
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 10, OCTOBER 2007 1125

A Scalable Dual-Clock FIFO for Data Transfers
Between Arbitrary and Haltable Clock Domains

Ryan W. Apperson, Zhiyi Yu, Michael J. Meeuwsen, Tinoosh Mohsenin, and Bevan M. Baas, Member, IEEE

Abstract—A robust, scalable, and power efficient dual-clock
first-input first-out (FIFO) architecture which is useful for
transferring data between modules operating in different clock
domains is presented. The architecture supports correct opera-
tion in applications where multiple clock cycles of latency exist
between the data producer, FIFO, and the data consumer; and
with arbitrary clock frequency changes, halting, and restarting in
either or both clock domains. The architecture is demonstrated in
both a 0.18- m CMOS full-custom design and a 0.18- m CMOS
standard cell design used in a globally asynchronous locally
synchronous array processor. It achieves 580-MHz operation and
10.3-mW power dissipation while performing simultaneous FIFO
READ and WRITE operations at 1.8 V.

Index Terms—Asynchronous, dual-clock first-input first-output
(FIFO), scalable, VLSI.

I. INTRODUCTION

EVER shrinking transistor sizes have enabled the integra-
tion of a greater number of components onto a single

chip—thus making systems-on-a-chip (SoCs) with many com-
plex modules a common design solution. Unfortunately, global
interconnect scaling has not been able to maintain the same
performance increases [1], causing the timing of high speed
global clock signals to become a major concern in system
design. This has resulted in clock distribution circuits requiring
increasing circuit resources and design time.

Nearly all existing digital systems utilize synchronous design
techniques which normally require an accurate and highly syn-
chronized global clock reference to be supplied to all areas of
the circuit. One solution for coping with the clock distribution
problem is to utilize self-timed or asynchronous circuits, which
do not have a global timing reference signal. However, the lack
of mature design tools and the reluctance of industry to incur the
cost and risk of moving away from successful synchronous de-
sign flows have limited the acceptance of these design styles [2].

An alternative approach is to create systems that mix asyn-
chronous and synchronous design techniques using a globally
asynchronous locally synchronous (GALS) [3] design ap-
proach. In this paradigm, blocks are built using traditional

Manuscript received September 2, 2006; revised March 9, 2007. This work
was supported in part by Intel Corporation, by University of California (UC)
Micro, by the National Science Foundation under Grant 0430090, by MOSIS,
and by a University of California at Davis (UCD) Faculty Research Grant.

R. W. Apperson is with Boston Scientific CRM Division, Redmond, WA
98052 USA.

Z. Yu, T. Mohsenin, and B. M. Baas are with the Electrical and Computer En-
gineering Department, University of California, Davis, CA 95616 USA (e-mail:
zhyyu@ece.ucdavis.edu; bbaas@ucdavis.edu).

M. J. Meeuwsen is with the Digital Enterprise Group, Intel, Hillsboro, OR
97124 USA.

Digital Object Identifier 10.1109/TVLSI.2007.903938

TABLE I
COMPARISON OF VARIOUS DUAL-CLOCK FIFO DESIGNS

synchronous design techniques, but these synchronous blocks
do not share global timing information and are asynchronous
with respect to each other. While it is often convenient to divide
a system into multiple subcomponents, it is unlikely that these
components will operate autonomously. Accordingly, data
transfer is required between local synchronous blocks. Accom-
plishing this task reliably and efficiently are key challenges in
GALS designs.

One structure that is particularly well-suited for this task is the
dual-clock first-input first-output (FIFO) or mixed-clock FIFO.
The basic FIFO architecture must be modified to accommodate
two independent clock inputs. Data passing through the FIFO
module will enter with reference to one clock and exit with ref-
erence to the other clock. In this way, data can be passed safely
between independent clock domains. Other important applica-
tions of dual-clock FIFOs include cases where data are trans-
ferred between blocks in clock domains that are not fully asyn-
chronous but yet unsynchronized.

The presented design enables the transfer of data between
modules from completely unrelated clock domains with
nonzero cycles of latency between the producer and consumer.
It is particularly useful in applications where throughput rather
than latency is critical—such as in many DSP applications.

A. Related Work

Dally and Poulton [4] and Balch [5] present high-level views
of dual-clock FIFO structures, but details of dual-clock FIFO
designs are lacking in the literature.

Fully asynchronous FIFOs often appear in the literature [6],
[7], but these designs do not utilize clocks, and therefore, are
difficult to apply in cases of synchronizing data between clock
domains.

Table I lists several dual-clock FIFO designs. In the work
presented by Greenstreet [8], the clocks are derived from the
same base frequency, but may have an arbitrary phase differ-
ence—which is slightly more general than strict mesochronous.

1063-8210/$25.00 © 2007 IEEE

1126 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 10, OCTOBER 2007

Fig. 1. Linear shift-register FIFO block diagram.

The FIFO designed by Chakraborty et al. requires time to de-
velop a frequency difference estimate before transferring data, as
well as usage of different circuits depending on which clock do-
main has the higher rate [9]. Siezovic [10] presents a linear FIFO
architecture for data synchronization, which has the limitations
presented in Section II-A. An alternative FIFO architecture for
use in some dual-clock applications is presented by Chelcea and
Nowick [11]. The design uses independent registers as storage
elements, and each register has its own and signals.
This scheme reduces the latency when the FIFO size is small,
but is less suitable when the FIFO size is large.

This work uses a dual-port SRAM as the storage element
which increases memory density and improves FIFO size scal-
ability [13]. Compared with the most similar previous work
[12], this design includes configurable logic to make it suitable
for many environments, and also enables complete oscillator
halting during idle times to achieve high energy efficiency. The
proposed FIFO design has been fabricated in what we believe is
the first VLSI implementation of a GALS array processor [14].

B. Paper Outline

Section II introduces key structures and parameters for all
styles of FIFO buffers by analyzing the single-clock case.
Section III discusses synchronization and metastability issues.
Section IV describes the proposed design of an efficient and ro-
bust dual-clock FIFO architecture. Finally, Section V describes
a specific hardware implementation of the dual-clock FIFO
architecture.

II. SINGLE-CLOCK FIFOS

To best address dual-clock FIFO issues, we first consider the
case of a single-clock synchronous FIFO. This section covers
these fundamental FIFO principles.

A. Linear FIFOs

The simplest FIFO structure consists of a linear chain of
latches or flip-flops connected serially as a shift register. Data is
shifted into one end of the chain and propagates through every
memory element until it reaches the end as shown in Fig. 1.
This FIFO is synchronous since all movement of data requires
a common clock.

Alternatively, a linear elastic FIFO uses control signal hand-
shakes to propagate data from location to location. Unlike the
synchronous case, a datum can propagate through the FIFO
without any new items entering. This results in the FIFO being
at various degrees of fullness, hence, the name elastic. FIFOs
of this nature work well with asynchronous designs and many
examples of these can be found in the literature [15], [16]. A
simple example of this type of FIFO is shown in Fig. 2.

Fig. 2. Linear elastic FIFO block diagram.

Fig. 3. Circular FIFO block diagram.

Fig. 4. Typical WRITE and READ address pointer scheme for a circular FIFO
and its full definition when rd ptr = wr ptr.

Drawbacks of these approaches become evident with large
FIFO sizes, and include high latency, low-power efficiency, and
low memory density. They do, however, work well for small
FIFO sizes. High latency and power dissipation arise from the
fact that each datum must flow through every element of the
FIFO. Additionally, in the synchronous case every memory ele-
ment requires an individual clock signal that impedes scalability
and increases power consumption. Latches and flip-flops also
have large circuit areas per bit.

Many extensions of this basic FIFO structure have been pro-
posed with the key differences being the path by which data
travels through the structure, resulting in lower latencies and
improved energy efficiency. Examples of these variant struc-
tures are square FIFOs, parallel FIFOs, tree FIFOs, and folded
FIFOs [16].

B. Circular FIFOs

A sometimes more efficient FIFO construction is to create a
circular buffer using an array of arbitrarily addressable memory
elements enabling low latencies and high energy efficiencies
[17], as shown in Fig. 3. Scalability is dramatically improved
due to the fact that clock and data signals are not strongly af-
fected by the FIFO size, and by higher memory densities.

Tracking valid data within an -word FIFO is typically
accomplished by maintaining READ and WRITE address pointers
which indicate the beginning and end of the valid data range
in the memory—as shown in Fig. 4. Using the READ and

APPERSON et al.: SCALABLE DUAL-CLOCK FIFO FOR DATA TRANSFERS 1127

WRITE pointers alone to define the empty and full conditions
presents problems in representing all possible states because
the case where is ambiguous. A common
solution is to increase the size of the address pointers by one
bit. Empty detection is accomplished by an equivalence test of
the address pointer, and full detection is accomplished by an
equivalence test of the lower bits and an XOR of the
address pointers’ MSBs. For correct operation, the following
inequalities must hold at all times:

(1)

III. SYNCHRONIZATION

A fundamental problem in systems lacking a single global
timing reference is synchronization. In general, the timing re-
lationship between a signal and a clock can be cast into one
of five categories [4], [18]: 1) synchronous; 2) mesochronous,
where the signal is the same frequency as the clock, but has a
constant phase difference; 3) plesiochronous where the signal
is at a frequency close, but not identical to the clock frequency,
which implies a varying phase difference; 4) periodic, where the
signal has an unknown relationship to the clock, but is periodic
in nature; and 5) asynchronous, where the signal is completely
unrelated to the clock and signal transitions are arbitrary.

A. Metastability

Metastability is a fundamental problem present when inter-
facing asynchronous blocks [4] and is caused by registers not
receiving a stable input signal near the active edge of the clock
signal. Synchronization methods are used to avoid or reduce the
probability of metastability. An approximation for modeling the
mean time between failures (MTBF) is shown in (2) [19], where

is the clock frequency, is the input data event frequency,
is the allowed settling time before sampling, is the expo-

nential time constant of the metastability decay rate, and is
the asymptotic width of the time aperture in which the device
can enter the metastable state, normalized to a response time of
zero [20]

(2)

B. Asynchronous Synchronization Strategies

Fully asynchronous signals are the most difficult to synchro-
nize since no information is available regarding timing of the
signals. Solutions to synchronize asynchronous signals fall into
one of two categories: 1) increasing time for resolution and
2) clock pausing [19].

One of the most basic synchronizers is the two flip-flop syn-
chronizer [4]. Extensions of this idea are numerous, and vari-
ations of the scheme generally tradeoff increased area and/or
latency for a lower MTBF. These schemes do not eliminate the
probability of a metastable event; they only reduce it.

The second category of solutions uses pausible clocks [3],
[21], [22]. The main benefit of using pausible clocks is that it
can reduce the probability of synchronization failure to zero.
However, these solutions also require that each module’s clock

Fig. 5. (top) Sampling of a multibit transition word and (bottom) a single-bit
transition word.

can be locally controlled. Also, in cases where arbiters are used
to resolve asynchronous conflicts, the system must be able to
tolerate nondeterministic delays. In general, when the clock is
paused the entire system is frozen and must wait for arbitration
to complete before any work can be done. This can be costly and
complex, especially when interfacing to multiple asynchronous
signals.

C. Synchronizing Multibit Words

Sampling multibit words introduces additional problems be-
yond metastable sampling circuits. Real systems have varying
amounts of delay per wire and therefore nonuniform timing per
bit. Every bit within each word can independently take on the
old value or the new value—after a sufficient metastability res-
olution period—possibly producing incorrect results.

A solution to this problem is to allow only single-bit tran-
sitions within words, if possible. In that case, only one bit in
each word has an unpredictable resolution value. One resolu-
tion value results in the previous word and the other resolution
value results in the new word—no erroneous words are possible!
In the worst case, only one bit is metastable. Examples of these
cases are illustrated in Fig. 5.

Binary numbers increasing by one and mapped to gray codes
exhibit this property. Note that correct operation holds regard-
less of the relative frequencies of the input signal and the re-
ceiving clock. This property is a key link in the design of the
proposed dual-clock FIFO.

IV. PROPOSED DUAL-CLOCK FIFO ARCHITECTURE

This section describes a dual-clock FIFO architecture which
supports data transfer across two clock domains of completely
arbitrary phase and frequency. The haltable clock logic, con-
figurable source synchronization, delay cell, and reserve space
architecture are also described.

A. Overview of the Proposed Dual-Clock FIFO

Fig. 6 shows a working environment of the proposed dual-
clock FIFO, which is used to transfer data through a producer

1128 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 10, OCTOBER 2007

Fig. 6. Example usage of the proposed dual-clock FIFO for transferring data between producer and consumer blocks that each contain haltable oscillators. Note
that the architecture supports halting the clock oscillators, and not just stopping the local FIFO clock. The two� variables represent delays from the producer to
the consumer with � equal to the delays for data in and wr valid, and � equal to the delay for clk wr.

Fig. 7. High-level diagram of the blocks within the proposed dual-clock FIFO.

and a consumer. The clocks of the producer and consumer
(and) are completely unrelated.

The producer sends signals such as data , control
, and clock to the consumer through a com-

munication channel with delays and . The communica-
tion delay for these signals and the additional clock tree delay
for the clock signal will change timing and may not meet timing
requirements. A skew control block, which includes reconfig-
urable delays, is inserted to balance the timing between signals.
The FIFO writes the received data into an SRAM under the con-

trol of the producer’s clock and reads from the SRAM
under the control of the consumer’s clock .

More details of the FIFO’s architecture are given in Fig. 7.
The WRITE logic shown on the left-hand side of the figure is
separated by a dashed line from the READ logic on the right-hand
side.

The FIFO WRITE or READ functions are halted when the FIFO
is full or empty, respectively. In order to achieve higher energy
efficiency, the circuit’s oscillator—not just the local clock
for the FIFO—is stopped when the FIFO is halted. Signals

APPERSON et al.: SCALABLE DUAL-CLOCK FIFO FOR DATA TRANSFERS 1129

and , generated by logic
and equivalence blocks, respectively, are used for the clock stop
and wake up logic that is further described in Section IV-E.

READ and WRITE address pointers are used to indicate the be-
ginning and end of the valid data. To prevent multibit word fail-
ures while crossing the clock domain boundaries, the address is
transformed to a Gray code representation. Sync blocks are used
to synchronize the information which is passed across the clock
boundary. A configurable multiple register synchronization cir-
cuit is used to alleviate metastability issues.

The FIFO calculates whether or not it is empty on the READ

side. If the FIFO is not empty, the consumer asserts a request
signal indicating it would like data. The FIFO indicates whether
or not it is full on the WRITE side. The producer should only
send data when the FIFO is not full and it indicates valid data
by asserting a signal. Ideally, the producer should
stop writing data immediately when the FIFO is . But in
order to stop writing the FIFO, the producer needs to receive
the FIFO signal, through some WRITE logic, then it stops
sending data. These steps may cost several clock cycles through
the and delays. A configurable reserve space (described
in Section IV-C) is added to guarantee correct functionality.

B. Address Pointer and Gray Coding

The proposed architecture utilizes READ and WRITE address
pointers to track occupancy of the FIFO. The pointers are in-
creased to 1 bits to allow straightforward use of all
memory words. Because many applications do not allow local
clock pausing, the technique of increasing the metastability res-
olution time is used to pass pointers across clock domains.

Since the address pointers are susceptible to multibit word
failures, they are transformed to a gray code representation
before being passed across the clock boundary. Addresses are
then converted back to binary format in the other domain since
arithmetic is most naturally performed on binary numbers. As
described in Section III-C, this approach guarantees correct
pointer transfer regardless of relative clock frequencies or
pausing. In the case where the old pointer value is received,
the pointer will merely be interpreted as having remained at its
old location (i.e., no READs or WRITEs have occurred). While
this potentially adds latency to the system, it will never cause
incorrect FIFO operation.

Special circuits are required to convert pointers between
binary and Gray code formats. Given an -bit binary vector

, the equations in (3) can be used to
convert to an -bit gray coded vector ,
where “ ” indicates the sum ignoring the carry. This can be
accomplished using the XOR function. The worst case gate
delay for this calculation is one XOR gate; a total of XOR

gates are required

(3)

To convert back to binary, the equations in (4) can be used
where “ ” indicates the sum ignoring the carry. These calcu-
lations have a worst case gate delay of XOR gates for an

-bit vector and require a total of XOR gates. If necessary,
techniques can be used to reduce this worst case delay [13]

(4)

When exchanging address pointers, it is crucial to take into
account memory core READ and WRITE latencies to avoid data
corruption and loss. Delays that compensate for these latencies
consist of registers placed immediately before the data synchro-
nization circuits as indicated in Fig. 7.

C. Reserve Space and Detector

Some applications require multicycle delays between a FIFO
and the interfacing data producer or consumer. When multiple
clock cycles separate the FIFO from the consumer, there is a
possibility that data requests will be made to the FIFO that it will
not be able to fulfill. This normally does not present a problem
since a control signal (e.g.,) accompanying READ data
can prevent the misinterpretation of unfulfilled READ requests.
However, when multiple clock cycles separate the FIFO from
the data producer, the possibility of overflow exists if special
precautions are not taken. Fig. 6 illustrates this case showing the
critical path from the detection logic through the data pro-
ducer’s logic, and back to the FIFO’s WRITE port. Prevention of
overflow can be accomplished in one of two ways: either by the
addition of a secondary FIFO, or by the FIFO signaling the data
producer to stop writing when its occupancy reaches a certain
level before it is full (which we call space). This space
unfortunately reduces the effective size of the memory under
many conditions. Because of its simpler implementation, the
second method will generally result in a more efficient design.

Space left in the FIFO is determined by the difference be-
tween the two pointers. If the difference is less than or equal to
the value, the FIFO must signal the producer to stop
sending data. Any data left in the pipeline between the producer
and the FIFO is safely written to the reserve space. Additional
logic can be added to intelligently request small bursts of data
to utilize some of the reserve space when it is unused.

In order to detect the FIFO full situation, we examine the
case of a nonzero reserve space. Since is the
occupancy of the memory, the signal threshold is then

(5)

(6)

We prefer the form in (6) because a value can easily be tested
to be greater than or equal to when using 1 bit
words by checking the MSB of the sum—the inequality is true
if the . The left-hand side of (6) is calculated with

1130 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 10, OCTOBER 2007

Fig. 8. Synchronizer element with configurable metastability resolution time.

a three-input, 1 bit adder. While converting values
to signed 2’s complement form will certainly work, it is not re-
quired and simple unsigned values will work properly for all
cases since modulo arithmetic will effectively map all nega-
tive values to their value plus . A fast single carry-save adder
stage followed by a carry-propagate stage with simplified full
adders results in very fast calculation times [13].

Other required arithmetic logic for the read and write sides is
roughly equivalent. Binary incrementers are needed for address
generation, and comparators (a bitwise XNOR and a wide AND)
are needed for empty detection.

D. Synchronizers

Because of its simplicity and robustness, we chose a pipeline
synchronizer to synchronize address pointers. Additionally,
since the target system can run at various frequencies, a con-
figurable length synchronizer decouples the resolution time
from the clock frequency. In this way at high frequencies, more
stages can be used to ensure reliability, but at lower frequencies
the number of stages can be reduced for lower latency. The
synchronizer circuit is shown within the dotted line box in
Fig. 8.

The unsynchronized path was originally in-
cluded only for metastability characterization purposes and it
was thought it would not be used in normal operation. However,
no errors were observed with this configuration in actual silicon
measurements for more than 10 FIFO transactions. This phe-
nomena can be explained as follows using Fig. 8: although the
probability of Sync Output becoming metastable is likely to be
high with , it does not directly result in a FIFO
failure; instead, the synchronized signals are used to determine
the memory rd/wr enable signals in a following pipe stage and
the FIFO operation fails only when those later signals are in-
correct. Since the delay of the logic after Sync Output is much
less than one clock period in this design, an additional settling
time for asynchronous signals further reduces the likelihood of
metastability in critical circuitry.

Using the methods described by Jex and Dike [20] for es-
timating the metastability time constant , and Portmann and

TABLE II
METASTABILITY PARAMETERS FROM HSPICE NUMERICAL SIMULATOR

(test conditions = 100 C AND V = 1.62 V)

Meng’s [23] method for estimating , the estimated worst
case and measurements for the synchronizer are given in
Table II. Table III shows the estimated mean time between fail-
ures (MTBF) of the synchronizer architecture. When operating
at 500 MHz, which is the approximate clock rate of the fabricated
chip, even the case of the unsynchronized path () has
an MTBF of more than 10 years. Details of the measurement
procedures and results are discussed elsewhere [13].

E. Clock Halting and Restarting

1) Clock Halting and Restarting Method: To make the FIFO
function correctly, the producer should stop writing data when
the FIFO is full, and the consumer should stop reading data
when the FIFO is empty. For high power efficiency, a novel ar-
chitecture is added to the FIFO which can stop the WRITE and
READ clock during these situations. The method is explained by
an example shown in Fig. 9 where the WRITE clock , halts
and restarts in a full FIFO situation. The figure shows the WRITE

clock and READ clock are unrelated and can change at any time.
As shown in Figs. 6 and 7, the FIFO full status is checked at

the WRITE side. The signal is generated by comparing the
write address and synchronized READ address under the control
of . The rising edge of indicates that the can
be halted when the processor is in a safe state.

The should be restarted quickly when the FIFO is
READ by the consumer and exits from full status. But, at that
time, stays high since it is controlled by the halted ,
and cannot be used to wake up the clock. The replica signal of

, called , is used to solve this deadlock problem.
is calculated at the READ side. This signal is gener-

ated by comparing the READ address and the synchronized WRITE

address, under the control of . Since is con-
trolled by , it goes low when the FIFO is read. Therefore,
it can be used to wake up , then goes low at the rising
edge of and the system is back in normal operation.

A similar situation exists in the empty situation. The signal
is generated at the read side and is used to stop ,

and the signal generated in the WRITE side is used
to wake up .

It is worth noting that and do not
require any synchronization circuits when they cross the clock
domain boundary since they activate logic only when one clock
domain is off.

2) Implementation of Clock Halting and Restarting Logic:
There are several ways to implement the clock halt and restart
logic. The most straightforward method is to use rising edge de-
tectors to check signal and falling edge detectors to check
signal , then stop or restart the clock as shown in
Fig. 9. Two traditional rising edge detector circuits are shown
in Fig. 10. One method, shown in Fig. 10(a), is to connect the

APPERSON et al.: SCALABLE DUAL-CLOCK FIFO FOR DATA TRANSFERS 1131

TABLE III
ESTIMATED MEAN TIME BETWEEN FAILURES USING SYNCHRONIZER FROM FIG. 8 AND WORST CASE SIMULATED DEVICE PARAMETERS

(T = 720 ps, � = 30.5 ps, t = 300 ps, t = 50 ps, AND t = 700 ps)

Fig. 9. WRITE clock halting due to the full FIFO and restarting due to non-full
FIFO.

Fig. 10. Traditional methods to detect signal rising edge.

desired signal directly into the clock port of a flip-flop. The cir-
cuit is simple, but it is sensitive to noise and is not safe for many
physical design flows. Another method, shown in Fig. 10(b),
is to use two registers to check changing data. This is a safe
method, but requires the availability of the clock signal, which
is not guaranteed in our situation.

In the proposed design, simple and safe combinational logic
is used to control the clock halt and restart functions. This struc-
ture slightly changes the scheme shown in Fig. 9: is
stopped when both and are high, and is
restarted when either of them goes low. This logic can be simply
implemented using an AND gate. The same logic exists in the
FIFO empty situation: is stopped when both and

are high, and it is restarted when either of them
goes low.

The simplified clock halt and restart circuit block diagram is
shown in Fig. 11. The and signals
are discussed in Section IV-E3.

3) The Consistent Signals: Simply using the combination of
and to stop the clock results in wasted power

dissipation in some cases. One example is shown in Fig. 12.
As shown in Fig. 12, the producer is stopped due to its own
FIFO being empty and its clock is, therefore, off. When
the consumer FIFO becomes , it is supposed to stop its
clock too. However, in the consumer is controlled
by the producer’s clock, , which is halted. As a result,

stays low and the consumer’s clock keeps
running and wastes power.

Fig. 11. Simplified clock halting and restarting circuit.

Fig. 12. Example showing clock stopping with a stuck-on consumer’s clock
before using the consistent signal.

The consistent signal is added into the clock control circuit to
solve this problem, as shown in Fig. 11. For the processor to halt,
it must either read an empty FIFO (and
from internal signals), or write a full FIFO (and
from external signals). Stalling also requires the
and to be high.

The key point is thus: oscillators must be turned on briefly
when critical information is inconsistent in the two clock do-
mains of the FIFO until the inconsistency is resolved.

The signal is high when both and
from internal signals are the same. is high

when both and from external signals are
the same. Fig. 13 shows the modified waveform of Fig. 12 after
adding the consistent signal. When the consumer FIFO becomes
empty, and signals do not match therefore

goes low. As a result, it wakes up the producer’s
clock, which makes go high. Thus, after
a few cycles both producer processor and consumer processor
will stop their clocks correctly.

1132 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 10, OCTOBER 2007

Fig. 13. Example showing clock stopping with a properly stalled consumer’s
clock oscillator using the consistent signal.

V. HARDWARE IMPLEMENTATIONS OF THE DUAL-CLOCK FIFO

Two implementations of the proposed dual-clock FIFO archi-
tecture have been built: a full-custom design and a standard cell
based design. The standard cell design is used in a multipro-
cessor GALS chip.

A. Full-Custom Implementation

A 32-word implementation of the proposed dual-clock archi-
tecture is designed in a 0.18- m CMOS technology utilizing a
full-custom design approach and scalable design rules.

HSPICE simulation estimates from extracted layout predict
the critical path on the write side consists of the Gray-to-bi-
nary converter, adder, and a flip-flop. The delays under typ-
ical conditions are 535, 515, and 250 ps, respectively. The total
minimum cycle time delay is approximately 1.3 ns. The read
side’s critical path delay is also 1.3 ns. The resulting maximum
clock frequency for the entire FIFO is, therefore, approximately
770 MHz.

The final design supports a throughput of one datum per clock
cycle up to its maximum clock frequency. This occurs when the
consumption and production rates are similar and is not lim-
ited by the clock frequency. The minimum latency is an im-
precise number since it depends on the phases and frequencies
of the read and write clocks and the synchronizer’s configura-
tions. With two synchronization registers, latency is bounded to
no more than three WRITE clock cycles plus three READ clock
cycles—which corresponds to 7.8 ns with both clocks at their
maximum frequency in this design.

The layout of the dual-clock FIFO module without global
wiring is shown in Fig. 14. It occupies approximately
44 761 m of active area with a minimum rectangle area
of 66 500 m . This area is larger than it otherwise would be
for three major reasons: 1) transistor sizes are large and circuits
are optimized for high speed, 2) layout is done using relaxed
scalable design rules that allow easy portability across many
vendors and technology generations, but also significantly
increase area, and 3) the layout is a first-generation design and
has not been significantly optimized for reduced area. Table IV
shows the active areas for the individual components of the
FIFO.

Fig. 14. Final layout for the dual-clock FIFO module.

TABLE IV
AREA BREAKDOWN FOR THE FIFO HARDWARE MODULE

B. Standard Cell Based Implementation

The proposed FIFO is also implemented in 0.18- m CMOS
using standard cells in a GALS multiple processor array [14].

The chip contains multiple simple processors. Each processor
is clocked by its local oscillator that is totally unrelated to other
processors. Each processor contains two dual-clock FIFOs de-
scribed in this paper for inter-processor communication. We be-
lieve this is the first chip implementing a GALS array processor.
Fig. 15 shows a detail of the chip micrograph including two
neighboring processors.

The chip is fully functional on first-pass silicon running above
580 MHz at 1.8 V. To test the robustness of the FIFO, sev-
eral test programs with different configurations of reserve space,
delay, and synchronization were created. The test programs uti-
lize groups of five processors, all running at different clock fre-
quencies and arbitrarily halting and restarting. Clock oscillators
come cleanly out of their halted state to full rate in less than
one clock cycle and present no special challenges to READ and
WRITE logic. Measurements verify correct operation over more
than 10 FIFO transactions. Combined FIFO READ and WRITE

operations consume 10.3 mW at 580 MHz and 1.8 V.
Several applications are mapped onto the GALS chip. A con-

figurable test bit allows disabling of the clock halting method
described in this paper. Measurements show the clock halting
method reduces power dissipation by 53% and 65% for two
complex multiprocessor applications.

APPERSON et al.: SCALABLE DUAL-CLOCK FIFO FOR DATA TRANSFERS 1133

Fig. 15. Chip micrograph of two processors in a GALS chip, where each pro-
cessor contains two of the proposed dual-clock FIFOs.

VI. CONCLUSION

The proposed dual-clock FIFO architecture is well suited for
many dual-clock applications and achieves high energy effi-
ciency, good scalability and area utilization, high clock rates,
and arbitrarily high robustness. This architecture can be utilized
as a drop-in module to many applications.

The FIFO is implemented using 0.18- m standard cell tech-
nology and embedded in a GALS array processor. The FIFO oc-
cupies 25,000 m and operates over 580 MHz at 1.8 V, with si-
multaneous FIFO READs and FIFO WRITEs consuming 10.3 mW
under those conditions.

ACKNOWLEDGMENT

The authors would like to thank R. Krishnamurthy, M. An-
ders, S. Mathew, E. Work, other members of the VCL Labora-
tory, and Artisan for their support and assistance.

REFERENCES

[1] R. Ho, K. W. Mai, and M. A. Horowitz, “The future of wires,” Proc.
IEEE, vol. 89, no. 4, pp. 490–504, Apr. 2001.

[2] G. Semeraro and G. Magklis et al., “Energy-efficient processor de-
sign using multiple clock domains with dynamic voltage and frequency
scaling,” in Proc. Int. Symp. High-Perform. Comput. Arch., 2002, pp.
29–40.

[3] D. M. Chapiro, “Globally-asynchronous locally-synchronous sys-
tems,” Ph.D. dissertation, Dept. Comput. Sci., Stanford Univ.,
Stanford, CA, 1984.

[4] W. J. Dally and J. W. Poulton, Digital Systems Engineering. Cam-
bridge, U.K.: Cambridge Univ. Press, 1998.

[5] M. Balch, Complete Digital Design, 1st ed. New York: McGraw-Hill,
2003.

[6] J. Ebergen, “Squaring the FIFO in GasP,” in Proc. Int. Symp. Asynch.
Circuits Syst., 2001, pp. 194–205.

[7] C. E. Molnar, I. W. Jones, W. S. Coates, and J. K. Lexau, “A FIFO ring
performance experiment,” in Proc. Int. Symp. Asynch. Circuits Syst.,
1997, pp. 279–289.

[8] M. R. Greenstreet, “Implementing a STARI chip,” in Proc. IEEE Int.
Conf. Comput. Des., 1995, pp. 38–43.

[9] A. Chakraborty and M. R. Greenstreet, “Efficient self-timed interfaces
for crossing clock domains,” in Proc. Int. Symp. Asynch. Circuits Syst.,
2003, pp. 78–88.

[10] J. N. Siezovic, “Pipeline synchronization,” in Proc. Int. Symp. Asynch.
Circuits Syst., 1994, pp. 87–96.

[11] T. Chelcea and S. M. Nowick, “A low-latency FIFO for mixed-clock
systems,” in Proc. IEEE Comput. Soc. Workshop VLSI, 2000, pp.
119–126.

[12] C. Cummings, “Simulation and synthesis techniques for asynchronous
FIFO design,” Synopsys Users Group, San Jose, CA, 2002.

[13] R. W. Apperson, “A dual-clock FIFO for the reliable transfer of high-
throughput data between unrelated clock domains,” M.S. thesis, Dept.
Electr. Comput. Eng., Univ. California, Davis, CA, 2004.

[14] Z. Yu, M. Meeuwsen, R. Apperson, O. Sattari, M. Lai, J. Webb, E.
Work, T. Mohsenin, M. Singh, and B. Baas, “An asynchronous array of
simple processors for DSP applications,” in Proc. IEEE Int. Solid-State
Circuits Conf., 2006, pp. 428–429, 663.

[15] I. Sutherland, “Micropipelines,” Commun. ACM, vol. 32, no. 6, pp.
720–738, Jun. 1989.

[16] E. Brunvand, “Low latency self-timed flow-through fifos,” in Proc.
Adv. Res. VLSI, 1995, pp. 76–90.

[17] J. T. Yantchev, C. G. Huang, M. B. Josephs, and I. M. Nedelchev, “Low
latency asynchronous FIFO buffers,” in Proc. Asynch. Des. Method.,
1995, pp. 24–31.

[18] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Cir-
cuits, A Design Perspective. Upper Saddle River, NJ: Prentice-Hall,
2003.

[19] C. J. Myers, Asynchronous Circuit Design. New York: Wiley, 2001.
[20] J. Jex and C. Dike, “A fast resolving BiNMOS synchronizer for parallel

processor interconnect,” IEEE J. Solid-State Circuits, vol. 30, no. 2, pp.
133–139, Feb. 1995.

[21] M. Pechoucek, “Anamolous response times of input synchronizers,”
IEEE J. Solid-State Circuits, vol. 25, no. 2, pp. 133–139, Feb. 1976.

[22] C. L. Seitz, “System timing,” in Introduction to VLSI Systems, C. A.
Mead and L. A. Conway, Eds. Reading, MA: Addison-Wesley, 1980,
ch. 7.

[23] C. L. Portmann and T. H. Y. Meng, “Metastability in CMOS library
elements in reduced supply and technology scaled applications,” IEEE
J. Solid-State Circuits, vol. 30, no. 1, pp. 39–46, Jan. 1995.

Ryan W. Apperson received the B.S. degree in elec-
trical engineering (magna cum laude) from the Uni-
versity of Washington, Seattle, and the M.S. degree
in electrical and computer engineering from the Uni-
versity of California, Davis.

He is currently an IC Design Engineer with
Boston Scientific CRM Division, Redmond, WA.
His research interests include multiclock domain
systems and SRAM design.

Zhiyi Yu received the B.S. and M.S. degrees in elec-
trical engineering (with honors) from Fudan Univer-
sity, Shanghai, China. He is currently pursuing the
Ph.D. degree in electrical and computer engineering
from the University of California, Davis.

He was a key contributor and designer of the
36-processor programmable GALS Asynchronous
Array of simple Processors (AsAP) chip. His
research interests include high-performance and
energy-efficient digital VLSI design with an em-
phasis on many-core GALS clocking and efficient

processor interconnects.

1134 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 10, OCTOBER 2007

Michael J. Meeuwsen received the B.S. degrees with
honors in electrical engineering and computer engi-
neering (both summa cum laude) from Oregon State
University, Corvallis, and the M.S. degree in elec-
trical and computer engineering from the University
of California, Davis.

He is currently a Hardware Engineer with Intel
Digital Enterprise Group, Hillsboro, OR, where
he works on CPU hardware design. His research
interests include digital circuit design and IEEE
802.11 a/g algorithm mapping.

Tinoosh Mohsenin received the B.S. degree in elec-
trical engineering from Sharif University, Tehran,
Iran, and the M.S. degree in electrical and computer
engineering from Rice University, Houston, TX. She
is currently pursuing the Ph.D. degree in electrical
and computer engineering from the University of
California, Davis.

She is the designer of the Split-Row and Multi-
Split-Row Low Density Parity Check (LDPC)
decoding algorithms. Her research interests include
energy efficient and high performance signal pro-

cessing and error correction architectures including multi-gigabit full-parallel
LDPC decoders and many-core processor architectural design.

Bevan M. Baas (M’99) received the B.S. degree in
electronic engineering from California Polytechnic
State University, San Luis Obispo, in 1987, and the
M.S. and Ph.D. degrees in electrical engineering from
Stanford University, Stanford, CA, in 1990 and 1999,
respectively.

In 2003, he became an Assistant Professor with the
Department of Electrical and Computer Engineering,
University of California, Davis. He leads projects in
architecture, hardware, software tools, and applica-
tions for VLSI computation with an emphasis on DSP

workloads. Recent projects include the Asynchronous Array of simple Proces-
sors (AsAP) chip, applications, and tools; low density parity check (LDPC) de-
coders; FFT processors; viterbi decoders; and H.264 video codecs. From 1987
to 1989, he was with Hewlett-Packard, Cupertino, CA, where he participated
in the development of the processor for a high-end minicomputer. In 1999, he
joined Atheros Communications, Santa Clara, CA, as an early employee and
served as a core member of the team which developed the first IEEE 802.11a
(54 Mb/s, 5 GHz) Wi-Fi wireless LAN solution. During the summer of 2006 he
was a Visiting Professor in Intel’s Circuit Research Lab.

Dr. Baas was a National Science Foundation Fellow from 1990 to 1993 and
a NASA Graduate Student Researcher Fellow from 1993 to 1996. He was a re-
cipient of the National Science Foundation CAREER Award in 2006 and the
Most Promising Engineer/Scientist Award by AISES in 2006. He is an Asso-
ciate Editor for the IEEE JOURNAL OF SOLID-STATE CIRCUITS and has served as a
member of the Technical Program Committee of the IEEE International Confer-
ence on Computer Design (ICCD) in 2004, 2005, and 2007. He also serves as a
member of the Technical Advisory Board of an early stage technology company.

