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Motivation
 We have the hardware
 Many-core chip capable of per-core DVFS
 Inter-core communication through FIFOs

 We need an accurate and intuitive modeling of 
the system to find an optimal DVFS scheme

 Achieved through appropriate analogies
 Circuit analogy is useful because circuit analysis has 

well developed CAD and mathematical tools
 Control analogy is useful because control systems 

analysis is very mature
 Model many-core systems like circuits?
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Circuit Model of Two Cores
 ProducerConsumer application
 Charge (Q) = sample
 Current (I) = samples/sec;        

data rate
 Conductance (G) = cycles/sec; 

(core) frequency
 Voltage (V) = samples/cycle;     

(CPI x IC)-1

 CPI = cycles per instruction
 IC = instructions per sample

 Ohms Law: I = V x G
 data rate = samples/cycle x 

cycles/sec
 Capacitance (C) = Q/V = cycles
 Time = C/G = seconds!
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Circuit Model (cont.)
 Want UFIFO = 0
 UFIFO > 0: FIFO full
 UFIFO < 0: FIFO empty
 When UFIFO ≠ 0  core(s) 

are stalling (UFIFO/UCore)% 
of the time

 Continuous time model
 DVFS algorithm only acts 

over long periods 
compared to core 
frequencies

 Tcontrol >> 1/fCore
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DVFS Control Strategy
 Varying the conductance 

(frequency) makes control 
nonlinear
 Approximate: two linear 

control systems selected by 
a mux

 Controller selects High and 
Low states through the mux
 Voltage dithering!

 Controller samples UFIFO
every dither period
 Controller is “discrete”

 Modeled in MATLAB and 
implemented in software 
using processor DVFS 
instructions



Measured Results
 Worst case:

 46.6 mW at        
VddHigh = 1.3 V;          
fH = 1.2 GHz

 Ideal case:
 12.0 mW at         

VddHigh = 0.9 V;          
fH = 550 MHz

 DVFS:
 15.6 mW at        

VddHigh = 1.3 V, 
VddLow = 0.8 V;           
fH = 1.2 GHz, fL = 300 MHz

 Settling time
 Several hours!

PL = 74.4%, PH = 25.6%

Ideal: PL = 72.22%, PH = 27.78%
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Saturation Modeling

 So far our circuit 
model does not 
saturate the data 
rate when UFIFO ≠ 0
 If UFIFO < 0, 

iP > UProducer • GP

 If UFIFO > 0, 
iC > UConsumer • GC

 Have to add current 
limiters
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Saturation Modeling  (cont.)
 MOSFETs have linear and 

saturation regions
 Linear = resistor
 Saturation = current limiter

 PMOS: set Vth = 0, if UFIFO ≤ 0
 iP = -IDS = (k/2)VGS

2 , 
saturation: VDS ≤ VGS  VGS = -UP

 Want: iP = UPGP  k = 2GP/UP

 Else linear: VDS > VGS
 iP = k(VGSVDS – (VDS

2)/2) = 
-(2GPVDS – (VDS

2)/(2UP))
 Want: iP = (UP – UFIFO)GP = -VDSGP
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Improved Model
 Make a new MOS model in SPICE to 

accommodate modified linear region
 Can adjust conductance by changing W/L
 Switch between two MOSFETs—High and Low
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Tomasulo’s Algorithm

 Used in the IBM 360/91 floating-point unit to 
allow out-of-order execution

 Tomasulo’s algorithm enables out-of-order 
execution through register renaming via 
reservation stations and load/store buffers

 Let us see if we can model this algorithm…
 How much can be abstracted into a circuit 

element or logic gate?
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Tomasulo’s Circuit
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Tomasulo’s Circuit (cont.)

W
rD

at
a A

dd
_V

j

W
rD

at
a A

dd
_V

k

W
rD

at
a M

ul
t_

V
j

W
rD

at
a M

ul
t_

V
k

W
rD

at
a L

oa
d_

V
j

W
rD

at
a S

to
re

_V
j-V

k

CAdd_Vk

CAdd_Vj

CMult_Vj

CMult_Vk

CLoad_Vj-A

CStore_Vj-Vk

ULoad_Vj-A

UMult_Vk

UStore_Vj-Vk

UMult_Vj

UAdd_Vk

UAdd_Vj

UReg/CDB

C
D

B
W

rB
k A

dd

CDBWrBkMult

CDBWrBkLoad

CDBWrBkStore

E
xe

cu
te

M
ul

t

E
xe

cu
te

A
dd

E
xe

cu
te

Lo
ad

E
xe

cu
te

S
to

re

Memory
Unit

WrBkMem

R
eg

is
te

r_
ID Pulse Generators

Register 
Status

CDBWrBkRegister

RS_ValueUpdate

UBias_LSB

Instruction
Unit

UAdd

WrBkAdd

UMult

WrBkMult
LAdd_Pipeline

LMult_Pipeline

CDBWrBkForwarding

CDB 
Arbiter



Outline

 Motivation
 Circuit Model of Two Cores
 DVFS Control and Results
 Improved Model
 Tomasulo’s Algorithm
 Conclusions



Conclusions
 System level modeling with circuit equivalents
 Reuse circuit design principles and CAD
 Easily translates into control theory or signals and 

systems analysis
 Reuse mixed-signal simulation tools to develop 

higher level systems
 Optimal DVFS requires a holistic approach 

from the circuit layer to application layer
 Circuit modeling can ease translation between layers

 The physical world can be modeled as circuits
 Streamlines development of cyber-physical systems
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