A Complete Real-Time 802.11a Baseband Receiver Implemented on an Array of Programmable Processors

ACSSC 2008 – Pacific Grove, CA

Anh Tran, Dean Truong and Bevan Baas

VLSI Computation Lab, ECE Department, University of California - Davis

- Architecture of a 802.11a Digital Baseband Receiver
- The Target Many-core Computational Platform
- Implementation of the Receiver
- Results and Analysis
- Conclusion

- Architecture of a 802.11a Digital Baseband Receiver
- The Target Many-core Computational Platform
- Implementation of the Receiver
- Results and Analysis
- Conclusion

Architecture of a Complete 802.11a Digital Baseband Receiver

- Three important features required for a practical receiver:
 - Frame detection and timing synchronization
 - Carrier frequency offset (CFO) estimation and correction
 - Channel estimation and equalization

Frame Detection and Timing Synchronization

Timing metric (*): 1.4 SNR = 20 dB1.2 $M(n) = \frac{|P(n)|^2}{Q(n)^2}$ Th_{det} 0.8 (u)M where: 0.6 $P(n) = \sum_{k=0}^{15} r(n+k+16).r^{*}(n+k)$ 0.4 Th_{syn} 0.2 $Q(n) = \sum_{k=1}^{15} |r(n+k)|^2$ 50 100 150 200 250 -350 n index n k=0

(*)T.M. Schmidl and D.C. Cox, "Robust frequency and timing synchronization for OFDM," *IEEE Transactions on Communications*, pp. 1613-1621, Dec. 1997

Frame Detection and Timing Synchronization

	10 short-training symbols								ls		2 long-training symbols with GI2				I SIGNAL Symbol		I Many OFDM data		
	s	S	s	S	s	s	s	S	s	s	GI2	L	L	GI	SIGNAL	GI	Data		
		8 µs				8 μs				4 µs	N x 4 μs								

Frame detection:

 $M(n) > Th_{det}$

or:

or:

$$|P(n)|^2 > Th_{det} \cdot Q(n)^2$$

Timing synchronization:

 $M(n) < Th_{syn}$

 $|P(n)|^2 < Th_{syn} \cdot Q(n)^2$

CFO Estimation and Compensation

CFO compensation: using CORDIC Rotation algorithm

(*) E. Sourour et al., "Frequency offset estimation and correction in the IEEE 802.11a WLAN," *IEEE Vehicular Technology Conference*, pp. 4923-4927, Sep. 2004.

Channel Estimation and Equalization

	10 short-training symbols									2 long-training symbols with GI2				I SIGNAL Symbol		I Many OFDM data		
s	S	s	s	s	s	s	s	s	s	GI2	L	L	GI	SIGNAL	GI	Data		
	8 µs !			8 µs				4 µs	N x 4 μs									

- Channel coefficients:
- Channel equalization:

nts:
$$H(k) = \frac{1}{2} \cdot \frac{\widetilde{L_{1}(k)} + \widetilde{L_{2}(k)}}{\widehat{L}(k)}$$

tion:
$$\widehat{S_{m}}(k) = \frac{\widetilde{S_{m}(k)}}{H(k)}$$
$$= \widetilde{S_{m}}(k) \cdot C(k)$$
where:
$$C(k) = \frac{1}{H(k)} = \frac{2\widehat{L}(k)}{\widetilde{L_{1}(k)} + \widetilde{L_{2}}(k)}$$

- Architecture of the 802.11a Digital Baseband Receiver
- The Target Many-core Computational Platform
- Implementation of the Receiver
- Results and Analysis
- Conclusion

The Target Computational Platform

- Key features (*):
 - 164 fine-grained processors
 - 3 configurable accelerators:
 - FFT, Viterbi and Motion Estimation
 - 3 big shared memory modules
 - Circuit-switched network
 - Max. frequency of 1.2 GHz at 1.3 V
 - Fabricated in ST 65 nm process

(*) D. Truong, et at., " A 167-processor 65 nm Computational Platform with Per-Processor Dynamic Supply Voltage and Dynamic Clock Frequency Scaling}," *VLSI Circuits Symposium*, Jun. 2008.

- Architecture of the 802.11a Digital Baseband Receiver
- The Target Many-core Computational Platform
- Implementation of the Receiver
- Results and Analysis
- Conclusion

Implementation of the Receiver

- Implement whole system using Matlab
- Program each function on one/many processors using the AsAP assembly language
- Map whole system on the AsAP platform
- Compare results with Matlab

- Architecture of the 802.11a Digital Baseband Receiver
- The Target Many-core Computational Platform
- Implementation of the Receiver
- Results and Analysis
- Conclusion

Throughput Evaluation

- Processors on the critical data path determines the receiver's throughput
- Each processor operates as one stage of a pipeline
- The CORDIC Rotation processor is system bottleneck
- One OFDM symbol is processed by each processor in 15120 cycles
- To achieve 54 Mbps throughput, all processors must run at 3.78 GHz

Throughput Improvement

Using 15 processors to pipeline the CORDIC algorithm:

each groups of 3 samples that will be rotated by 3 CORDIC processors

Throughput Improvement

- When using 7 CORDIC processors in parallel, the Viterbi Decoder becomes bottleneck
- No further improvement is possible by software
- Time (cycles) Now, each processor processes one OFDM symbol in 2376 cycles
- The receiver obtains 54 Mbps throughput at 590 MHz

Comparison

Work by	Platform	Tech. (nm)	Max Freq. (MHz)	Fram. Det. & Syn.	CFO Est. & Comp.	Chan. Est. & Eq.	Throug hput (Mbps)	Scaled to 65 nm
Tariq	TI 62x	180	200	-	-	\checkmark	1.7	4.7
Bakker	Strong ARM	350	130		\checkmark	-	4.3	23.2
Yung	CoPro.	180	260	-	-	\checkmark	12	33.2
Lin	SODA	180	400	\checkmark	-	\checkmark	24	66.4
Sereni	TI 64x	130	600	\checkmark	\checkmark	\checkmark	36	72
Akabane	SDR	90	280	\checkmark	-	\checkmark	54	74.7
this work	AsAP2	65	1200				110	110

- Our receiver sustains 110 Mbps throughput at max frequency of 1.2 GHz
- It is a complete one and 1.5x 23x faster than others

- Architecture of the 802.11a Digital Baseband Receiver
- The Target Many-core Computational Platform
- Implementation of the Receiver
- Results and Analysis
- Conclusion

Summary

- Fine-grained many-core platform
 - Task-level parallelism
 - Highly flexible and scalable
 - Many ways to speedup an application
- A complete 802.11a baseband receiver
 - Supports all necessary features of a real receiver
 - Sustain real-time 54 Mbps throughput at 590 MHz
 - Can sustain up to 110 Mbps if running at maximum frequency
 - Many times faster than other related works
- Future work
 - Improve accelerators
 - Upgrade the platform for mapping more wireless applications

Acknowledgments

- Intellasys Inc.
- a VEF fellowship
- SRC GRC Grant 1598 and CSR Grant 1659
- ST Microelectronics
- UC Micro
- NSF Grant 0430090 and CAREER Award 0546907
- Intel
- S Machines

THANK YOU !

Compute Bit Rate and Frame Length

