
66 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 1, JANUARY 2009

High Performance, Energy Efficiency, and Scalability
With GALS Chip Multiprocessors

Zhiyi Yu and Bevan M. Baas

Abstract—Chip multiprocessors with globally asynchronous
locally synchronous (GALS) clocking styles are promising candi-
dates for processing computationally-intensive and energy-con-
strained workloads. The GALS methodology simplifies clock tree
design, provides opportunities to use clock and voltage scaling
jointly in system submodules to achieve high energy efficiencies,
and can also result in easily scalable clocking systems. However,
its use typically also introduces performance penalties due to ad-
ditional communication latency between clock domains. We show
that GALS chip multiprocessors (CMPs) with large inter-pro-
cessor first-inputs–first-outputs (FIFOs) buffers can inherently
hide much of the GALS performance penalty while executing ap-
plications that have been mapped with few communication loops.
In fact, the penalty can be driven to zero with sufficiently large
FIFOs and the removal of multiple-loop communication links. We
present an example mesh-connected GALS chip multiprocessor
and show it has a less than 1% performance (throughput) re-
duction on average compared to the corresponding synchronous
system for many DSP workloads. Furthermore, adaptive clock
and voltage scaling for each processor provides an approximately
40% power savings without any performance reduction. These
results compare favorably with the GALS uniprocessor, which
compared to the corresponding synchronous uniprocessor, has a
reported greater than 10% performance (throughput) reduction
and an energy savings of approximately 25% using dynamic clock
and voltage scaling for many general purpose applications.

Index Terms—Array processor, chip multiprocessor, energy
efficient, globally asynchronous locally synchronous (GALS), low
power, scalable.

I. INTRODUCTION

M ODERN deep submicrometer fabrication technologies
enable very high levels of integration such as a recent

dual-core 1.7 billion-transistor chip [1]. A highly promising ap-
proach to efficiently using these circuit resources is the integra-
tion of multiple processors onto a single chip (called a chip mul-
tiprocessor or CMP) to achieve higher performance through par-
allel processing. CMPs can potentially also provide increased
energy efficiency by allowing the clock frequency and supply
voltage to be reduced together to dramatically reduce power dis-
sipation during periods when full rate computation is not needed
and conditions permit.

Manuscript received July 22, 2007; revised December 21, 2007. First pub-
lished November 25, 2008; current version published December 17, 2008.
This work was supported in part by Intel, UC Micro, NSF Grant 0430090
and CAREER Award 0546907, SRC GRC Grant 1598 and CSR Grant 1659,
IntellaSys, S Machines, Artisan, and a UCD Faculty Research Grant.

Z. Yu is with the Microelectronics Department, Fudan University, Shanghai,
201203 China (e-mail: zhyyu@ece.ucdavis.edu).

B. M. Baas is with the Electrical and Computer Engineering Department,
University of California at Davis, CA 95616 USA (e-mail: bbaas@ucdavis.edu)

Digital Object Identifier 10.1109/TVLSI.2008.2001947

Despite their promising benefits, complex systems built using
deep submicrometer technologies encounter some unique chal-
lenges. One of the most critical is the design of the clocking
system. Traditional globally synchronous clocking circuits
have become increasingly difficult to design with growing
chip sizes, clock rates, relative wire delays, and parameter
variations [2]. Additionally, high speed global clocks consume
a significant portion of system power budgets and lack the
flexibility to independently control the clock frequencies of
submodules to achieve high energy efficiency. The globally
asynchronous locally synchronous (GALS) [3] clocking style
separates processing blocks such that each block is clocked by
an independent clock domain. This approach is a promising
strategy to address global clock design challenges.

GALS systems are often highly energy efficient due to their
simplified clock tree [4], and their enabling of joint clock and
voltage scaling in system submodules [5], [6]. However, GALS
clocking typically also introduces a performance penalty due
to additional communication latency between asynchronous do-
mains [5], [7].

We show that GALS CMPs under the right conditions can
hide much of the GALS performance penalty and at the same
time, take full advantage of its scalability and high energy effi-
ciency. Along with a thorough investigation of GALS effects
on system performance, we show that such GALS CMPs have
small performance penalties compared to corresponding syn-
chronous systems. Furthermore, the small performance penalty
can be completely eliminated by using sufficiently large FIFOs
for inter-processor communication and programming without
multiple-loop communication links. Scalability is enhanced
due to the lack of a need for a global clock tree. In addition, the
potential energy savings from joint clock and supply voltage
scaling is increased in the common situation when workloads
have unbalanced computational loads for each processor,
thereby increasing the probability processors can be tuned to
save power. This work is distinguished from previous GALS
multiprocessor evaluations [8] by not restricting the analysis to
systems with global communication schemes.

This paper is organized as follows. Section II investigates sev-
eral key design choices which impact the behavior of GALS
systems. Section III introduces our GALS chip multiprocessor.
Section IV investigates the effect of the asynchronous commu-
nication penalty to the performance of this GALS chip mul-
tiprocessor. Its scalability is shown in Section V compared to
the corresponding synchronous system. Section VI investigates
the power efficiency of this GALS chip multiprocessor when
using clock frequency and supply voltage scaling. This paper
concludes with a summary.

1063-8210/$25.00 © 2008 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 14, 2009 at 07:00 from IEEE Xplore. Restrictions apply.

YU AND BAAS: HIGH PERFORMANCE, ENERGY EFFICIENCY, AND SCALABILITY WITH GALS CHIP MULTIPROCESSORS 67

Fig. 1. Three example clock domain partitionings, from a sub-processor fine grain partitioning to a multi-processor coarse grain partitioning. The dotted lines
show clock domain partition boundaries. Analyses and results are independent of whether modules are homogeneous or heterogeneous. (a) Each processor contains
four clock domains. (b) Each processor contains one clock domain. (c) Four processors in each clock domain.

II. EXPLORING THE KEY GALS CHIP MULTIPROCESSOR

DESIGN OPTIONS

Several design options impact the behavior of GALS CMPs.
This section presents the three most fundamental parameters:
clock domain partitioning, asynchronous boundary communi-
cation, and the inter-processor network.

A. Clock Domain Partition of GALS Chip Multiprocessors

The most basic issue in designing a GALS chip multipro-
cessor system is the granularity of the multiple clock domain
partitions. The most fine grain method is to partition each pro-
cessor into several clock domains, which we call a GALS unipro-
cessor. Another method is to partition each processor into its
own clock domain. A more coarse grain method is to group sev-
eral processors together into local shared clock domains. Fig. 1
illustrates these three methods.

Partitioning each processor into several clock domains is the
most widely-studied partitioning [5], [6]. Its key advantage is
providing opportunities to use clock and/or voltage scaling not
only in individual processors, but also in modules inside each
processor. Its primary disadvantage is a relatively significant
performance penalty and design overhead.

Upadhyay et al. [9] investigated various levels of coarse-grain
clock domain partitioning for a GALS chip multiprocessor.
They compared power savings from simplified GALS clock
trees versus additional power from the local clock generator
plus asynchronous communication circuits for different parti-
tioning granularities. They examined an array of 256 processors
with each processor 2 mm 2 mm in a 0.18- m technology,
and concluded that depending on the communication links,
grouping 8–32 processors together is the most efficient. Unfor-
tunately, the study did not consider power reduction effects of
clock frequency and supply voltage scaling.

Since GALS uniprocessor and coarse-grained clock domain
partitioning have been well studied, and because we find placing
each processor in its own clock domain is a simple and efficient
strategy, this approach is the focus of this work. Despite the fact
power savings from simplified clock trees may not be able to
compensate fully for overhead due to the local clock generator
and asynchronous communication interface, it makes each pro-
cessor highly uniform and simplifies the physical design. Fur-
thermore, as shown in Section VI, it provides the flexibility to
scale the clock frequency and supply voltage for each processor

which can achieve significant power savings compared to a fully
synchronous design.

B. Transferring Data Across Asynchronous Boundaries

Circuitry to reliably and efficiently move data across asyn-
chronous clock boundaries is a key component in GALS sys-
tems. We can classify techniques for these domain crossings into
one of two categories.

• Single transaction handshaking acknowledges each data
word before a subsequent word can be transferred, and a
corresponding latency exists for each data transfer and ac-
knowledgment, which can significantly decrease the total
data throughput.

• Source synchronous multi-word flow control routes the
source clock along with the data to synchronize data
writes. The source transmits data words without individual
acknowledgments and it halts transfers when the desti-
nation indicates it can no longer accept data. Since the
technique works well with high data rates (one word per
clock cycle is a good operating point), provision must nor-
mally be made for the fact that the flow control signal may
arrive multiple clock cycles after the destination module
decides to halt the source module. The problem is easily
addressed by reserving space in the destination buffer
for these situations [10] and the control signals act on
multiple data words, hence our name: source synchronous
multi-word flow control.
This technique generally requires a larger buffer memory
but should normally sustain higher throughputs. The larger
memory often does not present a significant area penalty
when compared to the area of a large block such as a pro-
cessor. Furthermore, as shown in Section IV-C2, the rela-
tively larger memory has the benefit of hiding some com-
munication latency.
Although single-word latency may be larger compared to
the single transaction handshaking technique, this is often
not a significant concern because in the common case
where more than a few data words exist in inter-processor
first-input–first-output (FIFO) buffers, the inter-processor
latency has no impact. Interestingly, if we consider the
common case in digital signal processing (DSP) and
embedded applications where data are transferred in
blocks [e.g., the words into and out of an -point

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 14, 2009 at 07:00 from IEEE Xplore. Restrictions apply.

68 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 1, JANUARY 2009

Fig. 2. Block diagram for a dual-clock FIFO utilizing a memory array as the
FIFO buffer.

fast Fourier transform (FFT) processor], the latency of a
block of data will likely be lower with the source syn-
chronous multi-word flow control method compared to the
single transaction handshaking method due to its higher
throughput.

Dual-clock FIFOs [11], [12] are well-suited to provide
asynchronous boundary communication using the source syn-
chronous multi-word flow control method. They operate by
partitioning the FIFO such that the write portion is in one
clock domain and the read portion is in another clock domain.
Fig. 2 is a high level diagram of a dual-clock FIFO [10]. In the
synchronization logic block, the read and write addresses pass
across the asynchronous interface and are used to calculate
whether the FIFO is full or empty. Dual-clock FIFOs introduce
extra communication delay compared to a corresponding syn-
chronous design, and exact values vary depending on many
circuit, fabrication technology, and operating condition factors.

C. Inter-Processor Network

The networking strategy between processors also strongly
impacts the behavior of GALS CMPs.

Smith [8] proposes and analyzes a GALS chip multiprocessor
with inter-processor and processor-memory communication
through a shared global bus. This scheme provides very flexible
communication, but places heavy demands on the global bus;
thus, the system performance is highly dependent on the level
and intensity of the bus traffic. Furthermore, this architecture
lacks scalability since increased global bus traffic will likely
significantly reduce system performance under high traffic
conditions or with a large number of processors.

A distributed network strategy such as a “nearest neighbor”
mesh distributes the interconnections across the entire chip and
the communication load for each inter-processor link can be
highly reduced. This architecture also provides near-perfect
physical scalability due to its tile-based architecture without
global wires.

III. GALS CMP

To illustrate principles presented in this paper, we draw upon
a GALS CMP that was recently fabricated [13] which to the best
of our knowledge, is the first tile-based chip multiprocessor with
GALS clocking. A special feature of the design is that it pro-
vides a mode where all processors operate fully synchronously,

thereby providing an excellent testbed for a GALS versus non-
GALS comparison. This section provides a brief overview of
the chip’s design and application mapping.

Pleiades [14] and FAUST [15] use GALS clocking, but they
both use the single transaction handshake scheme for their
asynchronous boundary communication which performs quite
differently from the source synchronous multi-word flow con-
trol used in this work. The processor array by Ambric [16] uses
GALS clocking but no details have been reported regarding
its operation. Other clocking styles such as rationally-re-
lated clocking used by Synchroscalar [17] and mesochronous
clocking used by an 80-core chip [18] are clearly different from
GALS-clocked chips.

This work is the first to present an analysis of the performance
and power effects of the GALS style when applied at the CMP
level.

A. GALS and Non-GALS CMPs

The aforementioned CMP contains multiple uniform simple
processors, as shown in Fig. 3(a). Each processor contains a
small instruction memory that is not a cache and is designed to
be written only by signals external to the chip; therefore, its con-
tents are intended to be constant during normal operation. Pro-
cessors also contain a small data memory that is not a cache and
is fully under the control of software running on each processor.
These memory size and organization choices are not a necessary
limitation of the architecture, but merely choices made to reduce
memory system complexity in this test chip, and because they
are sufficient for our targeted applications. Processors contain
two 32-word input FIFOs which can be configured to connect
to any two of the four neighboring processors, thereby enabling
inter-processor communication via the 2-D mesh network. Con-
nections between neighboring processor tiles therefore consist
of two opposing-direction unidirectional links. Each processor
contains a 16-bit datapath and executes 32-bit instructions. The
6 6 GALS chip multiprocessor is implemented in 0.18- m
CMOS technology [13].

Fig. 3(b) shows a single processor in the GALS system.
Processors utilize individual programmable ring oscillators
that are configurable over a wide range of frequencies. Each
processor also contains two dual-clock FIFOs, which write and
read in independent clock domains and reliably transfer data
across the asynchronous boundaries. For increased character-
ization capability, a configurable number of synchronization
registers are inserted at the clock domain interface to alleviate
metastability. Two synchronization registers are used in the
experiments shown in Section IV.

The synchronous processor is shown in Fig. 3(c), and local
clock oscillators are unnecessary since a global clock is pro-
vided to all processors. Processors’ FIFOs are fully synchronous
for this system. The synchronous chip multiprocessor is emu-
lated using special configurations in the chip, and uses a global
clock signal without synchronization registers between asyn-
chronous boundaries inside the inter-processor FIFOs.

The extra circuitry for supporting the GALS clocking
style—the local oscillator and logic in the FIFOs related to
dual-clock operation—occupies only approximately 1% of the

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 14, 2009 at 07:00 from IEEE Xplore. Restrictions apply.

YU AND BAAS: HIGH PERFORMANCE, ENERGY EFFICIENCY, AND SCALABILITY WITH GALS CHIP MULTIPROCESSORS 69

Fig. 3. Two CMPs: one using a fully synchronous style and the other using a GALS style with per-processor clock domains. (a) 6� 6 chip multiprocessor, (b)
single processor in the GALS system, (c) single processor in the synchronous system.

processor’s area. Considering the fact the GALS system has
a vastly simplified clock tree, the area difference between a
GALS system and a synchronous-only system is negligible.

B. Applications and Mapping on the GALS Multiprocessor

Programming the described GALS chip multiprocessor is ac-
complished by dividing applications into several tasks, coding
each task independently, and mapping each task onto indepen-
dent or shared processors. The mapped applications we consider
include: an 8-point discrete cosine transform (DCT) using 2 pro-
cessors, an 8 8 DCT using 4 processors, a zig-zag transform
using 2 processors, a merge sort using 8 processors, a bubble
sort using 8 processors, a matrix multiplier using 6 processors,
a 64-point complex FFT using 8 processors, a JPEG encoder
core using 9 processors, and a fully-compliant IEEE 802.11a/g
(Wi-Fi) wireless LAN transmitter using 22 processors [19].

We have chosen many of the selected DSP and embedded
tasks because they are especially well suited for our processor
array for two main reasons. First, these tasks require relatively
small amounts of data and instruction memory, and all instruc-
tions and “static data” (e.g., data coefficients) reside on the chip.
In some cases (e.g., the FFT application), one or more proces-
sors are programmed to serve only as data storage and perform
no computation on the data [19]. Second, the presented appli-
cations are also relatively easy to partition into many smaller
sub-tasks.

All tasks and applications were parallelized and coded by
hand, and their programs are unscheduled and lightly opti-
mized—with the exception of the DCT transforms and the
JPEG encoder which have been moderately optimized. Clearly,
many implementations are possible; these examples should be
taken only as reasonable representative implementations.

As an example, the 4-processor 8 8 DCT application is
shown in Fig. 4. The 8 8 DCT is performed with two 1-D
8-point DCTs in the first and third processors using an efficient
algorithm [20], and with transposes of the rows and columns of
the data block in the second and fourth processors.

IV. REDUCING AND ELIMINATING PERFORMANCE PENALTIES

IN GALS CHIP MULTIPROCESSORS

GALS systems require synchronization circuits between
clock domains to reliably transfer data. Clock phase edge align-
ment time for unmatched clocks and synchronization circuitry
introduces a synchronization delay as illustrated in Fig. 5.

Fig. 4. 8� 8 DCT implementation using 4 processors.

Fig. 5. GALS system module boundary and timing of the synchronization
delay across the boundary. (a) A simple GALS system. (b) Sync. delay � ���
edge alignment �� �� sync. circuit �� �.

This delay normally results in a reduction of performance
(throughout).

In this section, we discuss in depth principles behind how
GALS clocking affects system throughput and find several key
architectural features which can hide the GALS effects. Fully
avoiding any GALS performance penalties is possible for the
described GALS chip multiprocessor. To simplify the discus-
sion, in this section both GALS and synchronous systems use
the same clock frequencies.

A. Related Work

Significant previous research has studied the GALS unipro-
cessor—in which portions of each processor are located in
separate clock domains. Results have shown GALS unipro-
cessors experience a non-negligible performance reduction
compared to a corresponding synchronous uniprocessor. Fig. 6
shows branch control hazards for synchronous and GALS
uniprocessor versions of a simple DLX RISC processor [21]
and gives an intuitive explanation for the performance reduction
of GALS uniprocessors. The example GALS uniprocessor’s
pipeline has stages in their own clock domains. During taken

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 14, 2009 at 07:00 from IEEE Xplore. Restrictions apply.

70 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 1, JANUARY 2009

Fig. 6. Pipeline control hazard penalties of a five stage synchronous unipro-
cessor and a five-stage GALS uniprocessor.

branch instructions, the synchronous processor has a three-cycle
control hazard, while the GALS system has a
cycle penalty, significantly reducing system performance. Other
pipeline hazards generate similar performance impacts. Studies
of GALS uniprocessor performance have reported reductions
of 10% [22] and 7%–11% [7] compared to fully synchronous
designs. Semeraro et al. found that the performance penalty
of a GALS uniprocessor can be as low as 4% [5] by dynam-
ically adjusting the synchronization logic to minimize the
synchronization delay, and this performance degradation can be
further reduced to 2% [23] by adding out-of-order superscalar
execution features. However, minimizing the synchronization
delay is generally not easy to implement, and fully avoiding
the GALS performance penalty is still not achievable using this
approach.

Other related work includes the performance analysis re-
ported by Smith [8] for a GALS chip multiprocessor with a
shared memory and a global shared bus. With a shared global
bus, processors experience additional latency and therefore a
performance penalty compared to the equivalent synchronous
design when making transactions across the bus to the shared
memory. The reported performance penalty was between 1%
and 33% with an average of 6.5% for simulated cache block
read and write traffic loads between 20% and 80% across the
global bus.

B. Comparison of Application Performance of CMPs: GALS
Versus Synchronous

A cycle-accurate verilog register transfer level (RTL) descrip-
tion of the previously described GALS multiprocessor chip is
used to measure application performance. The RTL model ex-
actly matches the fabricated chip and therefore exactly models
its performance. However, although the fabricated chips and the
RTL model operate exactly the same logically, different proces-
sors on the same or different dies in general have different per-
formance and power characteristics due to process, voltage, and
temperature variations. Since the focus of this paper is on the
differences between GALS and synchronous systems, the re-
sults presented in this work are based on the RTL model unless
specified otherwise. In addition, this choice removes data skew
inherent to our particular collection of fabricated chips, and en-
ables precise and repeatable measurements.

In our comparisons, the synchronous system uses a single
global clock and has no synchronization registers in its com-
munication clock boundaries. The GALS system uses a local

TABLE I
AVERAGE STEADY-STATE NUMBER OF CLOCK CYCLES TO COMPLETE

THE INDICATED APPLICATIONS (APPLICATION’S FIRST IN� LAST IN,
OR APPLICATION’S FIRST OUT � LAST OUT � �/THROUGHPUT)

MAPPED ONTO A SYNCHRONOUS ARRAY PROCESSOR AND A GALS
ARRAY PROCESSOR, USING 32-WORD INTER-PROCESSOR FIFOS

Fig. 7. Illustrations of three key latencies and application throughput in GALS
multiprocessor systems.

oscillator and two synchronization registers across each clock
boundary.

Data in Table I report throughput (actually 1/throughput in
terms of clock cycles to complete the given application) for the
applications mentioned in Section III-B. The first two columns
show the computation time for these applications on both syn-
chronous and GALS CMPs. The third and fourth columns list
the absolute and relative performance penalty of the GALS chip
multiprocessor. The performance of the GALS system is nearly
the same as the synchronous system with an average of less than
1% performance reduction, which is much smaller than the 10%
performance reduction of the GALS uniprocessor [22], [7], or
the 5% performance reduction of the GALS chip multiprocessor
with a shared memory and global bus [8].

C. Analysis of the Performance Effects of GALS

The very small performance reduction of the GALS chip mul-
tiprocessor motivates us to understand the factors that affect per-
formance in GALS style processors. Fig. 7 shows the chain of
events that allow synchronization circuit latency to finally affect
application throughput. It is a complex relationship and several
methods are available to hide the GALS penalties. We now take
a closer look at the four timing metrics illustrated in Fig. 7.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 14, 2009 at 07:00 from IEEE Xplore. Restrictions apply.

YU AND BAAS: HIGH PERFORMANCE, ENERGY EFFICIENCY, AND SCALABILITY WITH GALS CHIP MULTIPROCESSORS 71

Fig. 8. FIFO operation when the FIFO is: (a) neither full nor empty; (b) empty; and (c) full. Correct operation requires delaying reads when the FIFO is empty,
and delaying writes when the FIFO is full. Full speed operation is permitted when the FIFO is partially full.

TABLE II
FRACTION OF THE TIME THE INTER-PROCESSOR COMMUNICATION IS

ACTIVE FOR EACH PROCESSOR EXECUTING SEVERAL APPLICATIONS;
P1–P9 REPRESENT PROCESSORS 1–9, RESPECTIVELY

• Synchronization circuit latency is inherent in every asyn-
chronous boundary crossing due to mismatch in clock
phases and overhead of synchronization circuits.

• Average communication latency penalty takes into account
the fact that the synchronization circuit path is normally
not active every cycle. Thus, the synchronization latency
should be weighted by the fraction of the time the path is
active (% in Fig. 7), which is the average communication
latency.

• Effective communication latency takes into account cases
where the downstream processor does not consume data
immediately after it is received. In other words, the av-
erage communication latency has its impact only when a
program is waiting for these delayed data, and the impact
is zero otherwise.

• Application throughput is the metric of highest importance.
The effective communication latency impacts application
throughput only when there is communication feedback.
As more fully shown in Section IV-C3, one-way commu-
nication does not result in throughput penalties under cer-
tain conditions.

The following three subsections discuss in further detail each
step from the synchronization circuit latency to the application
throughput, and show methods to hide the GALS performance
penalties.

1) Hiding Synchronization Circuit Latency by Localizing
Computation: An obvious but nonetheless noteworthy point
is that the asynchronous boundary circuit affects performance

only when signals cross it, so the effect from this circuit latency
can be dramatically decreased if data communication across the
asynchronous boundary is reduced. This may initially sound
like a difficult goal, but in fact key parameters such as clock
domain granularity and application partitioning can easily
affect this coefficient by orders of magnitude.

In many GALS systems the asynchronous boundaries have
frequent traffic. For example, in a GALS uniprocessor each
instruction crosses several asynchronous boundaries while
flowing through the pipeline. But in a GALS chip multipro-
cessor, computation is much more localized in each processor’s
clock domain and communication through the asynchronous
boundaries is less frequent and thus the GALS effect is much
lower.

Table II shows the fraction of the time the inter-pro-
cessor communication path is active for several applications.
Inter-processor communication is often infrequent, especially
for complex applications such as the 64-point complex FFT
and JPEG encoder that show average inter-processor com-
munication probabilities of only 2% and 6%, respectively.
Cross-clock domain communication is equivalent to inter-pro-
cessor communication for the architecture shown in Fig. 1(b)
and is even lower for the architecture shown in Fig. 1(c). In
comparison, the example GALS uniprocessor shown in Fig. 6
has a cross-clock domain communication probability of 100%
since every instruction requires the crossing of (multiple) clock
domain boundaries.

2) Hiding Average Communication Latency by FIFO
Buffering: Not every data word transferred across an asyn-
chronous boundary results in effective latency. As Fig. 8(a)
shows, the GALS system has the same data flow as the syn-
chronous system when the FIFO is neither empty nor full. The
arbitrary phase of the read domain clock is shown skewed with
respect to the write domain clock for illustration purposes only
and does not result in any performance reductions.

On the other hand, FIFO stalls caused by full and empty con-
ditions do introduce extra latency in GALS systems, although to
different extents. A FIFO empty stall occurs when a processor
reads an empty FIFO and must wait (stall) until data is available,
as illustrated in Fig. 8(b). When this type of stall occurs, GALS

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 14, 2009 at 07:00 from IEEE Xplore. Restrictions apply.

72 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 1, JANUARY 2009

TABLE III
AVERAGE STEADY-STATE NUMBER OF CLOCK CYCLES TO COMPLETE THE

INDICATED APPLICATIONS (APPLICATION’S FIRST IN� FIRST OUT,
OR APPLICATION’S LAST IN � LAST OUT � �������) MAPPED

ONTO A SYNCHRONOUS ARRAY PROCESSOR AND A GALS ARRAY

PROCESSOR, USING 32-WORD INTER-PROCESSOR FIFOS

systems will incur extra delay compared to synchronous sys-
tems. If the stalled processor is on the application’s critical path,
this additional delay penalizes system throughput and latency.

A FIFO full stall occurs when a processor writes a full FIFO
and must wait until there is writable space. This can be viewed as
a blocking write operation. As shown in Fig. 8(c), when this type
of stall occurs, GALS systems incur extra delay compared to
synchronous systems, however, in many cases this delay will not
cause a reduction in system throughput and latency, depending
on the specific nature of the application. Specifically, a FIFO
full stall will not degrade performance if the stalling processor
is never on the application’s critical path or does not affect a
processor that is on the critical path—this is a common situation
since by its very definition, the stalling processor has filled up
its output buffer and is waiting.

Table III shows the effective latency difference between the
GALS chip multiprocessor and the corresponding synchronous
system over several applications. This processing time latency
is measured as the time difference between when data enters
the array and when the corresponding results exit the array. Due
to the sufficiently large FIFO buffer of 32 words, there are rela-
tively few resulting FIFO stalls, and the effective latency penalty
of the GALS chip multiprocessor is small with an average of
less than 2%. Interestingly, this latency penalty is larger than the
throughput penalty—which is less than 1% as shown in Table I.

A key point is thus: latency penalties do not always result
in throughput penalties. This result is further explored in the
following subsection.

3) Throughput Penalty Caused by Latency Penalty From
Communication Loops: Reading an empty FIFO or writing
a full FIFO results in extra computational latency on a word
level, but does not always reduce application throughput.
Generally speaking, simple one-way communication does not
affect system throughput, what really matters is communication
loops—in which two units wait for information from each
other.

In a one-way communication path as shown in Fig. 9(a),
the system throughput is dependent on the slowest unit and is
not related to the communication—assuming communication
is not the slowest unit, which is true in many cases. However,
throughput is significantly impacted when the communication

Fig. 9. System throughput in: (a) a one-way communication path and (b) a
communication loop path. For a GALS system, we assume unit1 and unit2 are
in different clock domains and therefore the comm. communication delays are
significant. For both synchronous and GALS systems, throughput is not reduced
with one-way communication (assuming communication time is less than com-
putation time), but is reduced in the loop case.

Fig. 10. Common stall communication loop exists when the data producer
proc. 1 and data consumer proc. 2 are alternatively busy and idle, the FIFO al-
ternates between being empty and full, and processors stall appropriately. The
wide arrow is the direction of data transfer, and thin arrows show how FIFO
stalls are generated.

has feedback and generates a loop, as shown in Fig. 9(b). If
unit 1 and unit 2 both need to wait for information from each
other, the throughout will be dependent on the sum of unit
execution time and communication time. Then the communi-
cation time affects the performance of both synchronous and
GALS systems, but the GALS system has a larger performance
penalty due to its larger communication time.

A similar conclusion can be drawn for GALS uniprocessors.
The GALS overhead increases the communication latency be-
tween pipeline stages. In instructions without pipeline hazards,
the GALS uniprocessor maintains the same throughput as the
synchronous uniprocessor although with larger latency, since it
has only one-way communication. However, during instructions
such as taken branches (where the new PC needs feedback from
the execution result), a communication loop is formed, and the
GALS uniprocessor therefore incurs a throughput penalty.

In our GALS chip multiprocessor, pure FIFO-full stalls
or FIFO-empty stalls alone as in Fig. 8(b) and (c) gen-
erate one-way communication and have no effect on system
throughput. Fig. 10 shows a not-uncommon FIFO stall com-
munication loop. Sometimes processor 1 is too slow and
results in FIFO-empty stalls. Sometimes processor 2 is too
slow and results in FIFO-full stalls. Having both FIFO-full
stalls and FIFO-empty stalls (obviously at different times) in a
link produces a communication loop and this reduces system
performance for both synchronous and GALS systems, albeit
with less of a penalty for a synchronous system.

Results in Table I show that the GALS chip multiprocessor
has nearly the same performance as the synchronous chip mul-
tiprocessor. The GALS multiprocessor performance reduction
is much less than the GALS uniprocessor’s reduction. This
implies that the performance penalty sources—communication
across asynchronous boundaries, FIFO stalls, and FIFO stall

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 14, 2009 at 07:00 from IEEE Xplore. Restrictions apply.

YU AND BAAS: HIGH PERFORMANCE, ENERGY EFFICIENCY, AND SCALABILITY WITH GALS CHIP MULTIPROCESSORS 73

Fig. 11. Performance of synchronous and GALS array processors with different FIFO sizes.

loops—are much less likely to occur in our applications than
in the operation of a uniprocessor through pipeline hazards.
These results match well with intuition since pipeline hazards
are common in most computer programs.

In Table I, the 8-point DCT, zig-zag, mergesort, and bubble-
sort have no GALS performance penalties since they have only
one-way FIFO stalls. The other applications have about 1% per-
formance penalty on average due to FIFO stall loops.

D. Eliminating Performance Penalties

1) Increasing FIFO Sizes: Increasing the FIFO size will re-
duce FIFO stalls as well as FIFO stall loops, and hence increase
system performance and reduce the GALS performance penalty
[24]. With a sufficiently large FIFO, there will be no FIFO-full
stalls and the number of FIFO-empty stalls can also be greatly
reduced; then the communication loop in Fig. 10 will be broken
and no GALS performance penalties will result.

The top and middle subplots of Fig. 11 show performance
with different FIFO sizes for the synchronous and GALS sys-
tems, respectively. We assume all FIFOs in the system are the
same size and thus, their sizes are scaled together in this anal-
ysis. Whether using a synchronous or GALS style, in general,
increasing the FIFO size increases system performance. Also,
a threshold FIFO size exists above which the performance does
not change. The threshold is the point when the FIFO-full stalls
no longer occur due to having a large enough FIFO, and in-
creasing the FIFO size further gives no additional benefit. The
threshold is dependent on the application as well as the map-
ping placement. In our case, the thresholds for the 8 8 DCT
and 802.11a/g are 64 words, for JPEG and bubble sort are 32

words, and for the 8-point DCT and merge sort they are less
than or equal to 16 words.

The bottom subplot of Fig. 11 shows the performance ratio
of the GALS system to the synchronous system. The ratio nor-
mally stays at a high level larger than 95%. When increasing
the FIFO size, the ratio generally increases due to fewer FIFO
stalls and fewer FIFO stall loops. The ratio normally reaches
1.0 at the threshold, which means the FIFO stall loops are all
broken and the GALS system has the same performance as
the synchronous system. The exception in the examples is the
FFT in which the GALS system always has a noticeable per-
formance penalty of approximately 2%. This comes from the
multiple-loop communication links and will be explained in the
following subsection.

2) Breaking Multiple-Loop Communication Links: Fig. 12
shows a multiple-loop communication link example. In this
case, processor 1 and processor 2 send data to each other, and
each processor has both FIFO full stalls and FIFO empty stalls.
When the FIFO is large enough, there will be no FIFO-full
stalls, but FIFO-empty stalls can still occur. So, a communica-
tion loop is still possible in the case illustrated in Fig. 12 since
FIFO-empty stalls alone can generate a stall loop. For example,
several processors in the FFT application shown in Fig. 13 are
used as data storage (Memory) coprocessors and they send and
receive data to computational (Butterfly) processors [25] thus
generating multiple-loop links.

In order to avoid any performance penalties, programmers
must avoid these types of multiple-loop implementations. For
example, in the FFT case, the Memory processor and Butterfly
processor can be combined into one processor.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 14, 2009 at 07:00 from IEEE Xplore. Restrictions apply.

74 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 1, JANUARY 2009

Fig. 12. Example of multiple loop communication links between two
processors.

Fig. 13. 64-point complex FFT implementation containing multiple-loop links
[25].

V. SCALABILITY ANALYSIS OF GALS CMPS

One of the key benefits of a GALS CMP with distributed
communication is its scalability: it allows a simple insertion
of processors onto a chip to expand a processor array. For a
synchronous system, the clock tree must be redesigned for
different processor arrays and the design difficulty increases
quickly along with the chip size. In addition, the clock skew
normally increases due to the more complex clock tree and
larger circuit parameter variation effects.

A. Auto Generated Clock Trees for Different Sizes of Chip
Multiprocessors

Multiple clock trees are generated using Cadence Encounter
with an Artisan 0.18- m standard cell library. An example clock
tree for a single processor is shown in Fig. 14 and the first
row of Table IV. It uses 37 buffers arranged in 3 levels, has 47
ps worst-case clock skew, approximately 555 ps delay, 120 ps
buffer transition time, and 97 ps sink transition time. The buffer
transition time is the signal rise time at the inserted buffers, the
sink transition time is the signal rise time at the clocked regis-
ters, and the total tree delay is the time from clock root to regis-
ters. The target constraint parameters for the clock tree include:
50 ps clock skew, 2000 ps delay, and 120 ps buffer and sink tran-
sition times.

As the number of processors increases, the synchronous
global clock tree becomes more complex and therefore more
difficult to design. Table IV lists several key parameters of
clock trees for arrays made up of different numbers of proces-
sors. In general, all listed parameters tend to increase as the
number of processors increases. However, in some cases, the
parameters do not increase monotonically. This is due to the
complex nature of the clock tree optimization problem which
is affected by many discrete parameters (e.g., there can be only
an integer number of buffer levels), and also by the time-lim-

Fig. 14. Example clock tree for a single processor.

TABLE IV
DATA FOR GLOBALLY SYNCHRONOUS CLOCK TREES WITH DIFFERENT

NUMBERS OF PROCESSORS IN THE ARRAY

ited non-optimal Cadence Encounter optimization runs. For
example, the 10 10 array has lower skew than the 9 9 array,
but it also has a significantly higher buffer transition time and
sink transition time—which likely come from the increased
load of tree buffers since they both have 13 levels of buffers.

Different clock tree design methods would likely have dif-
ferent results from our experiments. Techniques such as full-
custom layout and deskewing technologies [26] can certainly
generate lower skew results but they dramatically increase de-
sign effort, may increase area and power consumption, and are
not commonly used. For example, active deskewing and scan-
chain adjustments used for Itanium [27] enable a very large
clock tree with skew less than 10 ps, but the clock generation
and distribution circuits dissipate approximately 25 W of power.
Whichever methods are used, the trend that larger chip sizes re-
sult in more complex clock trees and larger clock skew is true in
general; and furthermore, impacts from circuit parameter vari-
ations are increasing with more advanced CMOS fabrication
technologies.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 14, 2009 at 07:00 from IEEE Xplore. Restrictions apply.

YU AND BAAS: HIGH PERFORMANCE, ENERGY EFFICIENCY, AND SCALABILITY WITH GALS CHIP MULTIPROCESSORS 75

Fig. 15. Considering only static clock skew, the peak performance per pro-
cessor of GALS processor arrays is constant with the number of processors,
and it falls with larger synchronous processor arrays.

B. Effect of Clock Tree on System Performance

The clock period of modern processors expressed in
fanout-of-4 (FO4) delays normally ranges between 10 to 20
[28], and is determined by the pipelining of the processor as
well as clock distribution factors such as clock skew and jitter.
Each FO4 delay in 0.18 m is about 65 ps. For our analysis,
we investigate the effect of clock tree design on system perfor-
mance assuming the maximum logic delay (including register
clock-to-Q time and setup time) within one clock period is
1000 ps, which is 15.4 FO4 delays and is in the typical range
for modern high performance processor designs [29]. Since
clock skew adds directly to the minimum permissible cycle
time, higher levels of clock skew clearly result in lower perfor-
mance machines. For example, a single hypothetical 1000-ps
processor with 47 ps of clock skew could operate with a clock
cycle time no faster than 1047 ps.

The relative system peak performance for different processor
arrays is shown in Fig. 15. The peak performance of the GALS
chip multiprocessor increases exactly linearly with the number
of processors since its clock skew is completely independent of
the array size due to its lack of a global clock tree—it is 47 ps
in this analysis. The synchronous chip multiprocessor scales
well when the number of processors is small but by the time
it grows to 49 processors (approximately 33 mm in 0.18- m
technology), its performance is 96.5% of the GALS array pro-
cessor’s. Performance continues to degrade with more proces-
sors since its clock skew increases along with the chip size.
With 121 processors (approximately 80 mm in 0.18- m tech-
nology), the performance of the synchronous array processor is
93.8% of the GALS array processor’s.

The globally synchronous clock skew becomes worse when
system parameter variations which are not included in the
Encounter tool simulation are included. Parameter variations
have increasingly impacted system performance along with
advancing technologies. The main parameter variations include
process variation, voltage variation and temperature variation

Fig. 16. Increased clock tree delay from reducing supply voltage from 1.8 to
1.7 V for different clock trees with widely varying total delays. Data is from
transistor-level spice circuit simulations. Absolute clock skew (in picoseconds)
becomes significant for larger clock trees.

[2]. These variations affect circuit delay and hence affect clock
tree uncertainty. Different clock tree architectures are affected
differently by parameter variations. For example, clock trees
with fewer inserted buffers [30] and lower fanout loads [31] are
less affected by parameter variations.

Supply voltage variation is one of the most important pa-
rameter variations. The Encounter CAD tool estimates the peak
voltage drop is 0.041 V for our single processor tile due only to
the internal power grid. This voltage drop increases with larger
chip sizes and a reasonable conservative estimate is 0.1 V of
voltage drop, especially if dynamic workload changes are in-
cluded. Therefore, we investigate operation when the supply
voltage is reduced from 1.8 to 1.7 V in a 0.18- m technology
with a nominal supply voltage of 1.8 V. Fig. 16 shows the in-
creased clock tree delay at the reduced supply voltage for dif-
ferent clock trees by varying the number of clock tree stages
from 3 to 10, and fanouts of each stage from 4 to 7. These values
are typical for the experiments detailed in Table IV. As shown in
Fig. 16, the increased clock delay is around 5.5% of the original
clock tree delay over a wide range of designs. It is then reason-
able to estimate that voltage variation (really only voltage drop
in this analysis) increases the clock skew by 5.5% of the clock
delay.

However, as mentioned previously, process and temperature
variations also contribute significantly to performance degra-
dation. Hashimoto et al. [31] show that three primary varia-
tion sources: voltage variation, transistor length variation, and
temperature variation, contribute approximately 40%, 40%, and
20%, respectively to the overall timing variations in an oscil-
lator’s clock period. Therefore, using the voltage variation es-
timate of 5.5%, we estimate all parameter variations cause a
clock skew of 5.5% 13.75% 13% of the clock delay.
Fig. 17 shows the performance reductions of GALS and syn-
chronous CMPs due to these three parameter variations. With
49 processors, the performance of the synchronous multipro-
cessor is 0.786/0.95 = 82.7% of the GALS multiprocessor’s

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 14, 2009 at 07:00 from IEEE Xplore. Restrictions apply.

76 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 1, JANUARY 2009

Fig. 17. Peak performance per processor of GALS and synchronous array pro-
cessors where the clock period calculation includes: (1) a 15 FO4 logic delay;
(2) static clock skew; and (3) clock skew equal to 13% of the total clock tree
delay due to variations as shown in Fig. 16.

performance. The gap becomes larger as the number of pro-
cessors increases. With 121 processors, the performance of the
synchronous multiprocessor is 0.730/0.95 = 76.8% of the GALS
multiprocessor’s performance.

VI. ENERGY EFFICIENCY ANALYSIS OF CLOCK

FREQUENCY SCALING

The GALS clocking style provides opportunities for using
clock and voltage scaling to significantly increase energy ef-
ficiencies. The computational load in a GALS chip multipro-
cessor can be heavily unbalanced which increases the potential
reduction in energy dissipation when using clock and voltage
scaling for each processor. In fact, it is possible to scale down the
clock frequencies for some processors without reducing system
performance whatsoever.

Clock frequency and supply voltage may be fixed during ex-
ecution, and this approach is called static clock/voltage scaling.
This is the method addressed in this paper for the GALS chip
multiprocessor. In order to obtain greater power savings, dy-
namic clock/voltage scaling can be used where the clock fre-
quency and supply voltage are changed during runtime to po-
tentially achieve further reduced power dissipation and perfor-
mance degradation.

A. Related Work—Clock Scaling in the GALS Uniprocessor

Fig. 18 shows an example GALS uniprocessor implementa-
tion which increases energy efficiency by reducing the clock fre-
quency of modules that are less heavily used. In the figure, the
frequency of the MEM module clock, clk4, is reduced when ex-
ecuting the first code block since it has few MEM instructions.
The frequency of the WB module’s clock, clk5, can be reduced
when executing the second code block since it has few WB in-
structions. Unfortunately, reducing the clock of some modules
in GALS uniprocessors reduces system performance. The static
scaling method reduces energy dissipation by approximately

Fig. 18. Clock scaling in a GALS uniprocessor.

16% with an approximately 18% reduction in performance [22].
The dynamic scaling method achieves 20%–25% energy sav-
ings along with a 10%–15% performance reduction [5], [7], [6].

B. Unbalanced Processor Computational Loads in GALS Chip
Multiprocessors Increase Their Power Savings Potential

Traditional parallel programming methods normally seek
to balance computational loads in different processors. On
the other hand, when using processors able to change their
clock frequencies, unbalanced computational loads are less
of a problem, and in fact give more opportunities to reduce
the clock frequency and supply voltage of some processors to
achieve further power savings without degrading system per-
formance. Releasing the constraint of a balanced computational
load enables the designer to explore wider variations in other
parameters such as program size, local data memory size, and
communication methods.

Fig. 19 shows the unbalanced computational load among pro-
cessors when mapping our applications onto a chip multipro-
cessor. The computational load difference for different proces-
sors in complex applications such as the JPEG encoder and the
802.11a/g transmitter can be more than 10 times.

C. Finding the Optimal Clock Frequency—Computational
Load and Position

When using clock/voltage scaling, the system performance
will normally be reduced. We seek to scale the clock frequen-
cies of some processors in the GALS multiprocessor while
still maintaining the same performance. The optimal clock
frequency for each processor depends strongly on its compu-
tational load, and also depends on its position and relationship
with respect to other processors.

Fig. 20 shows the system throughput versus the clock fre-
quencies of four processors in the 8 8 DCT, whose implemen-
tation is shown in Fig. 4. The computational loads of the four
processors are 408, 204, 408, and 204 clock cycles per 8 8
DCT, respectively. The throughput changes with the scaling of
the second and fourth processor much more slowly than the
scaling of the first and third processors. This illustrates the in-
tuitive point that a processor with a light computational load is
more likely to maintain its performance with a reduced clock
frequency. Somewhat counter-intuitively however, the second
and fourth processors have the same light computational load,
but the throughput changes with the fourth processor scaling

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 14, 2009 at 07:00 from IEEE Xplore. Restrictions apply.

YU AND BAAS: HIGH PERFORMANCE, ENERGY EFFICIENCY, AND SCALABILITY WITH GALS CHIP MULTIPROCESSORS 77

Fig. 19. Relative computational loads of different processors in nine applications illustrating unbalanced loads.

Fig. 20. Throughput changes with statically configured processor clocks for
the 4-processor 8�8 DCT application.

much more slowly than the second processor’s scaling. Min-
imal power consumption is achieved with full throughput when
the relative clock frequencies are 100%, 95%, 100%, and 57%
of full speed, respectively.

The reason for the different behavior of the second and fourth
processors comes from their different positions and FIFO stall
characteristics as shown in Fig. 21. The second processor has
FIFO-empty stalls when it fetches data too quickly from the
first processor, and it has FIFO-full stalls when it sends data too
quickly to the third processor. The fourth processor has only
FIFO-empty stalls.

Fig. 21. Relationship of processors in the 4-processor 8� 8 DCT applica-
tion illustrating the differing stalling possibilities for the second and fourth
processors.

D. Power Reduction Due To Clock and Voltage Scaling

Reducing the clock frequency allows for a reduction in
voltage to obtain further power savings. The relationship be-
tween clock frequency, voltage and power has become much
more complex in the deep submicrometer regime because
of other parameters such as leakage power. Therefore, we
use frequency-voltage-power data measured from a 0.18- m
processor [32] to estimate power consumption from a given
clock frequency. Fig. 22 shows the relationship between clock
frequency and its corresponding power consumption due to
clock/voltage scaling for the processor.

To find an estimate of the optimal clock frequency for each
processor, clock frequencies in processors were reduced in 1%
increments starting from full rate until the overall system per-
formance was reduced. We used these lowest frequency values
which did not impact system performance in our subsequent
power reduction estimates. These clock reductions are “free”
in the sense that they do not come with any performance draw-
backs, and further reductions in frequency would clearly bring
greater power reductions, albeit with some performance loss.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 14, 2009 at 07:00 from IEEE Xplore. Restrictions apply.

78 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 1, JANUARY 2009

Fig. 22. Relationship between a processor’s power consumption with a varying
clock frequency when the supply voltage is the minimum possible voltage for
that clock speed [32].

Fig. 23. Relative power over several applications for the GALS array processor
with static clock and supply voltage scaling compared to a synchronous array
processor. The clock and supply voltage scaling is done without any reduction
in performance.

Using the previously mentioned frequency-power model, we
estimate the relative power consumption of the GALS multipro-
cessor compared to the synchronous multiprocessor using static
clock frequency and supply voltage scaling for several applica-
tions. Results are shown in Fig. 23. The GALS system achieves
an average power savings of approximately 40% without af-
fecting performance. Since it is difficult to obtain exact optimal
clock frequencies and supply voltages in real implementations,
these results should be viewed as best case estimates. Neverthe-
less, these power savings are significantly higher than GALS
uniprocessor results which are reported to save approximately
25% energy when operating with a performance reduction of
more than 10% [22], [5], [7].

VII. CONCLUSION

We show that the application throughput reduction of the
GALS style comes from asynchronous boundary communica-
tion and communication loops, and that it is possible to design
GALS multiprocessors without this performance penalty. A key
advantage of the GALS chip multiprocessor with distributed in-
terconnect compared to the other GALS systems is that asyn-
chronous boundary communication and communication loops
occur far less frequently and therefore the performance penalty
is significantly lower. The proposed GALS array processor has a
throughput penalty of less than 1% over a variety of DSP work-
loads, and this small penalty can be further reduced by suffi-
ciently large FIFOs (dependent on the application) and program-
ming without multiple-loop communication links.

Local clock oscillators in GALS multiprocessors simplify the
clock tree design and enable nearly perfect system scalability.
More processors can be placed onto a chip without any clock
tree redesign. As the number of processors increases, clock skew
in the synchronous multiprocessor system increases quickly due
to more complex clock trees and process, voltage, and tempera-
ture variations. With 121 processors (approximately 80 mm in
0.18- m technology), the peak performance of the GALS multi-
processor can be more than 20% greater than the corresponding
synchronous multiprocessor.

Unbalanced computational loads in CMPs increase the
opportunity for independent clock frequency and voltage
scaling to achieve significant power savings. The GALS chip
multiprocessor can achieve approximately 40% power savings
without any reduction in performance over a variety of DSP and
embedded workloads using static clock and voltage scaling for
each processor. These results compare well with a reported 25%
energy reduction and 10% performance reduction of GALS
uniprocessors for a variety of general purpose applications.

Data presented in this paper are based on simulations of a
fully-functional fabricated GALS chip multiprocessor [13] and
physical designs based on the chip. Results from this work apply
to systems with three key features as discussed in Section II,
namely: 1) multi-core processors (homogeneous and heteroge-
neous) operating in independent clock domains; 2) source syn-
chronous multi-word flow control for asynchronous boundary
communication; and 3) distributed interconnect, such as a mesh.
While results certainly vary over different applications and spe-
cific architectures, systems with these features should still ex-
hibit the following benefits over many workloads: good scala-
bility, small performance reductions due to asynchronous com-
munication overhead, and large potential power reductions from
clock frequency and supply voltage scaling.

ACKNOWLEDGMENT

The authors would like to thank E. Work, T. Mohsenin,
and other VCL colleagues; R. Krishnamurthy, M. Anders,
S. Mathew, and Y. P. Cheng.

REFERENCES

[1] S. Naffziger, B. Stackhouse, and T. Grutkowski, “The implementation
of a 2-core multi-threaded Itanium family processor,” in Proc. IEEE
Int. Solid-State Circuits Conf. (ISSCC), Feb. 2005, pp. 182–183.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 14, 2009 at 07:00 from IEEE Xplore. Restrictions apply.

YU AND BAAS: HIGH PERFORMANCE, ENERGY EFFICIENCY, AND SCALABILITY WITH GALS CHIP MULTIPROCESSORS 79

[2] S. Borkar, T. Kainik, S. Narendra, J. Tschanz, A. Keshavarzi, and V.
De, “Parameter variations and impact on circuits and microarchitec-
ture,” in Proc. IEEE Int. Conf. Des. Autom., Jun. 2003, pp. 338–342.

[3] D. M. Chapiro, “Globally-asynchronous locally-synchronous sys-
tems,” Ph.D. dissertation, Dept. Comput. Sci., Stanford Univ.,
Stanford, CA, Oct. 1984.

[4] T. Meincke, A. Hemani, S. Kumar, P. Ellervee, J. Oberg, T. Olsson, and
P. Nilsson, “Globally asynchronous locally synchronous architecture
for large high-performance ASICs,” in Proc. IEEE Int. Symp. Circuits
Syst., May 1999, pp. 512–515.

[5] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi, S.
Dwarkadas, and M. L. Scott, “Energy-efficient processor design using
multiple clock domains with dynamic voltage and frequency scaling,”
in Proc. IEEE Int. Symp. High-Perform. Comput. Arch., Feb. 2002, pp.
29–40.

[6] E. Talpes and D. Marculescu, “Toward a multiple clock/voltage is-
land design style for power-aware processors,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 13, no. 5, pp. 591–603, May 2005.

[7] E. Talpes and D. Marculescu, “A critical analysis of application-adap-
tive multiple clock processor,” in Proc. Int. Symp. Low Power Electron.
Des., Aug. 2003, pp. 278–281.

[8] S. F. Smith, “Performance of a GALS single-chip multiprocessor,” in
Proc. Int. Conf. Parallel Distrib. Process. Techn. Appl. (PDPTA), Jun.
2004, pp. 449–454.

[9] A. Upadhyay, S. R. Hasan, and M. Nekili, “Optimal partitioning of
globally asynchronous locally synchronous processor arrays,” in Proc.
Great Lakes Symp. VLSI (GLSVLSI), Apr. 2004, pp. 26–28.

[10] R. W. Apperson, Z. Yu, M. Meeuwsen, T. Mohsenin, and B. Baas,
“A scalable dual-clock FIFO for data transfers between arbitrary and
haltable clock domains,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 15, no. 10, pp. 1125–1134, Oct. 2007.

[11] W. J. Dally and J. W. Poulton, Digital Systems Engineering. Cam-
bridge, U.K.: Cambridge Univ. Press, 1998.

[12] T. Chelcea and S. M. Nowick, “A low-latency FIFO for mixed-clock
systems,” in Proc. IEE Comput. Soc. Ann. Workshop VLSI (WVLSI),
Apr. 2000, pp. 119–126.

[13] Z. Yu, M. Meeuwsen, R. Apperson, O. Sattari, M. Lai, J. Webb, E.
Work, T. Mohsenin, M. Singh, and B. Baas, “An asynchronous array of
simple processors for DSP applications,” in Proc. IEEE Int. Solid-State
Circuits Conf. (ISSCC), Feb. 2006, pp. 428–429.

[14] H. Zhang, , V. Prabhu, V. George, M. Wan, M. Benes, A. Abnous, and
J. M. Rabaey, “A 1-V heterogeneous reconfigurable DSP IC for wire-
less baseband digital signal processing,” IEEE J. Solid-State Circuits,
vol. 35, no. 11, pp. 1697–1704, Nov. 2000.

[15] D. Lattard et al., “A telecom baseband circuit based on an asyn-
chronous network-on-chip,” in Proc. ISSCC, Feb. 2007, pp. 258–259.

[16] A. M. Jones and M. Butts, “TeraOPS hardware: A new massively-par-
allel MIMD computing fabric IC,” in Proc. Hotchips, Aug. 2006, Ses-
sion 5.

[17] J. Oliver, R. Rao, P. Sultatna, J. Crandall, E. Czernikowski, L. W. Jones,
D. Franklin, V. Akella, and F. T. Chong, “Synchroscalar: A multiple
clock domain, power-aware, tile-based embedded processor,” in Proc.
Int. Symp. Comput. Arch., Jun. 2004, pp. 150–161.

[18] S. Vangal et al., “An 80-tile 1.28 TFLOPS network-on-chip in 65 nm
CMOS,” in Proc. ISSCC, Feb. 2007, pp. 98–99.

[19] M. Meeuwsen, O. Sattari, and B. Baas, “A full-rate software imple-
mentation of an IEEE 802.1 la compliant digital baseband transmitter,”
in Proc. IEEE Workshop Signal Process. Syst., Oct. 2004, pp. 297–301.

[20] K. K. Parhi, VLSI Digital Signal Processing Systems. New York:
Wiley, 1999.

[21] D. A. Patterson and J. L. Hennessy, Computer Architecture—A Quan-
titative Approach, 2nd ed. San Mateo, CA: Morgan Kaufmann, 1999.

[22] A. Iyer and D. Marculescu, “Power and performance evaluation of
globally asynchronous locally synchronous processors,” in Proc. Int.
Symp. Comput. Arch., May 2002, pp. 158–168.

[23] G. Semeraro, D. H. Albonesi, G. Magklis, M. L. Scott, S. G. Dropsho,
and S. Dwarkadas, “Hiding synchronization delays in a GALS pro-
cessor microarchitecture,” in Proc. Int. Symp. Asynchronous Circuits
Syst. (ASYNC), Apr. 2004, pp. 159–169.

[24] Z. Yu and B. Baas, “Performance and power analysis of globally asyn-
chronous locally synchronous multi-processor systems,” in Proc. IEEE
Comput. Soc. Ann. Symp. VLSI, Mar. 2006, pp. 378–384.

[25] O. Sattari, “Fast Fourier transform on a distributed digital signal pro-
cessor,” M.S. thesis, Elect. Comput. Eng. Dept., UC Davis, Davis, CA,
2004.

[26] C. E. Dike, N. A. Kurd, P. Patra, and J. Barkatullah, “A design for dig-
ital, dynamic clock deskew,” in Proc. Symp. VLSI Circuits, Jun. 2003,
pp. 21–24.

[27] P. Mahoney, E. Fetzer, B. Doyle, and S. Naffziger, “Clock distribution
on a dual-core multi-threaded Itanium-family processor,” in Proc. IEEE
Int. Solid-State Circuits Conf. (ISSCC), Feb. 2005, pp. 292–293.

[28] M. Horowitz and W. Dally, “How scaling will change processor archi-
tecture,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), Feb.
2004, pp. 132–133.

[29] B. Flachs, S. Asano, S. H. Dhong, P. Hotstee, G. Gervais, R. Kim, T.
Le, P. Liu, J. Leenstra, J. Liberty, B. Michael, H. Oh, S. M. Mueller, O.
Takahashi, A. Hatakeyama, Y. Watanabe, and N. Yano, “A streaming
processing unit for a cell processor,” in Proc. IEEE Int. Solid-State Cir-
cuits Conf. (ISSCC), 2005, pp. 134–135.

[30] D. C. Sekar, “Clock trees: Differential or single ended?,” in Proc. Int.
Symp. Quality Electron. Des., Mar. 2005, pp. 545–553.

[31] M. Hashimoto, T. Yamamoto, and H. Onodera, “Statistical analysis of
clock skew variation in H-tree structure,” in Proc. Int. Symp. Quality
Electron. Des., Mar. 2005, pp. 402–407.

[32] K. J. Nowka, G. D. Carpenter, E. W. MacDonald, H. C. Ngo, B. C.
Brock, K. I. Ishii, T. Y. Nguyen, and J. L. Burns, “A 32-bit PowerPC
system-on-a-chip with support for dynamic voltage scaling and dy-
namic frequency scaling,” IEEE J. Solid-State Circuits, vol. 37, no. 11,
pp. 1441–1447, Nov. 2002.

Zhiyi Yu received the B.S. and M.S. degrees in elec-
trical engineering from Fudan University Shanghai,
China, in 2000 and 2003, respectively, and the Ph.D.
degree in electrical and computer engineering from
the University of California, Davis, in 2007.

He is currently an Associate Professor with the
Microelectronics Department, Fudan University,
Shanghai, China. He was a Hardware Engineer
with IntellaSys Corporation, Cupertino, CA. His
research interests include high-performance and
energy-efficient digital VLSI design, architectures,

and processor interconnects, with an emphasis on many-core processors. He
was a key designer of the 36-core Asynchronous Array of simple Processors
(AsAP) chip, and one of the designers of the ���-processor second generation
computational array chip.

Bevan M. Baas received the B.S. degree in electronic
engineering from California Polytechnic State Uni-
versity, San Luis Obispo, in 1987, and the M.S. and
Ph.D. degrees in electrical engineering from Stanford
University, Stanford, CA, in 1990 and 1999, respec-
tively.

In 2003, he became an Assistant Professor and in
2008 an Associate Professor with the Department of
Electrical and Computer Engineering, University of
California, Davis. He leads projects in architecture,
hardware, software tools, and applications for VLSI

computation with an emphasis on DSP workloads. Recent projects include the
asynchronous array of simple processors (AsAP) chip, applications, and tools;
low density parity check (LDPC) decoders; FFT processors; viterbi decoders;
and H.264 video codecs. From 1987 to 1989, he was with Hewlett-Packard,
Cupertino, CA, where he participated in the development of the processor for
a high-end minicomputer. In 1999, he joined Atheros Communications, Santa
Clara, CA, as an early employee and served as a core member of the team which
developed the first IEEE 802.11a (54 Mbps, 5 GHz) Wi-Fi wireless LAN solu-
tion. During the summer of 2006, he was a Visiting Professor in Intel’s Circuit
Research Lab.

Dr. Baas was a National Science Foundation Fellow from 1990 to 1993 and
a NASA Graduate Student Researcher Fellow from 1993 to 1996. He was a re-
cipient of the National Science Foundation CAREER Award in 2006 and the
Most Promising Engineer/Scientist Award by AISES in 2006. He is an Asso-
ciate Editor for the IEEE JOURNAL OF SOLID-STATE CIRCUITS and has served
as a member of the Technical Program Committee of the IEEE International
Conference on Computer Design (ICCD) in 2004, 2005, 2007, and 2008. He
also serves as a member of the Technical Advisory Board of an early stage tech-
nology company.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 14, 2009 at 07:00 from IEEE Xplore. Restrictions apply.

