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Why Chip Multiprocessors

« Chip Multiprocessor challenges

— Traditional high performance techniques are less
practical (e.g., increased clock frequency)

— Power dissipation is a key constraint
— Global wires scale poorly in advanced technologies

o Solution: chip multiprocessors
— Parallel computation for high performance

— Reduce the clock freq. and voltage when full rate
computation is not needed for high energy efficiency

— Constrain wires no longer than the size of one core



Interconnect in Chip Multiprocessors
vs. Interconnect in Multiple Chips

« Chip multiprocessors have relatively limited area
resources for interconnect circuitry

— Try to reduce the area of buffer with little reduction of
the interconnect capability
« Chip multiprocessors have relatively abundant
wire resources for inter-processor connection

— Try to use more wire resources to increase the
Interconnect capability
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 Motivation

 Low-area asymmetric interconnect

architecture

— Traditional dynamic Network-On-Chip
— Statically configured Network-On-Chip
— Proposed asymmetric architecture

* High performance multiple-link architecture



Background: Traditional Network on
Chip (NoC) using Dynamic Routing

e Advantage: flexible
« Disadvantage: high area and power cost
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Background: Static Nearest

Neighbor Interconnect Architecture

e Low area cost
— One buffer per processor, not four

* High latency for long distance communication
— Data passes through each intermediate processor
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Asymmetric Data Traffic In
Inter-processor Communication

Data traffic of routers in a

9-processor JPEG encoder
« 80% of traffic goes to

processor core, 20%
passes by core
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Asymmetrically-Buffered
Interconnect Architecture

e Large buffer only for the processing core
o Support flexible direct switch/route interconnect
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 High performance multiple-link
architecture



Design Option Exploration

* Choose static routing
architecture
— Much smaller area and

power required

« Assign two buffers
(ports) for each
processing core
— Natural fit with 2-input,

1-output instructions
(e.g., C=A+B)
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Single Link vs. Multiple Links

 Why consider multi-link
architectures?
— Single link might be
iInefficient in some cases
— There are many link/wire
resources on chip
* Fully connected multi-
Ink architectures have
nuge numbers of long
wires

— Alternative simplified
architectures are needed
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Architectures with Multiple Links

Two links per edge

Three links per edge

Four links per edge
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Area and Speed of Seven Proposed
Network Architectures

All seven
architectures
Implemented in
hardware

Four-link
architectures
(types 6 and 7)
require almost
25% more area

Clock rates for
all are within
approx. 2%
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Latency (clock cycles)

Comparing Routing Latency using
Communication Models

« All architectures have the same routing latency for the
one-one, one-all, and all-all communication

» Different types of architectures behave differently for the
all-one communication

250 T T T T T T T
..... Typel
_,(_%EE; Routing latencies for | P 1
—©~Type3|| all-one communication R R R
2007 EI Teeg|| withnxnprocessors |« Type2/3 > _:-
150 Type4/5 = ~ _‘.
D
- .
100 - Example all-one linear
communication for six
sol processors

2 3 4 5 6 7 8 9 10
The size of array (n x n)



Summary

 Asymmetric buffer allocation topology uses 1 or 2
large buffers instead of 4 large buffers to support
long distance communication

— Provides 2 to 4 times area savings with little
performance reduction
e Using 2 or 3 links per edge achieves good
area/performance tradeoffs for chip
multiprocessors containing simple single-issue
Processors

— Provides 2 to 3 times higher all-one communication
capacity with 5%-10% increased area
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