Dynamic Voltage and Frequency Scaling Circuits with Two Supply Voltages

ECE Department, University of California, Davis

Wayne H. Cheng and Bevan M. Baas

LSI COMPUTATION LABORATORY, UC DAVIS

Outline

Background and Motivation

- Implementation
- Results

DVFS Background

 $\begin{array}{ll} P_{dyn} = \alpha CVdd^{2}f & Vdd \downarrow f \downarrow => P_{dyn,leak} \downarrow \\ E = CVdd^{2} & Vdd \downarrow => E \downarrow \\ t_{d} \approx CVdd/(Vdd-Vt)^{\alpha} & Vdd \downarrow => t_{d} \uparrow f_{max} \downarrow \end{array}$

Reducing supply voltage:

- Reduces power and energy dissipation
- Reduces maximum clock frequency due to increased gate delay

Other DVFS Schemes

Scheme1: Off-chip DC-DC Converter

Scheme 2: On-chip DC-DC Converter

Presented DVFS Scheme

- Fine grain voltage scaling
 - Maximum power/energy reduction with minimum performance overhead
- Small area overhead by using an off-chip DC-DC converter, and switching between voltages on-chip

Outline

- Background and Motivation
- Implementation
- Results

Implementation Schematic

- Voltage scaling with 2 discrete voltage levels
- Supply switching with PMOS power gates
- Automated DVFS based on workload
- Wrapper powered by always on power supply VLSI COMPUTATION LABORATORY, UC DAVIS

Power Gate Sizing

$$V_{PG} = I_{PG}R_{PG}$$

$$R_{PG} \sim L/W$$

$$W/L \uparrow V_{PG} \downarrow t_d \downarrow f_{max} \uparrow$$

$$t_d \approx CVdd/(Vdd - V_{PG} - Vt)^{\alpha}$$

Voltage drop can be reduced by making W/L as large as possible \rightarrow done by adding parallel power gates

Supply Switching Scheme

• Supply grid noise:

- Gradually switch
 between power supplies
- Shorting between power supplies:
 - Shut both power supplies off and wait for some time before switching
- Data corruption:
 - Stall the processor core before switching between power supplies

Dynamic Run-time Supply Switching Circuit

Physical Implementation

- Power gates are positioned along vertical power stripes
- Core power is supplied with horizontal power stripes

Outline

- Background and Motivation
- Implementation
- Results

Implementation Results

- Implemented in 65nm CMOS technology
- DVFS circuit area is 12% of AsAP processor's core area
- 66% of the DVFS circuit area is power gates and decoupling capacitors
- Maximum power consumption of DVFS logic is 4% of AsAP processor core's power

Energy Consumption Metric

- $P_{dyn} = \alpha C V dd^2 f$
- $E = CVdd^2$
- Energy reduction is possible only with voltage scaling
- $EDP = E^* t_d$

 Energy delay product measures the effect of increased delay with DVFS

Measurement of Relative Energy Delay Product

$$EDP_{rel} = \left(\frac{\beta V dd_{Low}^2 + (1 - \beta) V dd_{High}^2}{V dd_{High}^2}\right) \left(\frac{t_{dvfs}}{t_{orig}}\right)$$

- β is the fraction of time operating on the lower voltage
- t_{dvfs} is the total run time with DVFS
- t_{orig} is the total run time without DVFS.

9 Processor JPEG Application

- Lower minimum
 frequency → Increase in
 time on lower supply
- *EDP* decreases as the minimum frequency decreases up until 13 MHz
- *EDP* increases as the performance overhead outweighs the energy savings

Vddhigh = 1.3V, *Vddlow* = 0.8V Maximum Frequency = 1.05 GHz

Various Applications

- *EDP* dependent on workload variations
- Increase in workload variation \rightarrow Increase in switching between supplies \rightarrow Increase in performance overhead \rightarrow Increase in *EDP*

Vddhigh = 1.3V, *Vddlow* = 0.8V Maximum Frequency = 1.05 GHz

Summary

- DVFS with 2 supply voltages
- Power gates sized to reduce perf. loss
- Robust supply switching circuit
- EDP is reduced by 48% on a 9 processor JPEG application
- Functional in silicon at 65nm node

Acknowledgements

• Funding

- Intel Corporation
- UC Micro
- NSF Grant No. 0430090
- CAREER award 0546907
- SRC GRC Grant 1598,
- IntellaSys Corporation
- S Machines
- Uniquify Inc.
- Special thanks
 - Members of the VCL, R. Krishnamurthy M. Anders, and S. Mathew
 - ST Microelectronics and Artisan

