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Architecture of a Complete 802.11a 

Digital Baseband Receiver

� Three important features required for a practical receiver:
� Frame detection and timing synchronization

� Carrier frequency offset (CFO) estimation and correction

� Channel estimation and equalization



Frame Detection and Timing Synchronization

� Timing metric (*):
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(*)T.M. Schmidl and D.C. Cox, ”Robust frequency and timing synchronization for OFDM,” IEEE Transactions on 

Communications, pp. 1613-1621, Dec. 1997

SNR = 20 dB

where:



Frame Detection and Timing Synchronization
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� Frame detection:

�Timing synchronization:



CFO Estimation and Compensation

� Offset angle (*):

� CFO compensation: using CORDIC Rotation algorithm
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(*) E. Sourour et al., “Frequency offset estimation and correction in the IEEE 802.11a WLAN,” IEEE Vehicular 

Technology Conference, pp. 4923-4927, Sep. 2004.
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Channel Estimation and Equalization

� Channel coefficients:

� Channel equalization:
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P. Hung et al., “Fast division algorithm with a small lookup table,” IEEE Asilomar CSSC, pp. 1465-1468, Oct. 1999.
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The Target Computational Platform
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� Key features (*):

� 164 fine-grained processors

� 3 configurable accelerators:

� FFT, Viterbi and Motion Estimation

� 3 big shared memory modules

� Circuit-switched network

� Max. frequency of 1.2 GHz at 1.3 V

� Fabricated in ST 65 nm process

(*) D. Truong, et at., ” A 167-processor 65 nm Computational Platform with Per-Processor Dynamic Supply Voltage 

and Dynamic Clock Frequency Scaling},” VLSI Circuits Symposium, Jun. 2008.
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Implementation of the Receiver

� Implement whole system using Matlab

� Program each function on one/many processors using the AsAP
assembly language

� Map whole system on the AsAP platform

� Compare results with Matlab



The Receiver Operates Obeying a FSM

� Compute P(n) and Q(n)

� Frame is detected if
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The Receiver Operates Obeying a FSM

Frame 
Detection

Timing 
Synchronization
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Symbols 
Processing

Begin

� Compute P(n) and Q(n)

� After frame is detected

� Timing is synchronized at 
first sample that satisfies
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The Receiver Operates Obeying a FSM

Frame 
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Begin

� Compute offset vector
using two long-training 
symbols

� Compute offset angle α
using CORDIC Angle 
algorithm



The Receiver Operates Obeying a FSM
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� Compute C(n) from two 
long-training symbols in the 
frequency domain (after 
FFT)



The Receiver Operates Obeying a FSM

Frame 
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� Includes all processors on the 
critical data path

� The OFDM SIGNAL symbol is 
used to decide the modulation 
scheme and code rate for all 
DATA symbols
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Throughput Evaluation

� Processors on the critical 
data path determines the 
receiver’s throughput

� Each processor operates as 
one stage of a pipeline

� The CORDIC Rotation 
processor is system 
bottleneck

� One OFDM symbol is 
processed by each processor 
in 15120 cycles

� To achieve 54 Mbps 
throughput, all processors 
must run at 3.78 GHz



Throughput Improvement

τ τ τ

� Using 15 processors to pipeline the CORDIC algorithm:

� Using many CORDIC 

processors in parallel:

� Method 1: 2 N 
processors to support 
N CORDIC processors

� Method 2: Only N 
processors



Throughput Improvement

� When using 7 CORDIC 
processors in parallel, the 
Viterbi Decoder becomes 
bottleneck

� No further improvement is 
possible by software

� Now, each processor 
processes one OFDM symbol 
in 2376 cycles

� The receiver obtains 54 Mbps 
throughput at 590 MHz
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� Our receiver sustains 110 Mbps throughput at max frequency of 1.2 GHz

� It is a complete one and 1.5x – 23x faster than others
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Summary

� Fine-grained many-core platform

� Task-level parallelism

� Highly flexible and scalable

� Many ways to speedup an application

� A complete 802.11a baseband receiver

� Supports all necessary features of a real receiver

� Sustain real-time 54 Mbps throughput at 590 MHz

� Can sustain up to 110 Mbps if running at maximum frequency

� Many times faster than other related works

� Future work

� Improve accelerators

� Upgrade the platform for mapping more wireless applications
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