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Observation & Motivation (1)

a conventional input-buffered wormhole router architecture
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v More than 60% area and 30% power of the router are spent on its

buffers
v" But, a significant amount of these buffers are always empty while

running some tested traffic patterns - not efficient

The number of buffers which are always empty during 30,000 simulation cycles

Traffic uniform  transpose  bit-complement

always empty buffers 32 152 144
ratio 10.0% 47.5% 45.0%
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Observation & Motivation (2)
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v" the NoC using
typical routers has
high buffer empty and
low buffer full
percentages even at
high packet injection
rates

an illustrated example: router’s buffer activity
corresponding to a regular traffic pattern

v" For regular traffic
patterns, a router
design with less than

number of buffers may

has an equivalent
performance as a
typical router
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Deadlock Potential in a NoC
based on Shared-Buffer Routers

a shared-buffer router architecture with 2 buffers;
and the corresponding RDG for a 3x3-array network
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v Can build a router with all input ports sharing a group of buffers
instead of a buffer per input port

v But, it causes deadlock potential in the network (by creating loops
in the corresponding resource dependence graph RDG)

[Dally, TC, 1987; Duato, TPDS, 1993]



Breaking Deadlock by a Dual-Lane
Router Architecture

a shared-buffer router architecture without causing deadlock
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v'Create two separate lanes without loop in the RDG by partitioning
buffers into two group:
= One group is shared by W_in and N_in ports, and outputs to E_out and
S_out ports
= Another group is shared by E_in and S_in ports, and outputs to W_out and
N_out ports
v But, the network does not cover all destination-source patterns



DLABS 1+1 router architecture — version 1

DLABS 1+1

v" Allow a packet to be
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Enhanced DLABS Router Architectures

DLABS 2+2 router
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v DLABS_ 2+2_duallink: two physical
links per input/output ports J
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Experimental Setup

Five router architectures in evaluation

Architecture Typical DLABS_1+1 DLABS_2+2 DLABS_2+2
wormhole _duallink

Total buffers 3 3 3 5

Buffer depth (flits) 8 8 8 8

I/O links per port 2 2 2 4

v Implement of all four router architectures in Verilog RTL

v" Cycle-accurate simulation with Cadence NC Verilog

v’ Evaluate and compare their performance over three synthetic traffic
patterns: uniform random, transpose, and bit-complement

v The simulated network consists of 8x8 nodes; each node = PE + router
v" Run each simulation for 30,000 cycles

v Each packet is 10 FLITs in length

v" Activity of each router is recorded cycle-by-cycle for evaluation



Latency (cycles)

Results (1)

Percentage of number of buffers which are always idle -
during the whole simulation time v All DleBS routers utilize
well their buffers

Architect. Typical DLABS_1+1 DLABS_2+2 DLABS_2+2
wormhole _duallink
random 10.0% 1.0% 0.9% 0.9%
transpose 47.5% 16.2% 16.9% 16.9%
bit-comp. 45.0% 8.3% 0.8% 0.8%

Average network latency
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v DLABS_1+1: poorest performance due to congestion on shared buffers
v DLABS_2+2: better, but still poor due to congestion on interconnect

links
v DLABS_2+2_duallink: best performance; especially in regular traffic

patterns (not random)



Results (2)
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v Routers are synthesized targeting 65-nm ST Microelectronics standard
cells using Synopsis DC Compiler

v" In typical router, 66% area is spent on its buffers

v Sharing buffers makes DLABS_ 1+1 router’s area only 62% of the
typical router

v Having the same buffer area as the typical router, but DLABS 2+2 and
DLABS 2+2 duallink are 8% and 12% bigger, respectively due to
additional control logic circuits

v A similar result is observed in the synthesis power



Results (3)

Throughput per Area (TPA)
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v' TPA shows the silicon area using efficiency of a router design

v Throughput is measured when the network has an average latency of
200 cycles (near saturated)

v DLABS_ 2+2_ duallink has greatest TPA over all traffic patterns

v' Especially, for the bit-complement pattern, the DLABS 1+1 and
DLABS_2+2-duallink are 8% and 64% greater than the typical router



Conclusion

v Achieve higher area efficiency by sharing buffers of a router for multiple ports
v Resolve deadlock problem by a dual-lane architecture, named DLABS

v DLABS_1+1 has 62% area compared to a typical wormhole router, but has
low performance

v DLBAS 2+2 duallink has 12% area greater than a typical one, but achieves
much higher performance and throughput per area, especially in regular traffic

patterns
Future Work

v Evaluate DLABS routers over other traffic patterns

v" Exploit other shared-buffer router architectures

v' Compare with virtual-channel routers and other architectures
v Consider to use bidirectional interconnect links
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