м.

A Reduced Routing Network Architecture for Partial Parallel LDPC Decoders

Houshmand Shirani-mehr^{1,2}, Tinoosh Mohsenin³, Bevan Baas¹

¹ VCL Computation Lab, ECE Department, UC Davis
² Intel Corporation, Folsom, CA
³ University of Maryland, Baltimore County

LDPC codes and Their Applications

- Superior error correction performance
- Recently adopted for:
 - IEEE 802.15.3c
 - IEEE 802.11ad

$$H = \left[\begin{array}{rrrr} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{array} \right]$$

Partial-Parallel Decoders

- A subset of check and variable nodes are implemented in hardware
 - Processing of the whole matrix done by changing interconnection between implemented nodes
 - A network of muxes is utilized
- This interconnection network results in:
 - Hardware overhead
 - 1344 x 4:1 muxes for a (672,588) LDPC code
 - High power dissipation
 - All muxes toggle over every cycle
 - Decline in throughput
 - In critical path of the signals

Contribution

- A new decoding scheme is proposed
 - Based on matrix structure of codes in IEEE 802.15.3c and 802.11ad
 - Results in almost complete elimination of logic gates on routing network of the decoder
 - Improvement in area, power and throughput
 - No degradation in BER performance
- Class of matrices the method can be utilized for is defined
- Results for (672,588) LDPC code adopted in IEEE 802.15.3c are presented

Outline

- Partial Parallel Decoders
- Layered Belief Propagation Decoding
- Split-Row Threshold Decoding
- Decoder Implementation and Results
- Conclusion and Future Directions

Layered Normalized Min-Sum

- In this work, layered scheduling with normalized minsum as update procedure in check nodes is utilized.
- 2x improvement in convergence speed

for
$$k = 0 : (Y - 1)$$
 do
for $i \in$ check nodes of L_k do

$$Q_{ij} = Q_j - R_{ij(old)} \tag{1}$$

$$R_{ij} = Sfactor_{MS} \times \prod_{\substack{j' \in V(i) \setminus j \\ \times \min_{j' \in V(i) \setminus j}} \operatorname{sign}(Q_{ij'})} (2)$$

$$Q_j = Q_{ij} + R_{ij} \tag{3}$$

end for end for

Outline

- Partial Parallel Decoders
- Layered Belief Propagation Decoding
- Permutational Decoding
- Decoder Implementation and Results
- Conclusion and Future Directions

Valid Mapping

- Assume a partitioning on columns along layers on rows
- A mapping from column groups of layer L1 to column groups of layer L2 is called valid if:
 - 1) It is one-to-one,
 - It maps every non-zero submatrix in layer L1 to an equal or an all-zero submatrix in layer L2,

MP valid from Layer 1 to Layer 2

Permutational Matrix

- We call a parity-check matrix permutational if there exists a mapping and a sequence of all its layers such that the mapping is valid:
 - Between consecutive layers in the sequence.
 - From last layer to the first layer of the sequence.

$$H = \begin{bmatrix} A & B & C & D \\ D & A & B & C \\ C & D & A & B \\ B & C & D & A \end{bmatrix}$$
Layer 3
Layer 4

Sequence = 1,2,3,4

Cycle 1:

Effective connection matrix: [ABCD]

(Fist N_c columns connected to check nodes through connection matrix A)

Layer processed:

Layer 1

Cycle 2:

Effective connection matrix: [DABC]

(Fist N_c columns connected to check nodes through connection matrix D)

Layer processed:

Layer 2

Cycle 3:

Effective connection matrix: [CDAB]

(Fist N_c columns connected to check nodes through connection matrix C)

Layer processed:

Layer 3

Cycle 4:

Effective connection matrix: [BCDA]

(Fist N_c columns connected to check nodes through connection matrix B)

Layer processed:Layer 4All layers are processed, outputs bits from VN's are in proper order.

General Architecture

- Permutational matrix with $Y \ge M_1$ rows and $U \ge N_c$ columns
- The routing network is based on L_{max} , the layer with highest row degree.

Characteristics of the architecture

- Number of implemented CN's: number of row in a layer (M_i)
- Number of implemented VN's: number of columns $(U \times N_c)$
- Almost no gates are needed in the routing network, only a constant wiring network is used.
- No need for shifting outputs or check node messages
 - Outputs can be registered at the end of last cycle in each iteration
 - *R_{i,i}* values are registered internally
- The complexity of overall routing network is not dramatically changed.
 - The shifting network and the connection network based on L_{max} are in series, and can be assumed as one overall routing network, comparable to any other v-to-c routing network in regular partial-parallel decoders, but with no gates.
- No effect on BER

Outline

- Partial Parallel Decoders
- Layered Belief Propagation Decoding
- Permutational Decoding
- Decoder Implementation and Results
- Conclusion and Future Directions

Implementation for IEEE 802.15.3c

- LDPC codes included in permutational matrix definition:
 - All code rates in IEEE 802.15.3c
 - All code rates in IEEE 802.11ad
- Here the architecture is implemented for (672,588) code in IEEE 802.15.3c.

(672,588) LDPC code

CMOS Implementation Results

	ASSCC'10[1]	ISCAS'11[2]	CICC'07[3]	Regular Partial- Parallel Architecture	Proposed Architecture
CMOS fabrication process	65 nm	65 nm	0.13 µm	65 nm	65 nm
Code Length	672	672	660	672	672
Supported Code rates	1/2, 5/8, 3/4, 7/8	1/2, 5/8, 3/4, 13/16	0.73	7/8	7/8
Input Quantization (bits)	6	5	4	6	6
Gate count (k)	647	-	690	138	125
Core area (mm ²)	1.562	1.3	7.3	0.891	0.718
Max. clock frequency (MHz)	197	150	300	180.2	235
Max. Iteration Count (I _{max})	5	15	15	5	5
Throughput @ I _{max} (Gbps)	5.79	3.08	2.44	6.05	7.9

- LDPC processors laid out in 65 nm CMOS
- Standard cell with complete Place & Route design
- Critical step to properly evaluate wire routing congestion

Conclusion

- A new LDPC decoding technique is presented and the class of codes the method can be utilized for is defined.
- The technique is implemented for (672,588) code adopted for IEEE 802.15.3c.
- The new architecture reduces the gates on the routing network of the decoder from 1344 4:1 muxes to 126 2:1 muxes.
- The decoding technique results in 30% improvement in throughput and 24% decrease in area, with no effect on BER performance.

Acknowledgements

Support

- ST Microelectronics
- NSF Grant 430090 and CAREER award 546907
- NSF Grant 903549 and 1018972
- Intel Corporation
- SRC GRC Grant 1598, CSR Grant 1659 and GRC Grant 1971
- Intellasys
- UC Micro
- C2S2 Focus Center, one of six research centers funded under the Focus Center Research Program (FCRP), a Semiconductor Research Corporation entity