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Abstract—This paper presents the design and software implementation
of a high-performance area-efficient Advanced Encryption Standard
(AES) cipher on a many-core platform. A preliminary cipher design
is partitioned and mapped to an array of 70 small processors, and offers
a throughput of 16.625 clock cycles per byte. The usage of instruction
and data memory, and the workload of each processor are characterized
for further optimization. Through workload balancing and processor
fusion, the throughput of the cipher is increased by 43% to 9.5 clock
cycles per byte, while the number of processors utilized is reduced to
59, which is only 10.03 mm2 in a 65 nm fine-grained many-core system.
In comparison with published AES implementations on general purpose
processors, our design has 3.6–10.7 times higher throughput per area.
Moreover, the presented design shows 1.5 times higher throughput than
the TI DSP C6201 and 3.4 times higher throughput per area than the
GeForce 8800 GTX.

Index Terms—Advanced Encryption Standard (AES), parallel map-
ping, many-core processor, Asynchronous Array of Simple Processors
(AsAP).

I. INTRODUCTION

In 2001, the National Institute of Standards and Technology (NIST)
selected the Rijndael algorithm as the Advanced Encryption Stan-
dard (AES) [1] as a replacement for the Data Encryption Standard
(DES) [2]. Since then, AES has been widely used in a variety
of applications, such as communication systems, high performance
servers, RFID tags and smart cards.

To adapt different applications’ requirements, the flexibility of
software solutions are attractive. Some AES implementations based
on different software platforms have been reported in the literature.
Matsui et al. proposed a bitsliced AES implementation on an Intel
Core2, which achieves a throughput of 9.2 clock cycles per byte
for a data block longer than 2048 bytes, equaling 1.85 Gbps when
the core is running at its maximum frequency of 2.13 GHz [3].
The bitslice technique was first proposed by Biham for fast DES
implementation on a software platform with a word size longer
than 16 bits [4]. Bernstein et al. investigated the opportunities
of reducing instruction count by combining different instructions
together for various architectures, which alleviates the dependence
between throughput and the length of data block [5]. Both bitslice and
specific sets of instructions from SSSE3 (Supplemental Streaming
SIMD Extensions 3 [6]) are utilized to enhance the performance of
the Intel Core i7 920 as high as 6.92 clock cycles per byte [7].
Besides CPUs, there is also a trend to use GPUs (Graphic Processing
Units) and DSP processors to implement AES encryption. Wollinger
et al. compared different encryption algorithms on a TMS320C6X
processor and achieved a AES encipher with a throughput of 14.25
cycles per byte [8]. Manavski presented an AES implementation with
a peak throughput of 8.28 Gbps on a GeForce 8800 GTX chip when
the input data block is longer than 8 MB [9].

This paper presents a high-performance and area-efficient AES
cipher on a fine-grained many-core system. By exploiting the ad-
vantages of fine-granularity data and task parallelism, the proposed
implementation achieves good performance and higher throughput
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Fig. 1. Block diagram of AES encryption

per area compared to other software platforms. The remainder of this
paper is organized as follows. Section II introduces the AES algorithm
and the features of the targeted many-core platform. Section III
describes the proposed AES implementations in terms of partitioning,
mapping and optimization. Section IV compares our work with other
software implementations. Finally, Section V concludes the paper.

II. AES AND THE TARGETED MANY-CORE ARCHITECTURE

A. Advanced Encryption Standard

AES is a symmetric encryption algorithm, which takes a 128-bit
data block as input and performs several rounds of transformations
to generate output ciphertext. Each 128-bit data block in the AES is
processed as a 4-by-4 array of bytes, called state. The round key size
can be 128, 192 or 256 bits. The number of rounds repeated in the
AES, Nr, is defined by the length of the round key, which is 10, 12
or 14 for the key lengths of 128, 192 or 256 bits, respectively. Fig. 1
shows the AES encryption steps with the key expansion process. In
this paper, we focus our discussion on the situation with a 128-bit
key and Nr = 10. In the case of encryption, there are four different
transformations applied as follows:

1) SubBytes: The SubBytes operation is a non-linear byte substitu-
tion. Each byte from the input state is replaced by another byte
according to the substitution box (called: S-box). The S-box is
computed based on a multiplicative inverse in the finite field
GF(28) and the bitwise affine transformation:



Fig. 2. Block diagram of the targeted many-core platform [10].
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where
[

b7b6b5b4b3b2b1b0
]

and
[

b′7b′6b′5b′4b′3b′2b′1b′0
]

represnt the bytes before and after substituition, respectively.
2) ShiftRows: In the ShiftRows transformation, the first row of the

state array remains unchanged. The bytes in the second, third
and forth rows are cyclically shifted by one, two and three bytes
to the left, respectively.

3) MixColumns: During the MixColumns process, each column of
the state array is considered a polynomial over GF(28). After
multiplying modulo x4 +1 with a fixed polynomial a(x),

a(x) = {03}x3 + {01}x2 + {01}x+ {02} (2)

the result is the corresponding column of the output state.
4) AddRoundKey: A round key is added to the state array using

a bitwise exclusive-or (XOR) operation. Round keys are calcu-
lated from the key expansion process.

Similarly, there are three steps in each key expansion round.
1) KeySubWord: The KeySubWord operation takes a four-byte

input word and produce an output word by substituting each
byte in the input to another byte accordin gto the S-box.

2) KeyRotWord: The function KeyRotWord takes a word
[a3,a2,a1,a0], performs a cyclic permutation, and returns the
word [a2,a1,a0,a3] as output.

3) KeyXOR: Every word w[i] is equal to the XOR of the previous
word, w[i−1], and the word Nk positions earlier, w[i−Nk]. Nk
equals 4, 6 or 8 for the key lengths of 128, 192 or 256 bits,
respectively.

B. Fine-grained Many-core Processor Array

The targeted Asynchronous Array of Simple Processors (AsAP) ar-
chitecture is an example of fine-grained many-core computation plat-
forms, supporting globally-asynchronous locally-synchronous (GAL-
S) clocking on-chip network and per-processor dynamic voltage and
frequency scaling (DVFS) [11].
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Fig. 2 shows the block diagram of AsAP. The computation plat-
form is composed of 164 small identical processors, three hardware
accelerators and three 16 KB shared memories. All processors and
shared memories are connected by a reconfigurable 2D-mesh network
that supports both nearby and long-distance communication [12].
Each programmable processor has a simple 6-stage pipeline, which
issues one instruction per cycle. Moreover, no specialized instructions
are added. Each processor has a 128× 32-bit instruction memory, a
128× 16-bit data memory and two 64× 16-bit FIFOs. The area of
every processor occupies 0.17 mm2 in 65 nm CMOS technology.
Each processor can operate at a maximum clock frequency of
1.2 GHz at 1.3 V.

III. PROPOSED AES IMPLEMENTATIONS

A. Preliminary Design – Partitioning and Dataflow Mapping

As Fig. 1 shows, the AES cipher can be partitioned into a number
of serial and parallel independent tasks corresponding to different
steps in the algorithm. However, the throughput of this partitioning
is low due to the time-consuming loop operation in the algorithm. In
order to enhance the throughput, loop-unrolling is applied to break the
dependency among loops and allow the cipher to operate on multiple
data blocks simultaneously. To improve the throughput as much as
possible, we unroll the loops in both the AES algorithm and the key
expansion process by Nr −1 times, which equals nine in our design.
The dataflow diagram after loop-unrolling is shown in Fig. 3.

Fig. 4 shows a preliminary AES cipher implementation based on
the dataflow diagram. Each task in the dataflow diagram is mapped
to one small processor. As shown in Fig.4, seven small processors
are required for one loop, four for the AES algorithm and three for
the key expansion process, respectively. Therefore, the total number
of processors used in this encipher is:

Nprocessors = (Nr −1)×None−loop +Nlast−round

= 9×7+7 = 70 (3)

Fig. 5 and Fig. 6 summarize the instruction and data memory
usages for each processor in the original design, respectively. Each
processor in the 70-core AES cipher uses an average of 28 words
of instruction memory, which is 22% of all available instruction
memory; and an average of 55 words of data memory, which is 43%
of all available data memory.
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Fig. 5. Instruction memory usage of the proposed 70-core implementation.
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Fig. 6. Data memory usage of the proposed 70-core implementation.

B. Preliminary Design – Throughput Evaluation

To evaluate the throughput of the design, the execution time of
each processor is examined separately while it runs alone without
connected with other processors. This evaluation shows the pure
execution time of each processor without any stall on input or output
caused by other processors. Table I presents the execution time of
each processor when processing one 128-bit data block with a 128-bit
round key. As shown, the MixColumns processors are the bottlenecks
of the system, which is at least twice slower than other processors.
By running the cipher on the targeted many-core platform, we can
obtain that the throughput of our design is 266 clock cycles per data
block, which equals 16.625 clock cycles per byte.

A more detailed analysis of the processor execution activity for
encrypting one 128-bit data block is shown in Fig. 7. The activity
of each processor (the amount of time spent executing, rather than
stalling) is indicated by the black bar in the figure. The white bars
indicate the time stalled on output, while the gray bars indicates
the time spent waiting for input to arrive. Fig. 7 shows that the
MixColumns processors are running all the time and force other pro-
cessors on the critical path to stall either on output while sending data
or input while receiving data. Therefore, the MixColumns processors

TABLE I
EXECUTION TIME OF ALL PROCESSORS FOR PROCESSING ONE 128-BIT

DATA BLOCK WITH A 128-BIT ROUND KEY ON ASAP

Processor Name Execution Time (clock cycles)
SubBytes 132
ShiftRows 38
MixColumns 266
AddRoundKey 22
KeySubWord 56
KeyRotWord 26
KeyXOR 56
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Fig. 7. Overall activity of processors while processing a 128-bit data block
in the proposed 70-core cipher.

are the bottlenecks of our design. The AddKeyBF ,S ubBytesBF and
S hi f tRowsBF represent the processors before the first MixColumns
processor. They stall on output for more than 50% of the time because
the downstream MixColumns processor is not fast enough to consume
their outputs. On the other hand, the AddKey, SubBytes and ShiftRows
processors after the first MixColumns processor stall on their input
due to the slower data rate of the upstream MixColumns processor.

C. Design Optimization I – Increasing Throughput

Throughput is one of the most significant metrics in our design,
since most of applications have critical requirements on the en-
cryption data rate. Based on the previous analysis, the MixColumns
processors limit the throughput of the cipher. On a many-core
platform, the most convenient solution for increasing throughput is
to parallelize the MixColumns operation into multiple processors.
Since the MixColumns operations on each column of a data block
are independent (each data block is a 4-by-4 array of bytes), each
MixColumns processor can be replaced by two MixCol-8 processors.
Then, each MixCol-8 computes only two columns rather than a whole
data block. As a result, the delay of the system’s bottleneck is
reduced to approximately half of the preliminary design. Simulation
results show that each MixCol-8 processor requires 152 clock cycles
for processing one data block, and is the new bottleneck of the
optimized cipher. Therefore, the throughput of the cipher is increased
by approximately 43% to 152 clock cycles per data block, equaling
9.5 clock cycles per byte. However, this optimization also brings a
requirement of 10 more processors to implement the cipher.
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D. Design Optimization II – Reducing Processors

Besides throughput, area is another significant metric in system
design. Less area means less silicon, therefore less cost. From a
many-core processor perspective, area is represented by the number
of cores required to implement applications. Smaller area translates
into fewer cores and leaves more opportunities for dealing with other
applications on the same platform simultaneously. Therefore, besides
enhancing the throughput of our design, we also try to reduce the
number of cores used for the implementation without impairing the
performance.

The small usage of memory (shown in Fig. 5 and Fig. 6) and
the large slack of most processors (shown in Fig. 7) offer us an
opportunity to merge different processors together to reduce the area
of our design without sacrificing throughput. Two processor fusion
steps are applied to the previous design. First, we merge the adjacent
SubBytes and ShiftRows processors to form a new processor called
SubShift. The SubShift takes 148 cycles for processing one data block,
and occupies 102 words of instruction memory and 128 words of data
memory, respectively. Second, the neighboring KeyRot and keyXOR
processors are fused into one KeyScheduling processor, which takes
60 cycles to expand a 128-bit key, requires 31 words of instruction
memory and 36 words of data memory, respectively.

The execution time of both the SubShift and KeyScheduling pro-
cessors are less than 152 cycles per data block, which means that
the above processor fusion steps for processor count reduction do
not create any new bottlenecks for the design. Fig. 8 shows the AES
cipher after throughput and area optimization. Each loop operation
in the AES algorithm requires six small processors. As a result, the
optimized cipher requires 59 cores in total.

The processor activity of the final optimized cipher is shown in
Fig. 9. Similar as previous analysis, the processors before the first
MixCol-8 processor, the AddKeyBF and S ubS hi f tBF , are stalled on
their output. While the processors after the first MixCol-8 processor,
the AddKey and SubShift, are stalled on their input. In summary,
compared with the original design, the optimized cipher achieves
a 43% higher throughput (9.5 against 16.625 cycles per byte) and
requires 16% fewer processors (59 instead of 70).

IV. RELATED WORK AND COMPARISON

A comprehensive comparison of the state-of-the-art software im-
plementations of AES are summarized in Table II. In order to make
a fair comparison, all of the data are scaled to 65 nm CMOS
technology. The area is scaled to 65 nm with a 1/s2 reduction, and
the delay is scaled with a 1/s reduction according to full-scaling
rules [13].

We use the metric throughput (cycles/byte) and throughput per
area (Mbps/mm2) to compare the performance and area efficiency
of various implementations. As shown in Table II, compared to
the highly optimized AES ciphers on CPUs with the bitslicing
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Fig. 9. Overall activity of processors while processing a 128-bit data block
in the optimized 59-core cipher.

method [3], the proposed AES design on AsAP can achieve up to
1.7 times higher throughput and 3.6–9.2 times higher throughput per
chip area. Besides bitslice, special SIMD instructions are applied to
improve the throughput and efficiency of the AES implementation
on CPUs further [7]. Even so, our design on AsAP still shows a
comparable throughput, with 8.3–10.7 times higher throughput per
area. The TI DSP C6201 is an 8-way VLIW architecture for high
performance DSP applications. The referenced data shows that our
design has 1.5 times higher throughput. The area of the TI DSP
C6201 is not available, but we believe that our design has a much
higher throughput per area.

The AES implementation on GeForce 8800 GTX achieves the
highest throughput in our referenced designs [9]. This advantage
comes from the application of the T-Box method, which combined the
SubBytes, ShiftRows and Mixcolumns phases into one single look-up
table [14]. This method is highly optimized for SIMD architectures
with large memory. However, the design on AsAP still shows 3.4
times better area efficiency. It implies that our design would achieve
a 3 times higher throughput, if we map our design multiple times on
a AsAP chip, which has the same die area as GeForce 8800 GTX.

V. CONCLUSION

In this paper, a high-performance area-efficient AES cipher is
implemented on a many-core platform. The preliminary cipher is
partitioned and mapped to an array of 70 small processors compliant
with the algorithm steps in AES, and has a throughput of 16.625
clock cycles per byte. By balancing workload between different
processors, and merging processors with small usage of instruction
memory and data memory, the throughput of the cipher is increased
by 43% to 9.5 clock cycles per byte; while the number of processors
utilized for the design is reduced to 59, which is 10.03 mm2 in
a 65 nm fine-grained many-core system. In comparison with other
AES implementations on state-of-art general purpose processors, the
proposed cipher on AsAP achieves 3.6–10.7 times higher throughput
per area. Additionally, our design shows 1.5 times higher throughput
than the TI DSP C6201 and 3.4 times higher throughput per area
than the GeForce 8800 GTX.



TABLE II
COMPARISON OF AES CIPHER IMPLEMENTATIONS ON DIFFERENT SOFTWARE PLATFORMS. THE ORIGINAL DATA ARE PRESENTED WITH DIFFERENT
CMOS TECHNOLOGIES. FOR COMPARISON, AREA AND DELAY NUMBER ARE SCALED TO 65 NM TECHNOLOGY. ASSUMING A 1/(s2) REDUCTION IN

AREA, A 1/s REDUCTION IN DELAY BASED ON FULL-SCALING RULES.

Max Scaled Scaled Scaled
Platform Method Technology Area Freq. Throughput Throughput Area Throughput/Area

(nm) (mm2) (MHz) (cycles/byte) (Mbps) (mm2) (Mbps/mm2)
Pentium 4 Bitslice 90 112 3600 16 2492 58.42 42.66

561 [3]
Athlon 64 Bitslice 90 193 2200 10.6 2299 101 22.76
3500 [3]

Core2 Duo Bitslice 65 111 2130 9.19 1854 111 16.70
E6400 [3]

Core2 Quad a Bitslice 65 286/2 2400 9.32 2060 143 14.41
Q6600 (one core) [7] + SSSE3 = 143

Core2 Quad a Bitslice 45 214/4 2830 7.59 2065 112 18.44
Q9550 (one core) [7] + SSSE3 = 53.5

Core i7 a Bitslice 45 263/4 2668 6.92 2135 133 16.05
920 (one core) [7] + SSSE3 = 65.75

TI C6201 180 NA 200 14.25 311 NA NA
[8]

GeForce 8800 T-box 90 484 575 NA 11500 252 45.63
GTX [9]

This Work key expan. cores 65 6.63 1210 9.5 1019 6.63 153.70
AsAP are not included

a The throughput results from [7] are for only one core, so the area numbers are also scaled to one core.
b All referenced designs do not consider key expansion, thereby the cores used for key expansion of the AES implementation on AsAP are not

included for a fair comparison.
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