based on the two-port circuit switch architecture, two
complete applications including an H.264/AVC residual en-
coder and an 802.11a receiver are manually mapped onto all
three topologies which differ in the number of links among
neighboring processor tiles.

Figure 5 depicts two task graphs of the benchmark ap-
plications, where each node represents one task which can
be implemented in one processor and each edge represents
one physical link between two processor nodes. Figure 5(a)
shows a 22-node task graph of an H.264/AVC residual base-
line encoder composed of integer transform, quantization and
context-adaptive and variable length coding (CAVLC) func-
tions [14]. The H.264/AVC encoder is a memory-intensive ap-
plication which requires an additional shared memory module
as shown in the task graph. Figure 5(b) shows a 22-node task
graph of a complete 802.11a WLAN baseband receiver which
is computation-intensive requiring two dedicated hardware
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Fig. 6. An H.264/AVC video residual encoder mapped on a processor array
with 4-neighbor 2D mesh topology.
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Fig. 7. An H.264/AVC residual video encoder mapped on a processor array
with 6-neighbor hex topology.

accelerators: Viterbi decoder and FFT. The complete receiver
includes necessary practical features such as frame detec-
tion, timing synchronization, carrier frequency offset (CFO)
estimation and compensation, and channel estimation and
equalization [15].

Figure 6 shows an example mapping of the H.264/AVC
residual encoder capable of 1080p HDTV encoding at 30
frames per second on the baseline 4-neighbor mesh that
uses 32 processors plus one shared memory. The 4-neighbor
mesh is inefficient in handling a complex application like
H.264/AVC encoding. A total of 10 processors are used
solely for routing data which accounts for 31% of the total
application area. Figure 7 shows a possible 25-processor
mapping on the proposed 6-neighbor hex grid topology. As
mentioned before, the hexagonal-shaped processors still take
a maximum of two inputs from the six nearest-neighbor
processors. Compared with the design using 4-neighbor mesh,
seven routing processors are saved, which accounts for a 22%
processor number reduction.

Figure 8(a) shows the number of processors used for
mapping the two applications to all three topologies. The
6-neighbor hex grid and 8-neighbor mesh are much more
efficient than the baseline 2D mesh, resulting in a number
of processor savings of 25% and 22% for the H.264 residual
encoder and both 25% for the 802.11a receiver. The 8-neighbor
mesh requires slightly larger number of processors than the 6-
neighbor hex grid topology which yields the largest reduction
(24%) in average number of used processors compared to 4-
neighbor mesh. This is because the communication patterns

3



N1

N2

N3

N4

N5

N9

N7

N6

N10

N11

N12

N14

N15

N16

N17
N18

N19 N20

N21

N22

data_in

data_out

N8

N13

Shared 

Memory

(a)

N1

N2

N3

N4
data_in

N5

N7

N6

N9N8

FFT
Viterbi 

Decoder

data_out

N10 N11

N14

N13

N12

N15

N19

N18

N16

N17

N20 N21 N22

(b)

Fig. 5. Task graph of (a) a 22-node H.264/AVC video residual encoder, and (b) a 22-node 802.11a WLAN baseband receiver.
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Fig. 8. The application mapping results of the 4-neighbor mesh, 6-neighbor
hex grid and 8-neighbor mesh (a) the number of used processors, (b) the total
communication link length.

of the two applications are mostly localized. Thus, topologies
with more nearest-neighbor links yield more benefits than
topologies with less nearest-neighbor links.

Figure 8(b) shows the total communication link length for
the two applications which is calculated based on the data in
Table I and the application mapping diagrams. The 8-neighbor
mesh has longer communication length than the 4-neighbor
mesh because of using more long communication links. The
6-neighbor hex grid is the most efficient topology, yielding the
largest reduction (19%) in average total communication link
length compared to the baseline 4-neighbor mesh.

V. PHYSICAL DESIGN METHODOLOGY AND HEXAGONAL
PROCESSOR TILE DESIGN

A. Physical Design Methodology

For performance evaluation, a small DSP processor with
configurable circuit-switch interconnection is used for all
physical designs. The processor contains a 16-bit datapath with
a 40-bit accumulator and 560-Byte instruction and 256-Byte
data memories. Each processor also contains two 128-Byte
FIFOs for data buffering and synchronization between two
processors. Each set of inter-processor links are composed of
19 signals including a clock, 16-bit data and 2 flow-control
signals. This processor is tailored for all topologies under
test with a different number of neighboring interconnections
ranging from 4 to 8. The internal switch fabrics are changed
accordingly. The hardware overhead is minimal for 6-neighbor
and 8-neighbor processors with only 0.7% and 2.0% hardware

overhead based on the synthesis results. In order to make CMP
integration simpler, four additional sets of pins are inserted
into the processor netlist after synthesis and are directly
connected with bypass wires for the 8-neighbor processor. This
adds routing congestion in the corner for the 8-neighbor mesh
topology shown in Figure 2(c).

The processors are synthesized from Verilog with Synopsys
Design Compiler and laid out with an automatic timing-
driven physical design flow with Cadence SoC Encounter in
65 nm CMOS technology. Timing is checked and optimized
after each step of the physical design flow: floorplan, power
planning, cell placement, clock tree insertion and detailed
routing.

B. Hexagonal Processor and CMP Design

The hexagonal-shaped tile bring challenges for physical
implementation. The first challenge to design the hexagonal
processor is how to create a hexagonal shape at the floorplan
stage. The rectangular placement and routing blockage in
SoC Encounter are used to create approximate triangle corner
blockages with each rectangular blockage differs by one unit
in width and height. All rect blockages are piled together
to create an approximate triangle in the four corners of the
rectangular floorplan as shown in Figure 9.

A proper placement of pins can help to achieve efficient
global routing and easy CMP integration. At the floorplan
stage, four sets of pins are put along the diagonal edge of the
corner and two set of pins are placed in the horizontal top and
bottom edge. Since all macroblocks have rectangular shapes
(IMEM, DMEM and two FIFOs), this presents a challenge
to place the macroblocks. In this design, the macroblocks are
placed along the edge and the IMEM is placed in the right
corner, respectively as shown in Figure 9.

The metal 6 and metal 7 are used to distribute power over
the chip and the automatically-created power stripes can stop
at the created triangle edge in the corner. The power pins
are created on the top and bottom horizontal edges. When
integrating the hexagonal processor together, the power nets
along the triangle edge can be connected automatically or
manually by simple abutment.

Once a hexagonal processor tile is laid out, a script is used
to generate the RTL files of the multiprocessor. The CMP array
can be synthesized with empty processor tiles inside. Another
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Fig. 9. Layout of a hexagonal processor and a 6x6 multiprocessor array.

script places the hexagonal tiles with the blockage area overlap
with nearest-neighbor processors along the triangle edge of
each hexagonal tile. The SoC Encounter can connect all
pins automatically although there are overlaps between LEF
(library exchange format) files. The final GDSII files are read
into Cadence icfb for design rule check (DRC). Figure 9 shows
the final layout of a hexagonal-shaped processor tile and a 6 by
6 hexagonal-tiled multiprocessor array. There are small empty
spaces along the edges of the chip as described in Section III.

VI. EXPERIMENT RESULTS

A. Processor Implementation

All discussed topologies enable an easy integration of
processors by abutment without global wires in the physical
design phase. For all topologies, there is no long-distance inter-
communication link across more than two processors and the
processor has been pipelined in a way that the critical path
is not in the interconnection links. Therefore, the maximum
achievable frequency of an array is the same as an individual
core, which is one of the key advantages of our proposed dense
on-chip networks. Three tile types are implemented from RTL
to GDSII layout. In order to be fair, all floorplans use the same
power distribution design and the I/O pins and macroblocks
are placed along edges reasonably depending on the topology.

In standard-cell design, the cell utilization ratio has a strong
impact on the implementation result. A higher cell utilization
can both save area and increase system performance if the
design is routable. In order to get a minimum chip area for all
tiles, we start with a relatively large tile area which results in
a small cell utilization ratio. Then the tiles are repeatedly laid
out while maintaining the aspect ratio and reducing the area by
5% in each iteration with minor pin and macroblock position
adjustments in the floorplaning phase. Once a minimum area
within 5% has been reached, the area change is reduced to
2.5%. The layout tool is pushed until it is not able to generate
an error-free GDSII layout for all tiles. Our methodology
results in a high cell utilization for all three tiles ranging from
81% to 83%.

Figure 10 shows the normalized implementation results of
the three processor tiles in terms of area, max clock frequency,
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Fig. 10. Comparison of key metrics of the three optimized processor tile
layout: normalized area, maximum clock frequency, energy per operation, and
clock skew.

energy per operation and clock skew. The baseline 4-neighbor
rectangular tile has the smallest area and the highest cell
utilization of 83%. Compared with the baseline 4-neighbor
rectangular tile, an area increase of 2.9% and 5.9% are
required for the 6-neighbor hexagonal-shaped tile and the 8-
neighbor rectangular tile, respectively. Both designs have a cell
utilization of 81%.

Figure 10 also depicts the normalized maximum clock
frequency relative to the baseline 4-neighbor rect tile which
can operate at a maximum of 1065 MHz at 1.3 V. Due to an
increase of area, the 8-neighbor rect tile can operate at 2.9%
higher frequency than the 4-neighbor rect tile. The 6-neighbor
hexagonal-shaped tile has noticeably higher frequencies than
baseline 4-neighbor rect tile, which achieves a frequency
increase of 5.8%.

Figure 10 shows the energy per operation for all tiles, which
is estimated based on a 20% activity factor for all internal
nodes. Both the 6-neighbor hex tile and 8-neighbor rect tile
have a higher energy per operation (7.5%) because of the extra
circuits for interconnections.

As for clock skew, the 8-neighbor rect tile shows a 29%
higher clock skew probably because routing congestion in the
corners affects the clock tree synthesis. The more circular-like
shape helps the layout tool for a clock tree insertion and the
hexagonal-shaped tile achieves the lowest clock skew with a
reduction of 54% compared to the baseline 4-neighbor rect
tile.

B. Application Area and Power

The actual application area depends on the number of used
processors and the processor tile sizes. Figure 11 shows the
normalized application area of the H.264 residual encoder and
the 802.11a baseband receiver for all three topologies. The
average application area reductions are 21% and 18% for the
6-neighbor hex grid topology and the 8-neighbor mesh topol-
ogy, respectively. Corresponding to the largest reduction of
the number of used processors, 6-neighbor hex grid topology
achieves the largest application area reduction.
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Fig. 11. The final mapping results of the H.264 residual encoder capable of HD 1080p encoding at 30 fps and 802.11a baseband receiver in 54 Mbps mode
(a) normalized application area, and (b) normalized power consumption.

Since tightly-tiled architecture does not have global long
wires, the total application power depends on the number
of used processors and the computational workload for each
processor tile. In order to meet the throughput requirement
for the two mapped applications, processors need to run at
959 MHz at a supply voltage of 1.15 V for H.264 residual
encoder and 594 MHz at a supply voltage of 0.92 V for
802.11a baseband receiver. Based on the processor power
consumption numbers, application mapping diagrams and the
required clock frequencies and supply voltages for processors,
Figure 11(b) shows the normalized estimated average power
consumption of the H.264 residual encoder (processing 1080p
video at 30 fps) and the 802.11a baseband receiver (54 Mbps
mode) for all three topologies. Compared to 4-neighbor mesh
topology, the average application power reductions are 17%
and 13% for the 6-neighbor hex grid and the 8-neighbor mesh
topology, respectively. The 6-neighbor hex grid is the most
power-efficient topology among all three topologies.

VII. CONCLUSION

This paper presents two low area overhead and low design
complexity topologies other than the commonly-used 2D mesh
for tiled many-core architecture. The proposed topologies
include one 6-neighbor topology which uses novel hexagonal-
shaped processor tiles. This work demonstrates the feasibility
of using commonly available commercial CAD tools to imple-
ment CMPs with hexagonal processor tiles. Compared to 4-
neighbor 2D mesh, the proposed 6-neighbor hex grid topology
has little performance and energy penalties and small area
overhead while providing much more effective inter-processor
interconnect to reduce application area, power consumption
and total communication link lengths.
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