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Abstract

This paper presents a many-core heterogeneous computa-
tional platform that employs a GALS compatible circuit-switched
on-chip network. The platform targets streaming DSP and em-
bedded applications that have a high degree of task-level par-
allelism among computational kernels. The test chip was fab-
ricated in 65nm CMOS consisting of 164 simple small pro-
grammable cores, three dedicated-purpose accelerators and
three shared memory modules. All processors are clocked
by their own local oscillators and communication is achieved
through a simple yet effective source-synchronous communica-
tion technique that allows each interconnection link between any
two processors to sustain a peak throughput of one data word per
cycle.

A complete 802.11a WLAN baseband receiver was imple-
mented on this platform. It has a real-time throughput of 54 Mbps
with all processors running at 594 MHz and 0.95 V, and con-
sumes an average 174.76 mW with 12.18 mW (or 7.0%) dissi-
pated by its interconnection links. We can fully utilize the benefit
of the GALS architecture and by adjusting each processor’s os-
cillator to run at a workload-based optimal clock frequency with
the chip’s dual supply voltages set at 0.95 V and 0.75 V, the re-
ceiver consumes only 123.18 mW, a 29.5% in power reduction.
Measured results of its power consumption on the real chip come
within the difference of only 2-5% compared with the estimated
results showing our design to be highly reliable and efficient.

1. Introduction

Fabrication costs for state-of-the-art chips can now easily ex-
ceed several million dollars; and design costs associated with
ever-changing standards and end user requirements are also ex-
tremely expensive. In this context, programmable and/or recon-
figurable platforms that are not fixed to a single application or a
small class of applications become increasingly attractive.

The power wall limits the performance improvement of con-
ventional designs exploiting instruction-level parallelism that
rely mainly on increasing clock rate with deeper pipelines. Many
new techniques and architectures have been proposed in the lit-

erature; and multiple-core designs are the most promising ap-
proaches among them [1]. Recently, a large number of multi-
core designs were found in both industry and academia [2–5].
Also, reconfigurable and programmable many-core designs for
DSP and embedded applications are becoming popular research
topics [6–8].

Transistor density and integration continue to scale with
Moore’s Law, and for practical digital designs, clock distribution
becomes a critical part of the design process for any high perfor-
mance chip [9]. Designing a global clock tree for a large chip
becomes very complicated and it can consume a significant por-
tion of the power budget, which can be up to 40% of the whole
chip’s power [10]. One particular method to address this issue
is through the use of globally-asynchronous locally-synchronous
(GALS) architectures where the chip is partitioned into multiple
independent frequency domains. Each domain is clocked syn-
chronously while inter-domain communication is achieved asyn-
chronously [11]. GALS, therefore, becomes a top candidate for
multi- and many-core chips that wish to do away with complex
global clock distribution networks. In addition, GALS allows
the possibility of fine-grained power reduction through frequency
and voltage scaling [12].

The method of inter-domain communication is a crucial de-
sign point for GALS architectures. One technique is asyn-
chronous clockless handshaking, which uses multiple phases of
signal (i.e. request/send/valid/ack) exchange to transfer data.
Due to the round-trip signal exchange, the transferring latency
between two consecutive data words is high. Besides that, the
asynchronous clockless circuits are difficult to verify in tradi-
tional CAD flows, and they also demand a comparatively large
area and energy requirement [13, 14]. An alternative is source-
synchronous clocking, commonly used in off-chip communica-
tion, whose design only requires a sender’s clock signal to be
sent with the sender’s data to the receiver. For synchronization,
a dual-clock FIFO at the receiver is used to buffer the data be-
tween two clock domains with the FIFO’s write side clocked by
the sender while its read side is clocked by the receiver. This
method achieves high efficiency by obtaining a peak throughput
of one data word per cycle with low area and power costs [15,16].

In this paper, we present the design of a GALS many-core
computational platform utilizing a source-synchronous commu-
nication architecture. In order to evaluate the efficiency of this



platform and its interconnection network, we mapped a com-
plete 802.11a WLAN baseband receiver on this platform. Actual
chip measurement results are reported, analyzed, and compared
against simulation. The outline of the paper is organized as fol-
lows. Section 2 explains our motivation for designing a GALS
many-core heterogeneous DSP platform. The design of our com-
putational platform is described in Section 3. Section 4 presents
the architecture of our reconfigurable high-throughput GALS-
compatible circuit-switched inter-processor communication net-
work. The implementation and measurement results of the test
chip are shown in Section 5. Mapping, analyzing and measuring
the performance and power consumption of an 802.11a baseband
receiver on this platform is discussed in Section 6. Finally, Sec-
tion 7 concludes this paper.

2. Motivation

Our design is highly scalable and consists of a large array
of small fine-grained cores plus dedicated-purpose accelerators,
forming a GALS many-core heterogeneous platform that targets
DSP, multimedia and embedded workloads motivated by the fol-
lowing key observations.

2.1. High Performance with Many-Core Design

Pollack’s Rule states that performance increase of an archi-
tecture is roughly proportional to the square root of its complex-
ity [12]. This rule implies that if we try to apply many sophis-
ticated techniques to a single processor and make its logic area
double, we only speedup its performance by around 40%. On
the other hand, with the same area increase, a dual-core design
using two identical cores could achieve a 2x improvement as-
suming that applications are 100% parallelizable. With the same
argument, a design with many small cores should have more per-
formance than one with few large cores for the same die area.
However, performance increase is heavily hindered by Amdahl’s
Law, which implies that this speedup is strictly dependent on the
application’s inherent parallelism:

Speedup ≈
1

(1 − Parallel%) + 1
N · Parallel%

(1)

where N is number of cores.
Fortunately, for most applications in the DSP and embedded

domain, a high degree of task-level parallelism can be easily ex-
posed [6]. By partitioning the natural task-graph description of an
embedded application, where each task can easily fit into one or
a few small processors, the complete application will run much
more efficiently. This is due to the elimination of unnecessary
memory fetching and complex pipeline overheads. In addition,
the tasks themselves run in tandem like coarse pipeline stages.

2.2. Power Savings through GALS Clocking Style

Since each core is in its own frequency domain, we are able to
reduce the power dissipation and increase energy efficiency on a
fine-grained level as illustrated in Fig. 1 in many ways:

Accelerator
1

Shared Memory Accelerator
2

Figure 1. Illustration of a GALS many-core heterogeneous system
consisting of many small identical processors, dedicated-purpose ac-
celerators and share memories.

• GALS clocking design allows to utilize simple local ring
oscillator for each core, and hence eliminates the need of
complex and power hungry global clock trees [10].

• Unused cores can be effectively disconnected by power gat-
ing, and thus reducing leakage.

• When workloads distributed for cores are not identical, we
can allocate different clock frequencies and supply voltages
for these cores either statically or dynamically. This allows
the total system to consume a lower power than if all active
cores had been operating at a single frequency and supply
voltage [17].

• We can reduce more power by architecture-driven methods
such as parallelizing or pipelining a serial algorithm over
multiple cores [18].

• We can also spread computationally intensive workloads
around the chip to eliminate hot spots and balance tempera-
ture.

From the advantages on both performance and power con-
sumption above, clearly, a many-core GALS design style is
highly desirable for programmable/reconfigurable DSP plat-
forms.

2.3. High Efficiency from Heterogeneous Architecture

For many tasks that have computationally intensive require-
ments such as error control coding/decoding, security encryp-
tion/decryption, FFT/IFFT, video motion estimation, etc., which
do not map well to a set of fine-grained cores, one compromise
is to build dedicated-purpose accelerators for tasks that are com-
monly found in many embedded, multimedia, and DSP appli-
cations. These accelerators are then integrated into the rest of
the GALS array of identical processors to form a heterogeneous
many-core platform. This approach is found in many designs
such as high-speed SDR platforms [19, 20], and modern multi-
core GPUs.
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Figure 3. Block diagram of the 167-processor heterogeneous com-
putational platform

3. Design of Our Programmable Heterogeneous
GALS Many-core Platform

We implemented the many-core platform using a standard-cell
design flow. Because of the array nature of the platform, the lo-
cal oscillator, voltage switching, configuration and communica-
tion circuits are reused throughout the platform. These common
components are designed as a generic “wrapper” which could
then be reused to make any computational core compatible with
the GALS array, and thus allowing easy design enhancements.
The difference between the programmable processors and the ac-
celerators is mainly in their computational datapaths as illustrated
in Fig. 2.

The top level block diagram of our 167-processor computa-
tional platform is shown in Fig. 3. The platform consists of 164
small programmable processors, three accelerators (FFT, Viterbi
decoder and Motion Estimation), and three big shared memory
modules. All processors, accelerators and memory modules op-
erate at their own clock frequency and share multiple global
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Figure 4. The Voltage and Frequency Controller (VFC) architec-
ture

power supply voltages. Their clock frequency and supply volt-
age can be set statically or dynamically by their local voltage and
frequency controllers (VFC).

In this section, we briefly present the design of the processors,
accelerators, shared memory modules of the system, and the local
VFC architecture. The communication network for these proces-
sors and accelerators will be discussed in Section 4.

3.1. Programmable Processors, Reconfigurable Acceler-
ators and Shared Memories

Processors utilize an in-order single-issue six-stage pipeline
with a 16-bit fixed-point ALU and a 40-bit MAC. Each processor
has a local 128x35-bit instruction memory and a local 128x16-bit
data memory. It supports more than 60 basic instructions.

The Viterbi and FFT accelerators, which are computationally
intensive in high-speed communication systems, and thus are in-
cluded in the platform. The Viterbi can decode convolution codes
up to a constraint length 10 and the FFT is capable of performing
16- to 4096-point FFT/IFFT transformations. The platform also
has a motion estimation processor typically used for video pro-
cessing applications. Furthermore, the platform contains three
16-KB shared memory modules used for applications that require
a shared set of data memory among different kernels and/or a lo-
cal stored cache. The accelerators and memories are highly con-
figurable depending on user requirements.

3.2. Per-Processor Clock Frequency and Supply Voltage
Configuration

Each processor has its own ring-oscillator that can be config-
ured to operate over a wide range of frequencies from 5 MHz to
1.7 GHz. At runtime, if the processor is idling the clock oscil-
lator fully halts after 6 cycles; and it restarts immediately once
work becomes available.

In order to achieve energy-efficiency, the processor should be
supplied at the appropriate voltage level corresponding to its cur-
rent operating frequency. This means we need to supply differ-



ent frequencies and voltages to different processors depending
on their workloads. Because on-chip DC-DC converters have
high design cost (complexity and area) and also large voltage
switching delay [21], we use multiple global external supply
voltages with hierarchical power grids that are simple and effi-
cient [22, 23]. The core of each processor is configured to con-
nect to one of two supply voltages VddHigh or VddLow or fully dis-
connected if unused. The benefits of having more than two sup-
ply voltages are small when compared to the increased area and
complexity of the controller needed to effectively handle voltage
switching [24].

The frequency and supply voltage of each processor are con-
trolled dynamically or statically by its VFC as shown in Fig. 4.
Dynamic control is based on the workload of processor that is de-
rived from its input FIFO utilization status. Static configuration
is intentionally set by the programmer for a specific application
to optimize its performance and power consumption. This con-
figuration is useful for many DSP applications that have static
load behavior at runtime.

To avoid the effect of noise caused by voltage switching, the
oscillator is powered by its own voltage and ground. The VFC
and communication circuit also have their own voltage that is
shared among all processors in the platform to guarantee the
same voltage level for all interconnection links, thus only requir-
ing level conversion to and from the processor core.

4. GALS Compatible Source-Synchronous Inter-
Processor Communication Network

The communication circuit of each processor is also a part of
the generic “wrapper” as mentioned previously (Fig. 2). This
section describes the design of the communication network us-
ing source-synchronous interconnection technique across clock
domains.

4.1. Reconfigurable High-Speed Circuit-Switched Inter-
connection Network

Figure 5 depicts the interface between any two neighboring
processors in the platform. Each processor communicates with
other processors through its two switches. Each switch has five
ports: the Core port which is connected to its local core, and the
North, South, West, and East ports which are connected to its
four nearest processors’ switches.

As shown in the figure, an input from the West port of one
switch can be configured to go out to any port among the Core,
North, South, East ports and vice versa. For simplicity, Fig. 5
only shows the full connections to and from the West port of
one switch; all its other ports are connected in a similar fashion.
Connections of these switches form two separate networks such
that one processor can send data to any of the eight directions and
can receive data from any two directions through its two input
FIFOs.

The multiplexers of each switch are configured pre-runtime
which fixes the communication link between any two processors.
Thus, the circuit-switched link is guaranteed to be independent
and never shared. So long as the destination processor’s FIFO
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Figure 5. Interconnection network architecture with source-
synchronous communication technique.
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Figure 6. Example of a long-distance source-synchronous commu-
nication through one intermediate processor

is not full, a one data word per cycle throughput can be sus-
tained. This compares favorably to a packet-switched network
whose runtime network congestion can significantly degrade its
communication performance [25, 26]. Our interconnection net-
work’s architecture is well suited for DSP applications that have
high-speed interconnect requirements fixed at runtime.

4.2. Communication Reliability

Figure 6 shows an example of a communication link that is
configured to connect two long-distance processors. This link
passes through one intermediate processor, Proc. B, which is in
between the source and destination processors, Proc. A and Proc.
C. The figure also shows both clock and data being multiplexed
by the circuit-switched architecture. The destination processor
(Proc. C) uses a dual-clock FIFO to buffer the received data be-
fore processing. Its FIFO’s write port is clocked by the source
clock of Proc. A, while its read port is clocked by its own oscil-
lator, and thus supports GALS communication [27].

Data and clock are sent by the source processor to the destina-
tion processor through a sequence of multiplexers of intermediate
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switches, and each data word is valid for one cycle. Fig. 7 is a
simplified version of Fig. 6 focusing only on the impact of de-
lay on source-synchronous timing. The dotted lines represents
the boundary between two nearest processors. The total delay
of wire and multiplexer in each processor’s switch is depicted as
a delay block. As shown, the clock and data signals are sent to
the destination in the same way; thus, with a careful layout, their
total delay can be nearly equal.

Because the delay of the clock and data is generally close,
a timing violation can occur as illustrated by the waveform in
Fig. 8(a). Also, the data bus can have mismatches due to varia-
tions and crosstalk, and the clock can have jitter causing unreli-
able communication in actual chip implementations.

Instead of leaving reliable communication up to chance, we
purposefully add a delay circuit before the input FIFOs of each
processor. This delay circuit is configurable in order for the clock
rising edge to trigger within the safe timing window where the
data is stable, as depicted in Fig. 8(b). This requires the delay
value to be adjusted to satisfy the following timing constraint:

thold < Dcon f + Ddata − Dclk + tclk−q < T − tsetup (2)

where, Dcon f , Ddata and Dclk are the configured, data and clock
delays, respectively; T is the source clock cycle time.

The value of tsetup, thold and tclk−q are mainly dependent on the
standard cell design, technology process and fabrication varia-
tion; thus the value of Dcon f can be different even for two connec-
tions with the same length and the same source clock frequency.
The best value of Dcon f for each link can be found through chip
testing. The testing results confirm that all processors correctly
communicate their data at 1.2 GHz (the maximum operating fre-
quency of processors) when delay values are appropriately con-
figured; that gives a peak throughput of 19.2 Gbps per 16-bit
connection link.
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Figure 9. Source-synchronous communication methods. a) Source
clock is alway active along the connection path. b) Only sending
clock when having data. Two extra active cycles after the last valid
data word to increase the communication robustness.

4.3. Low-Power Communication Method

Figure 9 illustrates two strategies of source-synchronous data
communication from one processor to another. In the case de-
picted by Fig. 9(a), the clock is always active even without any
accompanying data. The clock travels along the connection path
from the source to destination and consumes some power for do-
ing nothing while there is no data sent. Measurement results
show that when sending clock alone without data, intermediate
switches and the destination FIFO can dissipate 45% of the total
power had it been sent with data (including the power dissipated
by interconnect wires).

Our proposed method is shown in Fig. 9(b), where the source
clock is only sent when there is data to transfer. However, if we
aggressively send only one cycle of clock for each data word,
the data can be lost if there is a large delay mismatch between
clock and data links. Thus, we add two more cycles of clock
after the last valid word sent. This method compromises between
the aggressive and always active methods in order to maintain the
high robustness at lower power.

Most importantly, the high energy-efficiency of our circuit-
switched communication network is achieved due to its simple
switch architecture, which does not buffer at the switch’s input
or output ports, and has no arbitration circuit, therefore no power
is wasted for resolving runtime traffic congestion which is a sig-
nificant portion of the power budget in dynamic packet-switched
networks [28].

5. Test Chip Implementation and Measurement

5.1. Chip Implementation

The platform was fabricated in ST Microelectronics 65nm
low-leakage CMOS process and its die micrograph is shown in
Fig. 10. It has a total of 55 million transistors with an area of
39.4 mm2. Each programmable processor occupies 0.17 mm2,
with its communication circuit occupying 7% including the two
switches, wires and buffers. The area of the FFT, motion estima-
tion and Viterbi decoder accelerators is six times, four times and
one time, respectively that of one processor; the memory module
is two times the size of one processor.

5.2. Measurement

At 1.3 V, the programmable processors can operate up to
1.2 GHz. The configurable FFT, Viterbi, motion estimation pro-
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Figure 11. Maximum frequency and 100% active power dissipa-
tion of one programmable processor over various supply voltages

cessors, and memory modules can run up to 866 MHz, 894 MHz,
938 MHz and 1.3 GHz, respectively.

The maximum frequency and power consumption of the pro-
grammable processors versus supply voltage is shown in Fig. 11.
As shown in the figure, they have a nearly linear and quadratic
dependence on the supply voltage, respectively. These character-
istics are used to reduce power consumption of an application by
appropriately choosing the clock frequency and supply voltage
for each processor as detailed in Section 6.

Figure 12 shows the measured leakage power of processors
over various supply voltages. As shown, this leakage power is ex-
ponentially dependent on supply voltage and is negligible which
can be ignored when compared with the dynamic power in a real
application.

Table 1 shows the average power dissipation of processor, ac-
celerators and communication circuit at 0.95 V and 594 MHz.
This supply voltage and clock frequency is used to evaluate and
test the 802.11a baseband receiver application described in the
next section. The FFT is configured to perform 64-point trans-
formations, and the Viterbi is configured to decode 1/2-rate con-
volution codes.

Also shown in the table, during stalls (i.e. non-operation
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Figure 12. Leakage power of one programmable processor over
various supply voltages

Table 1. Average power consumption measured at 0.95 V and
594 MHz.

Operation of 100% Active (mW) Stall (mW) Standby (mW)
Processor 17.6 8.7 0.031
FFT 12.7 7.3 0.329
Viterbi 6.2 4.1 0.153
FIFO Write 1.9 0.7 ∼0
Switch 1.1 0.5 ∼0

while the clock is active) the processors and communication cir-
cuits (including wires) also consume significant portions, ap-
proximately 35-55%, of their normal operating power. Leakage
power are very small while processors are in the standby mode
with clock halting.

6. Application Mapping: a Case Study

In order to relatively evaluate the performance and energy-
efficiency of the platform, we mapped and tested a real 802.11a
baseband receiver. Some steps to reduce its power consumption
while keeping the real-time throughput requirement are also pre-
sented.

6.1. Mapping a Complete 802.11a Baseband Receiver

The receiver is complete including all necessary features of a
practical one such as frame detection and timing synchronization,
carrier frequency offset (CFO) estimation and compensation, and
channel estimation and equalization. It consists of 23 processors
plus the FFT and Viterbi accelerators as shown in Fig. 13. In
this implementation, the CFO compensation uses a lookup table
to compute the complex unit vector of the accumulated offset
angle, and then uses a complex multiplication for sample rotation
instead of using CORDIC algorithm as reported in our previous
published paper [29] (all other processors are unchanged).

Processors are programmed using our simple C language ver-
sion combined with assembly code for configuration of intercon-
nect links and also for optimization. The compiled code of the
whole receiver is simulated on the Verilog RTL model of our plat-
form using Cadence NCVerilog and its results are compared with
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Figure 13. Mapping of a complete 802.11a baseband receiver on the many-core computational platform

a Matlab model to guarantee its accuracy. By using the activity
profile of the processors reported by the simulator, we evaluate its
throughput and power consumption before testing it on the real
chip. This implementation methodology reduces debugging time
and allows us to easily find the optimal operation point of each
task.

6.2. Receiver Critical Data Path

The dark solid lines in Fig. 13 show the connections between
processors that are on the critical data path of the receiver. The
operation and execution time of these processors determine the
throughput of the receiver. Other processors in the receiver are
only briefly active for detection, synchronization (of frame) or
estimation (of the carrier frequency offset and channel); then they
are forced to stop as soon as they finish their job1. Consequently,
these non-critical processors only add latency to the system and
do not affect the overall data throughput2 [29].

6.3. Performance Evaluation

Figure. 14 shows the overall activity of the critical path pro-
cessors. In this figure, the Viterbi accelerator is shown to be the
system bottleneck. It is always executing and forces other proces-
sors on the critical path to stall while waiting either on its output
to send data or on its input to receive data3. Therefore, the to-
tal execution time and waiting time of each processor equals to
the total execution time of the Viterbi accelerator (2376 cycles)
during the processing of a 4-µs OFDM symbol. In essence, all
OFDM symbols are processed by a sequence of processors on
the critical path in a way that is similar to a pipeline (with 4 µs
per stage per 2376 cycles). Therefore, the receiver can obtain a
real-time 54 Mbps throughput when all processors operate at the
same clock frequency of 594 MHz. According to measured data,

1Processors stop working after six cycles if their input FIFOs are empty.
2These non-critical processors will be woken up to detect and synchronize

new frame after the current frame is completely processed. The control informa-
tion is provided by the Pad Removal processor.

3This assumes that the input is always available from the ADC and the MAC
layer is always ready to accept outputs.

Data
Dist

rib
uti

on

Pos
t -

 T
im

ing
 S

yn
.

Acc
. O

ffs
et 

Vec
tor

 C
om

p.

CFO C
om

pe
ns

ati
on

Gua
rd

 R
em

ov
al

64
-p

oin
t F

FT

Sub
ca

rri
er

 R
eo

rd
er

ing

Cha
nn

el 
Equ

ali
za

tio
n

De-
mod

ula
tio

n

De-
int

er
lea

ve
rin

g 1

De-
int

er
lea

ve
rin

g 2

De-
pu

nc
tur

ing

Vite
rb

i D
ec

od
ing

De-
sc

ra
mbli

ng

Pad
 R

em
ov

al

Ti
m

e 
(c

yc
le

s)

Execution Input Waiting Output Waiting

2376

Figure 14. The overall activity of processors for processing a 4 µsec-
OFDM symbol in the 54 Mbps mode

in order for all processors operate correctly they must be supplied
at the lowest voltage level of 0.95 V.

6.4. Power Consumption Estimation

The overall activity of processors allows us to reasonably es-
timate the average power consumption of the receiver. Based on
the analysis results done with simulation and estimation steps,
we configure the processors accordingly when running on the test
chip.

6.4.1. Power Consumption on the Critical Path

Power consumption of the receiver is primarily by processors on
the critical path because all non-critical processors have stopped
when the receiver is processing data OFDM symbols. In this
time, the leakage power dissipated by these ten non-critical pro-
cessors is 0.31 mW (10 × 0.031). The total power dissipated by
the critical path processors is estimated by:

PTotal =
∑

PExe.i +
∑

PS tall.i +
∑

PS tandby.i +
∑

PComm.i (3)



Table 2. Operation of processors for processing one OFDM symbol in the 54 Mbps mode, and their power consumptions
Execution Stall with Standby with Output Comm. Execution Stall Standby Comm. Total

Processor Time Active Clock Halted Clock Time Distance Power Power Power Power Power
(cycles) (cycles) (cycles) (cycles) (# switches) (mW) (mW) (mW) (mW) (mW)

Data Distribution 320 960 1096 80 × 2 6 2.37 3.56 0.01 1.14 7.08
Post-Timing Sync. 240 960 1176 80 × 2 5 1.78 3.56 0.01 1.00 6.34
Acc. Off. Vec. Comp. 2320 56 0 80 × 2 2 17.19 0.21 0 0.53 17.93
CFO Compensation 2160 216 0 80 × 2 2 16.00 0.80 0 0.53 17.33
Guard Removal 176 768 1432 64 × 2 6 1.30 2.84 0.01 0.92 5.07
64-point FFT 205 768 1403 64 × 2 3 1.10 2.36 0.20 0.55 4.21
Subcarrier Reorder. 1018 576 782 48 × 2 4 7.62 2.13 0.01 0.51 10.27
Channel Equal. 1488 576 312 48 × 2 2 11.02 2.13 0.01 0.31 13.47
De-modulation 2352 24 0 288 2 17.42 0.09 0 0.96 18.47
De-interleav. 1 864 1512 0 288 2 6.40 5.60 0 0.96 12.96
De-interleav. 2 1130 1246 0 288 2 8.37 4.62 0 0.96 13.95
De-puncturing 576 1800 0 432 2 4.27 6.67 0 1.44 12.38
Viterbi Decoding 2376 0 0 216 3 6.20 0 0 0.93 7.13
De-scrambling 2160 216 0 216 2 16.00 0.80 0 0.72 17.52
Pad Removal 648 1296 432 216 2 4.80 4.80 0.01 0.72 10.33
Ten non-critical Proc.s 0.31 0.31
Total 121.84 40.17 0.57 12.18 174.76

× 2: 2 words (real and imaginary) of each sample or subcarrier

where PExe.i, PS tall.i, PS tandby.i and PComm.i are the power con-
sumed by computational execution, stalling, standby and com-
munication activities of the ith processor, respectively, and are
estimated as follows:

PExe.i = αi· PExeAvg

PS tall.i = βi· PS tallAvg

PS tandby.i = (1 − αi − βi)· PS tandbyAvg

(4)

here PExeAvg, PS tallAvg and PS tandbyAvg are average power of pro-
cessors while 100% execution, stalling or in standby (leakage
only); αi, βi and (1 − αi − βi) are percentages of execution, stall
and standby activities of processor i, respectively.

For the worst case communication power, a processor will
send its output words discretely, thus each data word is sent along
with three cycles of clock as described in Section 4.3. Therefore,
the communication power of processor i is estimated by

PComm.i = γi· [(PS witchActive + 2PS witchS tall)· Li +

(PFIFOWriteActive + 2PFIFOWriteS tall)]
(5)

where Li is communication length of its output link counted
by the number of switches that it passes through; γi is its
communication activity percentage. PS witchActive, PS witchS tall and
PFIFOWriteActive, PFIFOWriteS tall are the average power consumed
by one switch and one FIFO write, respectively with and without
data sent while the clock is active.

While measuring the chip with all processors running at
0.95 V and 594 MHz the values of PExeAvg, PS tallAvg, PS tandbyAvg,
PS witchActive, PS witchS tall, PFIFOWriteActive and PFIFOWriteS tall are
shown in Table 1. For the ith processor, its αi, βi and (1 − αi − βi)
values are derived from Column 2, 3 and 4 of Table 2; and γi, Li

are derived from its Column 5, 6 with a note that each processor
computes one data OFDM symbol in 2376 cycles.

The power consumed by execution, stalling, standby and com-
munication activities of each processor are listed in Column 7, 8,
9 and 10; and their total is shown in Column 11. In total, the re-
ceiver consumes 174.76 mW with a negligible standby power due

to leakage (only 0.57 mW including the ten non-critical proces-
sors). The power dissipated by communication of all processors
is 12.18 mW, which is only 7% of the total power.

6.4.2. Power Reduction

The power dissipated by the stalling activity is 40.17 mW, which
is 23% of the total power. This wasted power is caused by the
fact that the clocks of processors are almost active while waiting
for input or output as shown in Column 3 of Table 2. Clearly,
we expect to reduce this stall time by making the processors busy
executing as much as possible.

To do this, we need to reduce the clock frequency of proces-
sors which have low workloads. Recall that in order to keep the
54 Mbps throughput requirement, each processor has to finish its
computation for one OFDM symbol in 4 µs, and therefore, the
optimal frequency of each processor is computed as follows:

fOpt.i =
NExe.i (cycles)

4 (µs)
(MHz) (6)

where, NExe.i is number of execution cycles of processor i for
processing one OFDM symbol, which is listed in Column 2 of
Table 2. From this, the optimal frequencies of processors are
shown in Column 2 of Table 3.

By running at these optimal frequencies, the power wasted by
stalling and standby activities of the critical processors is elimi-
nated while their execution and communication activity percent-
ages increase proportionally to the decrease of their frequencies.
Therefore, total power is now 134.32 mW as listed in Column 3
of Table 3, a reduction of 23% when compared with the previous
case4.

Now that processors run at different frequencies, they can be
supplied at different voltages as shown in Fig. 11. Since power
consumption at a fixed frequency is quadratically dependent on

4Ten non-critical processors still dissipate the same leakage power of 31 mW.



Table 3. Power consumption while processors running at optimal
frequencies when: a) Both VddLow and VddHigh are set at 0.95 V; b)
VddLow is set at 0.75 V and VddHigh is set at 0.95 V

Optimal Power Optimal Power
Processor Frequency Consump. Voltage Consump.

(MHz) (mW) (V) (mW)
Data Distribution 80 3.52 0.75 2.63
Post-Timing Sync. 60 2.78 0.75 2.11
Acc. Off. Vec. Comp. 580 17.72 0.95 17.72
CFO Compensation 540 16.53 0.95 16.53
Guard Removal 44 2.23 0.75 1.73
64-point FFT 51 1.64 0.75 1.23
Subcarrier Reorder. 257 8.12 0.75 5.22
Channel Equal. 372 11.34 0.95 11.34
De-modulation 588 18.38 0.95 18.38
De-interleav. 1 216 7.36 0.75 4.95
De-interleav. 2 283 9.34 0.95 9.34
De-puncturing 144 5.70 0.75 4.10
Viterbi Decoding 594 7.13 0.95 7.13
De-scrambling 540 16.72 0.95 16.72
Pad Removal 162 5.52 0.75 3.71
Ten non-critical Proc.s 0.31 0.95 0.31
Total (mW) 134.32 123.18

supply voltage, more power can be reduced due to voltage scal-
ing. Because our platform supports two global supply voltage
grids, VddHigh and VddLow, we can choose one of these voltages to
power each processor depending on its frequency5.

Since the slowest processor (Viterbi) is always running at
594 MHz to meet the real-time 54 Mbps throughput, VddHigh must
be set at 0.95 V. If VddLow is set to equal to VddHigh, the power
consumption does not change. If VddLow is lowered to where its
supported maximum frequency is smaller than the optimal fre-
quencies of all processors, then in order to correctly operate, all
processors must be set to VddHigh. In this case, power consump-
tion is also not improved.

To find the optimal VddLow we changed its value from 0.95 V
(i.e VddHigh) down to 0.6 V where its maximum frequency be-
gins to be smaller than the lowest optimal frequency among pro-
cessors. The total power consumption corresponding to these
VddLow values (while processors are set appropriately) is shown
in Fig. 15. As shown in the figure, the optimal VddLow value is
0.75 V with total power of 123.18 mW as detailed in Column 5
of Table 3.

Notice that the power reduction comes from the effect of volt-
age scaling on the processor’s execution activity. The communi-
cation circuits use their own supply voltage which is always set
at 0.95 V, so they still consume the same 12.19 mW, which now
is approximately 10% of the total power.

6.5. Measurement Result

We tested and measured this receiver on the real chip with the
same configuration modes of clock frequency and supply volt-
age as used in the previous estimation steps. In all configuration
modes, the receiver operates correctly and shows the same com-

5Non-critical processors are always set to run at VddHigh and 594 MHz for
minimizing the detection and synchronization time.
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Figure 15. The total power consumption over various values of
VddLow (with VddHigh is fixed at 0.95 V) while processors running at
their optimal frequencies. Each processor is set at one of these two
voltages depending on its frequency.

Table 4. Estimation and measurement results of the receiver at
different configuration modes

Configuration Estimated Measured Difference
Mode Power (mW) Power (mW)
At 594 MHz and 0.95 V 174.76 177.96 1.8%
At optimal frequencies only 134.32 139.64 3.9%
At both optimal freq. & volt. 123.18 129.82 5.1%

putational results as with simulation. The power measurement
results are shown in Table 4. When all processors run at 0.95 V
and 594 MHz, they consume a total of 177.96 mW that is a 1.8%
difference from the estimated result. When all processors run
at their optimal frequencies with the same 0.95 V supply voltage,
they consume 139.64 mW; and when they are appropriately set at
0.75 V or 0.95 V as listed in Column 4 of Table 3, they consumes
129.82 mW. In these configurations, the differences between the
measured and estimated results are only 3.9% and 5.1%, respec-
tively.

These differences are small that show that our design method-
ology is highly robust. Our simulation platform allows program-
mers to map, simulate and debug applications correctly before
running on the real chip reducing a large portion of application
development time. For instance, we mapped and tested this com-
plex 802.11a receiver in just two months plus one week for find-
ing the optimal configuration compared to tens of months if im-
plemented on ASIC which includes fabrication, test and measure-
ment.

7. Conclusion

A high-performance and energy-efficient programmable DSP
platform consisting of many simple cores and dedicated-purpose
accelerators has been presented. Its inter-processor communi-
cation network utilizes a novel source-synchronous interconnec-
tion technique allowing efficient communication among proces-
sors which are in different clock domains.



The on-chip network is circuit-switched and is configured be-
fore runtime such that interconnection links can achieve their
ideal throughput at a very low power and area cost. For a
real 802.11a baseband receiver with 54 Mbps data throughput
mapped on this platform, its interconnection links only dissipate
around 10% of the total power. We simulated this receiver with
NCVerilog and also tested it on the real chip; the small differ-
ence between estimation and measurement results confirms the
robustness of our design.
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