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ASAP: A FINE-GRAINED MANY-
CORE PLATFORM FOR DSP

APPLICATIONS
.....................................................................................................................................................................................................................................................

MANY EMERGING AND FUTURE APPLICATIONS REQUIRE SIGNIFICANT LEVELS OF COMPLEX

DIGITAL SIGNAL PROCESSING AND OPERATE WITHIN LIMITED POWER BUDGETS.

MOREOVER, DRAMATICALLY RISING VLSI FABRICATION AND DESIGN COSTS MAKE

PROGRAMMABLE AND RECONFIGURABLE SOLUTIONS INCREASINGLY ATTRACTIVE. THE

ASAP PROJECT ADDRESSES THESE CHALLENGES WITH A CHIP MULTIPROCESSOR

COMPOSED OF SIMPLE PROCESSORS WITH SMALL MEMORIES, ACHIEVING HIGH ENERGY

EFFICIENCY AND THROUGHPUT IN A SMALL CHIP AREA.

......Applications that require the com-
putation of complex, multitask digital-
signal processing (DSP) workloads are
becoming increasingly commonplace. Such
applications include wired and wireless
communications, multimedia, sensor signal
processing, and medical devices. Many are
embedded and are key components in their
host systems—which commonly exist in
high-volume products.

In developing a suitable computing
platform for these target applications, we
adopted the following characteristics as
goals. The platform should be

N highly energy efficient under all oper-
ating conditions;

N capable of high performance (to serve
the broadest range of applications, we
target workloads varying in require-
ments from low to very high rates);

N programmable or reconfigurable and
easy to program using a high-level
language; and

N well-suited for future fabrication tech-
nologies. (The key relevant differences
in deep-submicron CMOS technolo-
gies include extremely large numbers
of available transistors, very expensive
one-time fabrication and design costs,
relatively slow ‘‘long’’ wires, large
variations in both transistors and
wires, and high leakage currents.)

The result of our work on these goals is
AsAP, the Asynchronous Array of simple
Processors. We geared AsAP’s design toward
both handling the task-level parallelism
inherent in DSP applications and making
best use of the capabilities of deep-sub-
micron technology while avoiding many
of its limitations. Organized as a chip-
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multiprocessor composed of many small
and simple processing elements, with glob-
ally asynchronous, locally synchronous
(GALS) clocking, and a nearest-neighbor
mesh interconnect, AsAP achieves greater
performance per area and better energy-
efficiency than current DSPs. It is also many
times smaller.

Motivating observations

You know you have achieved perfection
in design, not when you have nothing
more to add, but when you have nothing
more to take away.
—Antoine de Saint Exupéry

Several observations about our target
applications and fabrication technologies
motivated the many design decisions that
resulted in AsAP. Here, we discuss four of
the most significant points.

Modern DSP applications often consist of
multiple cascaded simple tasks. An example
of a modern demanding application is the
digital baseband processor for an IEEE
802.11a/11g wireless LAN transmitter.
Figure 1 shows a simplified block diagram
of the transmitter and the cascading flow of
data between tasks. Clearly, the computa-
tion of these tasks on a traditional architec-
ture consisting of a very fast CPU fed by
a multilevel memory hierarchy would result
in significant memory traffic. It is reason-
able that an architecture that more closely
models the application composition would
require less data movement and likely less
total memory as well.

Task-level parallelism in modern DSP
applications is often easy to find; in fact, the

IEEE specification contains a diagram very
similar to Figure 1. This motivated us to
pursue task-level parallelism in our design
ahead of data- and instruction-level paral-
lelism.

We expect the shift of application
structures to ones with high levels of task-
level parallelism to not only continue, but
to intensify. Recent generations of applica-
tions are often not merely faster versions of
previous generations but are typically far
more complex in structure and contain
a wider variety of subtasks (for example,
802.11n vis-à-vis 802.11b, and H.264 vis-à-
vis MPEG-2), which makes their computa-
tion with traditional architecture processors
even less efficient.

Common DSP tasks often require less than
several hundred words of memory for both
instructions and data. Memory occupies
much of the area in modern processors—
often in the range of 55 to 75 percent of the
processor’s area.1 This has the unfortunate
side effect of reducing the area available for
datapath circuits, which are really the reason
for the processor’s existence, especially in
the DSP domain.

As Table 1 shows, the numbers of
instructions and data words required to
compute several common DSP tasks are far
smaller than the amount of memory found
in modern processors, which typically
ranges from 10 Kbytes to 10 Mbytes.
Reducing memory sizes can result in
significant area and power reductions.

Large wire delays and large variations in
device and wire performance in future
fabrication technologies increasingly compli-
cate the distribution of high-speed and low-

Figure 1. Block diagram of an IEEE 802.11a/11g wireless LAN baseband transmitter, DAC: digital-to-analog converter.
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skew clock and data signals. It is well
known that long on-chip wires scale poorly
in deep-submicron technologies. Although
architectures can compensate for long wire
delays to some extent, large variations in
these wire delays provide a considerable
challenge to achieving correct functionality
in processors. Thus, a clocking and proces-
sor interconnect methodology that avoids
long wires will likely require less design time
and will scale to larger sizes far more easily.

The most efficient processing element contains
sufficient resources to capture the computa-
tional kernels of the targeted workloads, and
no more. It is clear that a processing ele-
ment with more circuit resources than
necessary will be slower and consume more
power and chip area than a processor
without excess resources. It also makes sense
that a design with very small processing
elements (for example, FPGA logic cells)
will also be slower, more power hungry, and
larger if it requires many routing resources
to map a computation kernel.

The AsAP architecture
Inspired by these and other observations,

four key features enable AsAP to compute
the targeted workloads with high energy

efficiency, high throughput, and small chip
area.

Chip multiprocessor
The traditional method of achieving high

performance has been to rely mainly on
high clock rates at the expense of deeper
pipelines and increased design complexity.
Especially for DSP workloads, in which
data-level and task-level parallelism are
abundant, considering highly parallel archi-
tectures makes sense. AsAP takes full
advantage of parallelism with very fine-
grained processing elements that permit
large numbers of processors per die.

Small memories and simple processors
Each AsAP processor is a simple, single-

issue processor with a 64-word 3 32-bit
instruction memory, a 128-word 3 16-bit
data memory, a 16-bit ALU, a 16 3 16-
bit multiplier with a 40-bit accumulator,
and four programmable address generators.
Each processor uses memory-to-memory in-
structions with no register file, and provides
no support for branch prediction, out-of-
order execution, or speculative operations.

Each processor supports 54 very general
instructions, among which only the bit-
reverse is algorithm specific (used for FFT
address calculations). This is in line with
our philosophy that the greatest usefulness
of programmable processors is in comput-
ing future, presently unknown workloads.
Although this choice hinders AsAP’s per-
formance on common benchmarks, it
makes the platform suitable for a much
broader spectrum of workloads.

Independent and haltable GALS clocking
Each processor is a completely standard

digital machine clocked by a single syn-
chronous clock signal. However, each pro-
cessor also has its own digitally program-
mable clock oscillator that is fully in-
dependent from all other oscillators. There
are no clock crystals, phase-locked loops,
delay-locked loops, or global frequency or
phase-related signals; and the system is
globally asynchronous, locally synchronous
(GALS). The oscillators are truly indepen-
dent—they can change their frequency over
their full range (1.66 to 600+ MHz in our

Table 1. Instruction and data words required for common DSP

tasks for a simple memory-to-memory processor with a basic ALU

and hardware multiplier.

Task

Instruction memory

required (no. of

words)

Data memory

required (no. of

words)

N-point FIR filter 6 2N

8-point DCT 40 16

838 2D DCT 154 72

Convolutional coder (k 5 7) 29 14

Huffman encoder 200 330

N-point convolution 29 2N

64-point complex FFT 97 192

Bubble sort 20 1

N-element merge sort 50 N

Square root 62 15

Exponential (ex ) 108 32..........................................................................................................................
FIR: finite impulse response; DCT: discrete cosine transform; FFT: fast
Fourier transform
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fabricated chip), halt, and restart arbitrarily.
Each oscillator occupies less than 1 percent
of its processor’s area.

Independent clocking lets each oscillator
halt when its host processor is idle, thus
reducing power dissipation. Oscillators fully
halt in nine cycles when there is no work to
do, and restart at full speed in less than one
cycle after work is available. Processors stall
either when they execute a FIFO read and
the FIFO buffer is empty, or when they
execute an output port write and the port is
full. Processors dissipate zero active power
(leakage only) while stalled.

A second benefit of GALS clocking is that
processor clock speeds can be precisely
adjusted to match the workloads of individual
processors.2 Although the first AsAP chip
does not implement per-processor voltage
scaling, a design using joint voltage and
frequency scaling could achieve even greater
power reductions.

Unfortunately, independent clocking
comes at a cost—namely, the circuits re-
quired to reliably transfer data across
independent clock domains. AsAP’s solu-
tion is to use a special dual-clock FIFO
design with its write port clocked in one
clock domain and its read port clocked in
another domain. Address pointers are gray-
coded (a number coding scheme where
adjacent codes are guaranteed to differ by
only one bit), so the worst-case failure is
a single metastable bit. The design reduces
the probability of a metastable bit to
extremely low levels at the expense of
additional FIFO latency through a con-
figurable number of synchronization regis-
ters. We have operated multiple processors
with only one synchronization register for
several weeks without observing a single
failure.

Nearest-neighbor interprocessor communication
Because of its excellent match with planar

fabrication technologies, high scalability,
and low overhead, AsAP uses a circuit-
switched, nearest-neighbor network to con-
nect processors. Whereas packet-switched
networks generally work better for random
and dynamically changing communication
patterns, most DSP and embedded tasks
exhibit fixed communication patterns that

can be largely localized by careful task
placement, and are efficiently handled by
a circuit-switched network. The network is
reconfigurable in the sense that each
processor’s two inputs can map to any two
of its four neighbors (north, south, east, or
west). Each processor also has four outputs
to the same four neighbors and can write to
any dynamically changing number or
pattern of them under program control.

The AsAP chip
We designed an AsAP chip containing

36 (6 3 6) processors and it was fabri-

Figure 2. Major blocks inside a single AsAP processor (a), and the AsAP

chip containing 36 processors (b). Despite having an input and output port

on each processor’s edge (24 in total), the array has one input port and one

multiplexed output port, an arrangement due solely to chip package

restrictions.

Figure 3. Die micrograph of the 36-

processor AsAP chip.
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cated in TSMC’s 0.18-micron CMOS
technology using standard cells, and it
is fully functional.3 Figure 2 shows the
block diagram. These are a few of the key
measurements:

N 520–540 MHz clock rates at 1.8 V (an
improved test environment allows us to
increase the maximum clock rate from
our previously reported 475 MHz3)

and clock rates over 600 MHz at
2.0 V for most processors;

N 32 mW average power for each pro-
cessor while executing applications at
475 MHz;

N 84 mW power for each processor
while 100 percent active at 475 MHz;

N 2.4 mW average application power per
processor at 0.9 V and 116 MHz, and

N 0.66 mm2 die area for each processor.

Figure 4. Comparisons of AsAP with other processors in terms of area breakdown (a) and

absolute area (b). All processors are scaled to 0.13 mm.1,4–8

Figure 5. Comparisons of approximate peak performance per area versus energy per

operation. Word widths and workload not factored. All processors are scaled to 0.13 mm.

We assume 2 operations/cycle for Cell/SPE and 3.3 operations/cycle for TI C64x.1,4–8
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If this exact design were implemented in
a 13-mm 3 13-mm chip in 90-nm CMOS
technology, it would contain more than
1,000 processors, operate at approximately
1 GHz, have a peak throughput of 1.0 tera-
operations per second, and dissipate only 10
to 15 W plus leakage when executing loads
equivalent to our target applications.

Figure 3 shows the abutted processor
tile structure that gives AsAP its great scala-
bility. There is an interesting story about
this chip’s history. The first AsAP design
was a 9-processor, 3 3 3 array. The week
before tapeout, we learned that additional
space was available on the run. So, we
redesigned the chip-level circuits, I/O
interfaces, pad ring, and power grid, and
moved the new 6 3 6 design through the
entire flow, all the way to GDSII (the
database format for an IC layout), all in just
10 hours. This GDSII was actually fabri-
cated. Our unexpected opportunity pro-
vided a real-life demonstration of how easy
it is to scale a processing array without any
global wires.

AsAP compares well with other proces-
sors, with 66 percent of each processor’s
area for the core, and also in terms of its
absolute processor area, as Figure 4 shows.
AsAP is 20 to 210 times smaller than the
other processors in the comparison.

AsAP also compares well in terms of its
energy efficiency and performance per chip
area. Figure 5 plots these two values against
each other—without considering, because
of a lack of available data, important factors
such as word widths and workload. When
scaled to the same technology, AsAP
achieves energy efficiencies very approxi-
mately on the order of 5.5 to several dozen
times better than the processors shown, and
performance densities on the order of 7.5 to
several dozen times better.

Programming the array
We have programmed many DSP and

general tasks on a varying number of AsAP
processors, including filtering; convolu-
tional coding; interleaving; sorting; square-
root calculations; CORDIC sin, cos, arcsin,
and arccos (coordinate rotation digital

calculations); matrix multiplication; pseu-
dorandom number generation; and complex
FFTs of lengths 32 to 1,024. We have also
programmed a complete k 5 7 viterbi
decoder, a JPEG encoder, and a complete,
fully compliant IEEE 802.11a/11g wireless
LAN baseband transmitter. Blocks com-
posed of any number of processors plug
directly together with no modifications
required whatsoever.

Programming the AsAP array follows
three basic steps:

1. Individual programs are written for
each task in either C or assembly
language. Figure 6 shows a program
that computes the CORDIC arcsin-
arccos. Reserved variables Ibuf0, Ibuf1,
and Obuf indicate input FIFO 0, input
FIFO 1, and the output port, respec-
tively.

2. Tasks are combined using either man-
ual configuration code or by linking
inputs and outputs of each task using
the mapping tool’s GUI shown in
Figure 7a. Each task processed by the
GUI is stored in a flexible XML format
which allows small programs to be
included directly in larger applications.

Figure 6. AsAP C program of a combined arcsin-arccos

generator.
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Figure 7. Screen snapshots of the auto-mapper’s hand-drawn processor graph (a) and automatically mapped output graph (b),

for the 22-processor IEEE 802.11a/11g wireless LAN transmitter shown in Figure 9. The tool was constrained to use a 5 3 5

array, and the ‘‘Router’’ processor in location 1,0 was automatically inserted by the auto-mapper to complete the mapping.

.......................................................................
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3. The AsAP C compiler, assembler, and
automatic mapping tool compile pro-
grams, map them to the 2D mesh of
processors, and produce a single bit file
that programs and configures the array
when loaded into the chip.

We have found AsAP’s memory restric-
tions to be less problematic than they might
appear at first. There is a strong analogy
between writing functions or subroutines in
a large single-threaded program and writing
programs for subtasks as part of a complex
application. Individual task programs en-
capsulate complexity and make the overall
application simpler to write.

Figure 8 shows our simplest (and slow-
est) JPEG encoder implementation. The
five component tasks are spread across nine
processors; the wide gray arrows indicate the
main data-flow path. The encoder is fully
functional on the chip, and at a clock rate of
300 MHz has similar performance with
Texas Instruments’ eight-way very long
instruction word (VLIW) TI C62x, but
with approximately 11 times lower energy
dissipation.9,10 Higher-performance imple-
mentations with more processors are clearly
possible.

One of our most complex applications to
date is the IEEE 802.11a/11g baseband
transmitter;11 Figure 9 shows the imple-
mentation. It is fully compliant with the
IEEE standard—including training sym-
bols, pilot subcarriers, and operation over
all eight rates—and it even includes upsam-
pling and filters that the standard does not
require. This application was written in
three months by one graduate student with
no prior knowledge of the standard and
a full load of classes, and it is lightly
optimized. The transmitter dissipates
407 mW at 300 MHz, which lets it operate
at 30 percent of full speed at the highest rate
of 54 Mbps. In comparison to a non-
comprehensive implementation on a Texas
Instruments eight-way VLIW C62x,12 this
implementation has 5 to 10 times higher per-
formance and 35 to 75 times lower energy
dissipation.

Although we took the JPEG and
802.11a/11g data with all processors oper-

ating at 300 MHz, the power dissipation is
only slightly less when we reduce the clock
frequencies of lightly loaded processors.
This is because the energy per operation is
not a function of the clock frequency, since
voltage scaling was not implemented—
except for the second-order effect of
additional overhead cycles to flush the
pipeline when entering a stall. Reducing
the clock frequencies of lightly loaded

Figure 8. Nine-processor AsAP

implementation of a JPEG encoder.

Figure 9. AsAP implementation of an IEEE 802.11a/11g

wireless LAN transmitter, using 22 processors.

........................................................................

MARCH–APRIL 2007 41



processors makes virtually no change in
throughput or latency.

Counter to intuition, the independently
clocked processors are actually well-suited
for many real-time applications. The final
processor in Figure 9, labeled Output sync,
is clocked by an external clock (the digital/
analog converter clock in this example) and
executes a trivial program moving data from
its input to its output. As long as processors
in the array are fast enough, hardware flow
control throughout the array prevents over-
flow and underflow, and the D/A converter
never misses a sample.

Automatic application graph mapping
onto the homogeneous AsAP array enables
some very interesting possibilities of bypass-
ing faulty or poorly performing processors
at the time of manufacture for yield en-
hancement, or for self-healing when pro-
cessors fail over time—for example, because
of negative bias temperature instability or
hot carrier injection effects.

‘‘Throw-away’’ processors:
A new paradigm

AsAP’s processors’ low power when un-
used (zero active power) and extremely
small size make processors so cheap that
they can be used for trivial tasks such as
serving as memories or routing data be-
tween distant processors.13 In this paradigm,

load balancing is far less important than low
idle-processor power and efficient applica-
tion graph mappings.

Using processors for trivial tasks runs
counter to many modern processor designs,
which often use very large circuit structures
to keep datapaths busy. Our approach
makes even greater sense in very deep-
submicron technologies, in which transis-
tors are even more abundant. Figure 10
puts AsAP’s area in perspective and illus-
trates the reason for its high efficiency and
great numbers.

Although AsAP’s key features of parallel
processors, small and simple processing

elements, GALS clocking, and nearest-
neighbor mesh interconnect distinguish it
from other previous and current parallel
processors, several processors share common
features. Examples include Transputer,14

systolic architecture,15 wavefront architec-
ture,16 PADDI,17 RAW,4 Synchroscalar,18

and the heterogeneous Picochip19 and
Cradle20 processors.

One of AsAP’s most significant limita-
tions is its inefficiency in computing work-
loads with active memory requirements far
larger than a few thousand words, such as
video applications and long-code, low-
density, parity-check (LDPC) decoders.
We are actively working on efficient archi-

Figure 10. Approximate scale die micrographs of the multicore processors AsAP, RAW,4

and Cell SPE,7 and the TI C64x1 DSP processor scaled to the same technology.
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tectures for including large shared memories
on chip. Our other ongoing efforts include
work on techniques to reduce leakage power
and on shared special-purpose accelerators.
We are also interested in expanding the
application base, including finding impor-
tant applications that could map to a float-
ing-point version of AsAP.

AsAP’s high performance and high ener-
gy efficiency compare well with modern
DSP processors. We believe architectures
like AsAP—that make good use of billions
of transistors, reduce design effort through
a tileable and homogeneous architecture,
eliminate long high-speed wires, and in-
trinsically accommodate some types of
process variations through clock tuning
and some circuit faults through remap-
ping—will become increasingly attractive in
deep-submicron fabrication technologies. MICRO
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For further information on this or any

other computing topic, visit our Digital

Library at http://www.computer.org/

publications/dlib.
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