A High-Performance Area-Efficient AES Cipher on a Many-Core Platform

Bin Liu and Bevan M. Baas

VLSI Computation Lab ECE Department University of California, Davis

November 9th, 2011 Asilomar Conference on Signals, Systems and Computers

- Advanced Encryption Standard
- Targeted Fine-Grained Many-Core Platform
- Implementations of AES Cipher
- Comparison with Related Work

Advanced Encryption Standard

- AES is a symmetric block encryption algorithm
- Plaintext: 128 bits, a 4-by-4 byte array
- Four basic operations in the main loop
 - SubBytes
 - ShiftRows
 - MixColumns
 - AddRoundKey

Length of <i>round key</i> (bits)	Number of Rounds (<i>N_r</i>)
128	10
192	12
256	14

AES Basic Operations

AES Key Expansion

KeySubWord: byte substitution from a look up table for a four-byte word

 $\begin{bmatrix} K_0 & K_1 & K_2 & K_3 \end{bmatrix} \longrightarrow \textcircled{S-box} \longrightarrow \begin{bmatrix} K'_0 & K'_1 & K'_2 & K'_3 \end{bmatrix}$

KeyRotWord: left cyclic shift one byte	
$\begin{bmatrix} K_0 & K_1 & K_2 & K_3 \end{bmatrix} \begin{bmatrix} \Box \Box \Box \Box \Box \Box \\ \Box \Box \Box \Box \\ \Box \Box \Box \\ \Box $	

KeyXOR: every word *w*[*i*] is equal to the bitwise XOR of the previous word, *w*[*i*-1], and the word *Nk* position earlier, *w*[*i*-*Nk*].

Note: *Nk* equals 4, 6 or 8 for the key length of 128, 192 or 256 bits

- Advanced Encryption Standard
- Targeted Fine-Grained Many-Core Platform
- Implementations of AES Cipher
- Comparison with Related Work

Targeted Fine-Grained Many-Core Platform

- 164 homogeneous fine-grained cores
 - In-order 6-stage pipeline
 - no specialized instructions
 - 128 x 32-bit instruction memory
 - 128 x16-bit data memory
 - Max. frequency 1.2GHz @ 1.3V
 - 0.17 mm² in 65nm CMOS
- On-chip reconfigurable 2Dmesh network
 - Nearby & long-distance communication

D. Truong et.al, JSSC, 2009

- Advanced Encryption Standard
- Targeted Fine-Grained Many-Core Platform
- Implementations of AES Cipher
- Comparison with Related Work

Preliminary Design of AES Cipher

- (N_r-1) times loop-unrolling is applied to both the main AES algorithm and the key expansion process
 - Key length = 128 bits, $N_r = 10$
- Throughput is 266 clock cycles per block, equaling 16.625 clock cycles per byte
 - Determined by the *MixColumns* cores.
- 70 cores are used for this implementation

Optimization I: Increasing Throughput

- Cores running *MixColumns* workloads are 2x slower than other cores, which are the bottlenecks of the design.
- Parallelize each MixColumns core into two MixCol-8 cores
 - Each MixCol-8 processes two columns (8 bytes) instead of four columns
- Throughput is increased by 43% (152 cycles per block)
 - 10 more cores are required

Processor Name	Execution Time for Processing One 128-bit Data Block (Clock Cycles)
SubBytes	132
ShiftRows	38
MixColumns	266
AddRoundKey	22
KeySubWord	56
KeyRotWord	26
KeyXOR	56

Optimization II: Reducing Cores

Before optimization:

- ~22% average IMem usage
- ~43% average DMem usage
- Combine the neighboring SubBytes and ShiftRows core into one SubShift core
 - T_{EXE} =148 cycles per data block
 - 80% IMem usage and 100% DMem usage

- Combine the neighboring KeyRotWord and KeyXOR cores into one KeyScheduling core
 - T_{EXE} =60 cycles per data block
 - 24% IMem usage and 28% DMem usage
- Further core merging would reduce the throughput of the design or exceed the memory limitations

Optimized Design of AES Cipher

- The optimized cipher achieves a 43% higher throughput (9.5 cycles per data block)
- The optimized design requires 16% fewer cores (59 cores)
- The execution activity of processors for the optimized cipher is more balanced compared with the preliminary design.

- Advanced Encryption Standard
- Targeted Fine-Grained Many-Core Platform
- Implementations of AES Cipher
- Comparison with Related Work

Comparison with Related Work

Platform	Method	Tech. (nm)	Area (mm²)	Max Freq. (MHz)	Throughput (cycles/byte)	Scaled Throughput (Mbps)	Scaled Area (mm²)	Scaled Throughput/Area (Mbps/mm²)
Pentium 4 561	Bitslice	90	112	3600	16	2492	58.42	42.66
Athlon 64 3500	Bitslice	90	193	2200	10.6	2299	101	22.76
Core 2 Duo E6400	Bitslice	65	111	2130	9.19	1854	111	16.70
Core 2 Quad Q6600 (one core)	Bitslice + SSSE3	65	286/2 = 143	2400	9.32	2060	143	14.41
Core 2 Quad Q9550 (one core)	Bitslice + SSSE3	45	214/4 = 53.5	2830	7.59	2065	112	18.44
Core i7 920 (one core)	Bitslice + SSSE3	45	263/4 = 65.75	2668	6.92	2135	133	16.05
TI C6201		180	NA	200	14.25	311	NA	NA
GeForce 8800 GTX	T-Box	90	484	575	NA	11500	252	45.63
This Work AsAP		65	6.63	1210	9.5	1019	6.63	153.70

- Compared to CPUs, our design achieves 3.6–10.7x higher throughput per chip area
- Compared to DSP, our design achieves 1.5x higher throughput
- Compared to GPU, our design achieves 3.4x higher throughput per chip area

Acknowledgments

- NSF Grant 0430090, 0903549; and CAREER Award 0546907
- SRC GRC Grant 1598, 1971; and CSR Grant 1659
- UC Micro
- ST Microelectronics
- Intel
- Intellasys
- C2S2 Focus Center, one of six reserch centers funded under the Focus Center Research Program (FCRP), a Semiconductor Research Corporation entity.