An Energy-efficient Parallel H.264/AVC Baseline Encoder on

a Fine-grained Many-core System

Zhibin Xiao, Stephen Le and Bevan Baas

Department of Electrical and Computer Engineering, Ursigrof California, Davis

Abstract— The emerging many-core architecture provides a flexible
solution for the rapid evolving multimedia applications demanding both
high performance and high energy-efficiency. However, deleping paral-
lel multimedia applications that can efficiently harness ad utilize many-
core architectures is the key challenge for scalable compimg. We con-
tribute to this challenge by presenting a fully-parallel H.264/AVC baseline
encoder on a 167-core asynchronous array of simple process¢AsAP)
computation platform. By exploiting fine-grained data and task level
parallelism in the algorithms, we partition and map the dataflow of the
H.264/AVC encoder to an array of 115 small processors coupdewith
two shared memories and a hardware accelerator for motion ésnation.
Due to the large number of independent processors availahlehe video
encoding process can be divided into three main stages: prietion,
entropy encoding, and reconstruction, with the entropy enoding and
reconstruction stages done in parallel and pipelined with lte prediction
stage. Within each stage, each independent procedure is magd onto
an individual processor for greater parallelization and eficiency. The
proposed parallel H.264/AVC encoder is capable of encodingideo
sequences with variable frame sizes. The preliminary impl®menation is
capable of encoding CIF (352x288) video at 54 frames per seub (fps)
with 925 mW average power consumption by adjusting each pragssor
to workload-based optimal clock frequencies and dual suppl voltages
with less than 1dB loss in resolution.

I. INTRODUCTION

In the past decades, multimedia systems evolve with thel rdgi
velopment of VLSI technologies. More and more complicatedde
and video algorithms become feasible by upgrading the Wyidgr
hardware using newer process technology. Traditionaloveteoding
architectures appear in three forms: application-spegifacessors,
multimedia extensions to general-purpose processorsnaitime-

dia co-processors. However, none of these methods achietre b

high performance and flexibility for emerging multimediarsiards.

Input | | Output
—_—u —
X
FIFO
Motion Viterbi FFTY, Core.
Estimation Decoder Comm
=4
16 KB Shared Memories tg_a_lz

Fig. 1. Architecture of targeted many-core system.

of the globally-asynchronous locally-synchronous (GAIgBY per-
processor voltage and frequency scaling features of tigettanany-
core system to further reduce the power consumption.

The rest of this paper is organized as follows. Section tbuitices
the features of the targeted many-core system and the porrding
parallel programming methodology. Section Il preseneéstdsk-level
parallelization approach to the H.264/AVC encoder. Sedbshows
the performance analysis and results. Section V concludepdper.

Il. PARALLEL PROGRAMING METHODOLOGY AND TARGET
PLATFORM

The H.264/AVC is a video coding standard developed through’ The target ASAP platform

collaboration of the ITU-T and I1SO [1]. The standard is pmove The target AsAP (Asynchronous Array of Simple Processors)

to achieve significant video compression efficiency congbamih
prior standards (39%, 49% and 64% bit-rate reduction vevtREG-

architecture is a fine-grained many-core system which ispomed of
simple cores with small memories for high energy efficieri@rget

4, H.263 and MPEG-2 respectively) [2]. This high coding gaimapplications of AsAP include multimedia and communicatago-

increase comes mainly from a combination of new coding teclas
which results in high computational complexity. The emeggnany-
core approach has proven to be a feasible solution for imal-t

rithms which can be partitioned into small tasks runningesafely on
small and simple processors at different supply voltagesfieguen-

cies [7]. The system is composed of 164 16-bit homogenous DSP

H.264/AVC video encoding. However, how to map such complexrocessors, three dedicated hardware acceleratorsbfvidecoder,

applications as H.264/AVC to many-core processors is ehgihg.
Many coarse-grained parallel many-core approaches hae (-
posed for H.264/AVC encoding. Most of them exploit threadel
or frame-level parallelism in video encoding algorithmg [&], [5],
[6].

In this paper, we propose an on-chip distributed procesajng
proach to parallelize the H.264/AVC baseline encoder atniae-
roblock (16x16) and 4x4 sub-macroblock level on a fine-grdin
many-core platform. The proposed fine-grained parallétinaex-
ploits the existing locality and streaming nature of H.284Z resid-
ual encoding algorithms. Our work differs from previous eash

FFT and video motion estimator), and three 16-KB integrateared
memories, all of which have local oscillators and are cotetedby

a reconfigurable mesh network [8]. The instruction set ofdineple

programmable processors adheres to a simple one-destinatid
two-source architecture. The two source operands are fritimere
local data memory or two input buffers connected with neayhiy

or far-away processors.

B. Parallel mapping and programing methodology

Fig. 2 shows the parallel programming methodology for the

proposed video encoder. The methodology is divided inteetisteps.

in that we apply a more fine-grained approach to exploit taskVe first implemented a bit-level verified sequential C videcaler,
level parallelism in H.264/AVC encoding. We also take adage which uses a traditional shared memory model on genergleser

General-Purpose Processor MPl-based Parallel Simulator Fine-grained Many-core Simulator

Sequential C |::>
Implementation
Proc. @ Memory

,,A

(a) Sequential C model

Fine-grained
Parallel C
Parallel

Implementation

&

Implementation

Proc.0,0 Proc.1,0

Proc.

Memory| A B LR

(b) Parallel C model

(c) Fine-grained AsAP model
Fig. 2. There execution model of fine-grained program peliadtion

methodology

processors as shown in Fig. 2(a). Then the sequential Higori
is partitioned into multiple parallel tasks which are implented

Data_In
(YUV)
{ __ Current Frame
{_Reference Frame

Data_Out
(H.264 Bitstream)

Data
Parser

Inverse T/
Scaling

Calculate
Reference MB

H.264/AVC encoder block diagram

Motion
Estimation
Accelerator

Fig. 3.

of the modules need to be broken up to smaller tasks, and a& som

later point combined again to re-construct the data, whicates
input port congestions. Generally, we use processors fating
purposes to overcome this problem.

with simple C programs separately as shown in Fig. 2(b). The

H.264/AVC encoder can be divided into many tasks which can be

combined by linking their inputs and outputs using a GUldmas
mapping tool. We have developed a linux-based parallel Isitou
based on message passing interface (MPI) library to veréyparallel
C implementation. At the thrid step, the coarse-grainedstegre
repartitioned to fit on the resource-constrained fine-gizémnallel
AsAP processors as shown in Fig. 2(c). By using the activityfile
of the processors reported by the simulator, we evaluaterissighput
and power consumption. This distributed processing agprda
suitable for video applications with streaming featureshst large
shared memories are avoided and each processor can workawnit
piece of data.

C. Programming constraints of AsAP platform

I1l. FINE-GRAINED TASK-LEVEL PARALLELIZATION OF
H.264/AVC ENCODER

Fig. 3 shows the proposed H.264/AVC baseline encoder block

diagram. The motion estimation is implemented with dediddtard-
ware motion estimator which supports several programmsdéech
patterns and all H.264-specified block sizes. As shown in Fign
input frame is processed in units of macro-block which is pset of
16x16 luma pixels and 8x8x2 chroma pixels. This type of bibaked
video compression are very suited for the fine-grained ntamg-
systems which exploit fine-grained task-level paralletisfn ideal
data-flow application pass data among processors in a streatyle.
However, data-dependencies and conditional executiomplicate the
data-flow control of H.264 encoding, thus requiring largemmoéges

Theree main differences in programming AsAP versus othiisch for storing temporary data.

or using MPI are the size of the data/instruction memory |akbe
and the number of input buffers per processor. Video engpdira
highly memory-intensive application. Since each processgupies

A. The overview of H.264 encoder parallelization on AsAP

128 16-hit words of data memory, even if one macro block data i 1) Memory organization:Three memory internsive tasks in the

packed, it would not fit onto a single processor and would Have
be split into at least two, with the luma data packed (two Igiger
word) into one processor and the chroma data into anotheepsor.

H.264 encoding are the current/reference frame managemetibn
vector management and non-zero coefficient managementriopgn
encoding. They arise from the fact that the encoding is based

Some processors are used soley for memory purposes, whial weenly on the current macroblock but also previously encodegso

have to be separated from the computational processordipléul

As shown in Fig. 3, the current/reference frame is storeetlifp,

memory processors can be connected in a loop to form a FIFO liwhich allows the proposed encoder support flexible frame. sihe

buffer. The small instruction memory available for eachcgssor
is fairly adequate for simple tasks. However, programs rteelle
splitted up into smaller blocks for computationally-insare tasks.
This creates more parallelism if programs can be broken wguah

a manner that the smaller blocks can be executed at the samae ti

The challenge is to find good breaking points in the programeres
branching off to another processor would require little roead
because certain control information and data would be rbdye
both/multiple processors.

off-chip memory is divided into three banks which holds tlerent
encoding frame, the reconstructed current frame and theéousy
reconstructed frame in macroblock order with luma dataofedd by
chroma data.

As macroblocks are processed in raster scan order, a lang®iye

is needed to store the motion vectors of the top and left Islock

for motion vector prediction of current block and the numlzér
the nonzero coefficients of those data-dependent block€AMLC
encoding. The H.264 standard supports sub-partitions adkisl for

The fine-grained AsAP platform has limited number of inpws tinter prediction, with two motion vectors per block this betes a
both the chip and each individual processors. The AsAP ch® hpossible maximum of 32 motion vectors when using the smabias

one external input and output for off chip communicationela the
limited size of on-chip memories, the current and refereinames
are stored off chip, when a processor requests a macrobtaeuld
send a request signal to off-chip. The request signals andded
video output must share the same I/O port, requiring thatrobn
bits be sent to off-chip for determining where each outpuaitusth be
routed. In order to save buffer size, each processor onlytva$4-
word input FIFOs. Because of the limited instruction memangny

tition size(16 4x4 blocks). For motion vector predictioe freceding
row of macroblock motion vectors must be saved. A maximum
3840-word memory is required for the 1080p resolution. &irlyi to
motion vectors, the number of non-zero coefficients mustrbdipted
in the CAVLC using the top and left block data. Because the D@V
process is performed on 4x4 blocks, at least 4x120 memomeasiés
must be reserved for a frame of 1080p resolution requirireg use
of on-chip shared memory.

Residu l—] Residue/
Data_in Chroma Resdu & | Predicted T BPr— — 8
— "] Data Predicted MB
Chroma
e[t
Cb/Ci DC
i, | Mek;/w:y [T— — |~ Prediction|
Control_in x4 DC 1
I e S
Control 4x4 Vertical esidu L —] 8 ——p| DC
Luma Predicted Preg{gﬁon Pr?:mlc" Pred;ction
| Luma 4x4 Resdu & MB
Request_MB ”| Data Horizontal Pr5:|i:|:;9d >
< Fig. 5. Intra chroma prediction mapping on AsAP
16x16 AsAP Memory
< > Horz./Vert. Processors
Fig. 4. H.264 intra-prediction data-flow diagram Cal|residue_out
data_in -1 _a. —
Calculate Residue
. ctrl_in | Inter SAD MV mvd_out
2) Data-flow control: One of the greatest challenges of parti- —»| Pred Predict
tioning a program over such a large area is controlling the flo mb,_request Control [}
of data between processors. Ensuring that data is preseeh wh - | MEACC
needed, and buffered when un-used is vital in preventingl ¢mek. 7 I
Since video encoding is done on a macroblock basis, for intra
prediction this requires each macroblock to go through thteai RS

prediction process, integer transform, quantization]irsgainverse
transform, and reconstruction before the next macrobloahk be
predicted. At each step proper control information must teEsent
to ensure accuracy. The chroma prediction process is mugtkrfa

thgn luma prediction and the predicteq value used must Heredf g,g -hroma Cb/Cr blocks, only one processor is needed foagto
prior to being sent to the reconstruction blocks to prevemtead \ypije three are used for computation. To reduce the numbeausing

lock situation at the integer transform. Basic macroblook frame processors, data is automatically sent to the DC mode catipnt
information is also sent along each stage to ensure accwmagy nrocessors for computing the SAD for each mode and requested

increase code reuse. Parameters such as frame width, frigie,h jqividually at the second pass for computing residue. Tl intra-
macro block width , macro block number, encoding mode (lintrar) prediction can be parallelized with a similar approach.

and block mode are used at nearly every stage and transmuitsee 5y |yt prediction: The inter-prediction is the bottleneck of the

limited size of instruction memory. Many processors camt same H.264 encoder which can be speeded up by a programmablermotio
|hn|t|al computgtlontr\]/wttrtlkc:ut all tOf Ithef curretm dgtabbelrmnt, this estimation accelerator. The motion estimator basicallysists of (a)

owever requ!resl a d_etcon ro Itn orma '0? e rot_a m_many a parallel array of processing elements for pixel level S/A@rations;
processors via long distance interconnects creating amti@wl) 5 54l memory to exploit data reuse to reduce the externa
mapping ISsue. memory access; (c) an I/O control unit. Fig. 6 shows the diagr
B. Detailed parallelization of H.264/AVC encoder of the proposed H.264/AVC inter-predictor. The motion m@stior

The major encoding blocks of H.264 baseline encoder incIutﬁME—ACq) is capable of holding a 4X4 macroblock region for the
intra-prediction, inter-prediction, integer trasnforquantization and S€@rch window. To speed up the prediction process, only @8akh
CAVLC encoding. Due to space limit, we only give a breif iiation Window is used. A modified diamond search algorithm is used fo
of parallel mapping of inter-prediction and intra-preiticton Asap. &l block sizes. The modified algorithm uses only 5 searcintpais
The detailed illustration of the CAVLC encoder can be foundd]. ©PPOsed to the nine points generally tested, and is repdatides

1) Intra Prediction: As mentioned before, the H.264 intra-tO find the best match. Although this process is not as acewst

prediction introduces dependencies between current miagloand & full diamond search the only drawback would be slightlyhieig
left, top and top right macroblocks. The proposed intradjmter entropy values to be encoded. Once .the best set. of motioorsect
on AsAP supports 5 prediction modes for luma and 3 predictigf® cOmPputed, they are sent to a residue calculation pracebise
modes for chroma, which reduce the dependencies between a2 used for this prediction is read from the 11 AsAP memory
current macroblock and the top right macroblock. The intesdjztion Processors that hold a mirror copy of the MEC memory. The
process constitutes a rather large amount of computatiap. 4 data-flow diagram of Fig. 6 can be also mapped to AsAP array in
shows a high level block diagram for the intra prediction nded the Same way as the chroma intra prediction module showngrbFi
Datain and contralin contain information for the current macroblock
being predicted, the requestB signal is for requesting neighboring
macroblock used for prediction. The residue output goes te-a The proposed H.264 baseline encoder is implemented in ségle
ordering processor for the integer transform process amgridicted C, parallel C with MPI simulator and AsAP assembly on the AsAP
macroblock goes to the reconstruction processor to be amddte chip simulator. Fig. 7 shows the mapping of major blocks on
reconstructed residue data. Fig. 5 shows the parallel mgppf the AsAP platform. The current implementation uses 115 AsAP
chroma intra-prediction. The dash line represents the-thstance processors, 2 shared memories and the motion estimatole Tab
communication links. Since one macroblock contains onlg 8rd gives a comparison of overall processor number, memoryegsms,

Fig. 6. Block diagram of inter prediction module in AsAP

IV. IMPLEMENTATION RESULTS ANDANALYSIS

clock clock

data data
valid valid

request request
—

Fig. 7. The final mapping of H.264/AVC encoder on AsAP

Custom Mapping| Mapping Tool
Number of Processors 115 147
Number of Memory Proc. 33 33
Number of Routing Proc. 21 53
Computational Proc. 61 61
Long Distance Links 48 52

TABLE |
COMPARISON OF CUSTOM LAYOUT AND PROPOSED MAPPING FROMSAP
ARBITRARY MAPPING TOOL

routing processors, computational processors and lorignitis com-
munication links between the custom mapping and the inite@bping
using the automatic mapping tool. The custom mapping sa®¥s&
number of processors by reducing the number of routing ssmrs.
The throughput of the proposed encoder is measured withvdrage

cycles to encode one QCIF (176x144) frame which can be ctat/er
to frame per second at various voltages and maximum availabl
frequencies. Table Il shows the throughput and power nunatber [3]
H.264 encoder measured on AsAP chip. The performance daf intr

and inter encoder are reported separately. All of the psmresare set

to run at the same voltages and the maximum supported freigsen [4]

Since AsAP processor can be set to run at different freqasrasid
two provided supply voltages, we can scale the processquérecies
and voltages based on the average processor activitieprditad by
the simulator. In this way, processors can be active mosteofitne at
their individual frequencies and voltages. We use the ifforeman
video sequences for testing purpose. The preliminary teshbw the
encoder is capable of encoding CIF (352x288) video at 54dsaper

second (fps) with 925 mW average power consumption by adgist

each processor to workload-based optimal clock frequeranie dual
supply voltages with less than 1dB loss in resolution comgan
reference C model. Since integer transform, quantizatimh@AVLC

encoding are processed at a smaller block size (4x4 block), \;\?]

can further exploit more fine-grained parallelsim to ackiévgher
performance. In our implementation, the residual encodeeder
transform, quantization and CAVLC) can encode real-tim&0p0

HDTV at 30 frames per second (fps) with 424 mW average pongr]

consumption.

V. CONCLUSION

In this paper, we have implemented an energy-efficient HR62
encoder on a fine-grained many-core platform. The impleatiemt

\oltage | Max Freq. | Intra | Inter Power Power
V) (MHz) fps fps | Intra (mW) | Inter (MW)
0.8 172 19 95 108.8 365.1
0.9 295 33 160 213.6 452.6
1.0 410 49 233 419.0 662.3
11 539 66 324 696.3 908.4
12 651 82 427 802.7 1059
1.3 798 96 478 947.5 1189

TABLE I

PERFORMANCE OFH.264VIDEO ENCODER(QCIFFRAME) ON ASAP CHIP

utilizes an array of 115 small processors coupled with twaresth
memories and a hardware accelerator for motion estimafibre.
proposed parallel H.264/AVC encoder is capable of encodgidgo
sequences with variable frame sizes. The preliminary impleation
is capable of encoding CIF (352x288) video at 54 frames peorae
(fps) with 925 mW average power consumption with less thaB 1d
loss in resolution. Our parallel programming practicsesvigles a

new method of coding over a large number of simple processors

allowing for a higer level of parallelization and energyi@éncy
than conventional digital singal processors (DSP) whileiding
the complexity of implementing a full application specifitégrated
circuit (ASIC).
VI. ACKNOWLEDGMENTS
The authors gratefully acknowledge support from ST Miazoel

tronics, NSF Grant 0430090 and CAREER Award 0546907, SRC

GRC Grant 1598 and CSR Grant 1659, Intel, UC Micro, Intebasy
SEM, and a UCD Faculty Research Grant.

REFERENCES

[1] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra)verview of
the H.264/AVC video coding standardEEE Transaction on Circuits
Systems for Video Technologyol. 13, no. 7, pp. 560-576, 2003.

[2] A. Joch et al., “Performance comparison of video coditapdards using

lagrangian coder control,” iffroc. IEEE Int. Conf. on Image Processijng

2002, pp. 501-504.

Yen-Kuang Chen et al., “Towards efficient multi-levelrélading of

H.264 encoder on Intel Hyper-Threading architectures,” Pioc. of

the 18th International Parallel and Distributed Procesgilsymposium

(IPDPS'04) 2004.

Michael Roitzsch, “Slice-balancing H.264 video encuglifor improved

scalability of multicore decoding,” ifProc. of the 7th ACM and IEEE

International Conference on Embedded softw#@07, pp. 269-278.

[5] A. Rodriguez* et al., “Hierarchical parallelization ah H.264/AVC video

encoder,” inProc. of the International Symposium on Parallel Computing

in Electrical Engineering (PARELEC’'062006.

Shuwei Sun, Dong Wang, and Shuming Chen, “A highly efficigarallel

algorithm for H.264 encoder based on macro-block regiortitjwar,”

Lecture Notes In Computer Scienggp. 577-585, 2007.

[7] Zhiyi Yu, Michael Meeuwsen, Ryan Apperson, Omar SattMichael

Lai, Jeremy Webb, Eric Work, Tinoosh Mohsenin, Mandeep ISirand

Bevan M. Baas, “An asynchronous array of simple processors f

DSP applications,” inEEE International Solid-State Circuits Confer-

ence(ISSCC)Feb. 2006, pp. 428-429.

Dean Truong, Wayne Cheng, Tinoosh Mohsenin, Zhiyi Yundyp Jacob-

son, Gouri Landge, Michael Meeuwsen, Christine Watnik, | Pejia,

Anh Tran, Jeremy Webb, Eric Work, Zhibin Xiao, and Bevan MaBa'A

167-processor 65 nm computational platform with per-pgsoe dynamic

supply voltage and dynamic clock frequency scaling,"Symposium on

VLSI Circuits, (VLSI '08) June 2008.

Zhibin Xiao and Bevan Baas, “A high-performance pafal®AVLC

encoder on a fine-grained many-core system,” IREE International

Conference on Computer Design(ICCD '0&ctober 2008.

(6]

