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• Motivation
– Why chip multiprocessors
– The difference between chip-multiprocessor 

interconnect and multiple-chip interconnect
• Low-area asymmetric interconnect architecture
• High performance multiple-link architecture



Why Chip Multiprocessors

• Chip Multiprocessor challenges
– Traditional high performance techniques are less 

practical (e.g., increased clock frequency)
– Power dissipation is a key constraint
– Global wires scale poorly in advanced technologies

• Solution: chip multiprocessors
– Parallel computation for high performance
– Reduce the clock freq. and voltage when full rate 

computation is not needed for high energy efficiency
– Constrain wires no longer than the size of one core



Interconnect in Chip Multiprocessors 
vs. Interconnect in Multiple Chips

• Chip multiprocessors have relatively limited area 
resources for interconnect circuitry
– Try to reduce the area of buffer with little reduction of 

the interconnect capability
• Chip multiprocessors have relatively abundant 

wire resources for inter-processor connection 
– Try to use more wire resources to increase the 

interconnect capability



Outline

• Motivation
• Low-area asymmetric interconnect 

architecture
– Traditional dynamic Network-On-Chip
– Statically configured Network-On-Chip
– Proposed asymmetric architecture

• High performance multiple-link architecture



Background: Traditional Network on 
Chip (NoC) using Dynamic Routing

• Advantage: flexible
• Disadvantage: high area and power cost
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Background: Static Nearest 
Neighbor Interconnect Architecture

bu
ffe

r

north in

west
in

south in

east
in

core

north out

south out

west
out

east
out

• Low area cost
– One buffer per processor, not four 

• High latency for long distance communication
– Data passes through each intermediate processor



Asymmetric Data Traffic in 
Inter-processor Communication

• Data traffic of routers in a 
9-processor JPEG encoder

• 80% of traffic goes to 
processor core, 20% 
passes by core
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Asymmetrically-Buffered 
Interconnect Architecture
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• Large buffer only for the processing core
• Support flexible direct switch/route interconnect
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Outline

• Motivation
• Low-area asymmetric interconnect architecture
• High performance multiple-link 

architecture



Design Option Exploration

• Choose static routing 
architecture 
– Much smaller area and 

power required
• Assign two buffers 

(ports) for each 
processing core
– Natural fit with 2-input, 

1-output instructions 
(e.g., C=A+B)
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Single Link vs. Multiple Links

• Why consider multi-link 
architectures?
– Single link might be 

inefficient in some cases
– There are many link/wire 

resources on chip
• Fully connected multi-

link architectures have 
huge numbers of long 
wires
– Alternative simplified 

architectures are needed
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Architectures with Multiple Links
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Area and Speed of Seven Proposed 
Network Architectures

• All seven 
architectures 
implemented in 
hardware

• Four-link 
architectures 
(types 6 and 7) 
require almost  
25% more area

• Clock rates for 
all are within 
approx. 2% 
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Comparing Routing Latency using 
Communication Models

• All architectures have the same routing latency for the 
one→one, one→all, and all→all communication

• Different types of architectures behave differently for the 
all-one communication
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Summary

• Asymmetric buffer allocation topology uses 1 or 2 
large buffers instead of 4 large buffers to support 
long distance communication
– Provides 2 to 4 times area savings with little 

performance reduction
• Using 2 or 3 links per edge achieves good 

area/performance tradeoffs for chip 
multiprocessors containing simple single-issue 
processors
– Provides 2 to 3 times higher all→one communication 

capacity with 5%-10% increased area
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