A Complete Real-Time 802.11a Baseband Receiver Implemented on an Array of Programmable Processors

ACSSC 2008 – Pacific Grove, CA

Anh Tran, Dean Truong and Bevan Baas

VLSI Computation Lab, ECE Department, University of California - Davis

- Architecture of a 802.11a Digital Baseband Receiver
- k. ■ The Target Many-core Computational Platform
- n Implen ■ Implementation of the Receiver
- Results and Analysis
- Conclusion

- Architecture of a 802.11a Digital Baseband **Receiver**
- k. ■ The Target Many-core Computational Platform
- n Implen ■ Implementation of the Receiver
- Results and Analysis
- Conclusion

Architecture of a Complete 802.11a Digital Baseband Receiver

- \mathbb{R}^3 Three important features required for a practical receiver:
	- \Box Frame detection and timing synchronization
	- Carrier frequency offset (CFO) estimation and correction \Box
	- \Box Channel estimation and equalization

Frame Detection and Timing Synchronization

(*)T.M. Schmidl and D.C. Cox, "Robust frequency and timing synchronization for OFDM," *IEEE Transactions on* Communications, pp. 1613-1621, Dec. 1997

Frame Detection and Timing Synchronization

 $\overline{}$ Frame detection:

 $M(n)$ > Th_{det}

or:

or:

$$
|P(n)|^2 > Th_{\text{det}} \cdot Q(n)^2
$$

Timing synchronization:

 $M(n) < Th_{syn}$

 $| P(n) |^2 < Th_{syn} \cdot Q(n)^2$

CFO Estimation and Compensation

× CFO compensation: using CORDIC Rotation algorithm

(*) E. Sourour et al., "Frequency offset estimation and correction in the IEEE 802.11a WLAN," *IEEE Vehicular* Technology Conference, pp. 4923-4927, Sep. 2004.

Channel Estimation and Equalization

- \blacksquare Channel coefficients:
- \mathbb{R}^3 Channel equalization:

ints:
$$
H(k) = \frac{1}{2} \cdot \frac{\widetilde{L}_1(k) + \widetilde{L}_2(k)}{\widehat{L}(k)}
$$

\ntion:
$$
\widehat{S}_m(k) = \frac{\widetilde{S}_m(k)}{H(k)}
$$

\n=
$$
\widetilde{S}_m(k) \cdot C(k)
$$

\nwhere:
$$
C(k) = \frac{1}{H(k)} = \frac{2\widehat{L}(k)}{\widetilde{L}_1(k) + \widetilde{L}_2(k)}
$$

- Architecture of the 802.11a Digital Baseband Receiver
- k. ■ The Target Many-core Computational Platform
- n Implen ■ Implementation of the Receiver
- Results and Analysis
- Conclusion

The Target Computational Platform

- ×. Key features (*):
	- \Box 164 fine-grained processors
	- \Box 3 configurable accelerators:
		- ٠ FFT, Viterbi and Motion Estimation
	- \Box 3 big shared memory modules
	- \Box Circuit-switched network
	- \Box Max. frequency of 1.2 GHz at 1.3 V
	- \Box Fabricated in ST 65 nm process

(*) D. Truong, et at., " A 167-processor 65 nm Computational Platform with Per-Processor Dynamic Supply Voltage and Dynamic Clock Frequency Scaling}," *VLSI Circuits Symposium*, Jun. 2008.

- Architecture of the 802.11a Digital Baseband Receiver
- k. ■ The Target Many-core Computational Platform
- **u Implen Implementation of the Receiver**
- Results and Analysis
- Conclusion

Implementation of the Receiver

- P. Implement whole system using Matlab
- **Program each function on one/many processors using the AsAP** P. assembly language
- Г. Map whole system on the AsAP platform
- P. Compare results with Matlab

- Architecture of the 802.11a Digital Baseband Receiver
- k. ■ The Target Many-core Computational Platform
- n Implen ■ Implementation of the Receiver
- **Results and Analysis**
- Conclusion

Throughput Evaluation

- m. Processors on the critical data path determines the receiver's throughput
- $\mathcal{L}_{\mathcal{A}}$ Each processor operates as one stage of a pipeline
- The CORDIC Rotation $\mathcal{L}_{\mathcal{A}}$ processor is system bottleneck
- One OFDM symbol is $\mathcal{L}_{\mathcal{A}}$ processed by each processor in 15120 cycles
- To achieve 54 Mbps \mathbb{R}^2 throughput, all processors must run at 3.78 GHz

Throughput Improvement

 $\mathcal{L}_{\mathcal{A}}$

× Using 15 processors to pipeline the CORDIC algorithm:

Throughput Improvement

- $\mathcal{L}_{\mathcal{A}}$ When using 7 CORDIC processors in parallel, the Viterbi Decoder becomes bottleneck
- No further improvement is $\mathcal{L}_{\mathcal{A}}$ possible by software
- Time (cycles) Now, each processor $\mathcal{L}_{\mathcal{A}}$ processes one OFDM symbol in 2376 cycles
- The receiver obtains 54 Mbps $\mathcal{C}^{\mathcal{A}}$ throughput at 590 MHz

Comparison

- \mathcal{L} Our receiver sustains 110 Mbps throughput at max frequency of 1.2 GHz
- n. It is a complete one and $1.5x - 23x$ faster than others

- Architecture of the 802.11a Digital Baseband Receiver
- k. ■ The Target Many-core Computational Platform
- n Implen ■ Implementation of the Receiver
- Results and Analysis
- Conclusion

Summary

■ Fine-grained many-core platform

- \Box Task-level parallelism
- **n** Highly flexible and scalable \Box
- \Box Many ways to speedup an application
- A complete 802.11a baseband receiver
	- \Box Supports all necessary features of a real receiver
	- \Box Sustain real-time 54 Mbps throughput at 590 MHz
	- \Box Can sustain up to 110 Mbps if running at maximum frequency
	- \Box Many times faster than other related works

\blacksquare Future work

- \Box Improve accelerators
- \Box Upgrade the platform for mapping more wireless applications

Acknowledgments

- \blacksquare Intellasys Inc.
- \blacksquare a VEF fellowship
- SRC GRC Grant 1598 and CSR Grant 1659
- ST Microelectronics
- UC Micro
- NSF Grant 0430090 and CAREER Award 0546907
- $\overline{}$ Intel
- S Machines

THANK YOU !

Compute Bit Rate and Frame Length

