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Target Applications 

• Computationally intensive DSP and scientific apps
– Key components in many systems
– Require high performance
– Limited power budgets
– Require innovations in architecture and circuit design



Project Objectives

• Programming flexibility
• High performance

– Throughput
– Latency

• High energy efficiency
• Suitable for future 

fabrication technologies
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Key Features of the 
AsAP Processor

Chip multiprocessor High performance

Small memory
& simple processor

High energy efficiency
Globally asynchronous

locally synchronous (GALS)
Technology scalability

Nearest neighbor 
communication



High Performance Through 
Chip Multiprocessor

• Increasing the clock frequency is challenging

• Parallelism is more promising
– Instruction level parallelism (VLIW, Superscalar)
– Data level parallelism (SIMD)
– Task level parallelism

Higher 
clock frequency

Increased design complexity
& lower energy efficiency

Deeper 
pipeline



Task Level Parallelism
• Well suited for DSP applications
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Memory Size in Modern Processors
• Memory occupies much of the area in modern 

processors — this reduces area available for 
the core and consumes large amounts of power

• Area and energy dissipation can be 
dramatically decreased with smaller memories
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Small Memory Requirements 
for DSP Tasks

• The memory required 
for common DSP 
tasks is quite small

• Several hundred 
words of memory are 
sufficient for many 
DSP tasks
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GALS Clocking Style
• The challenge of globally synchronous systems

– Design difficulty when using high clock frequencies, 
long clock wires caused by large chip sizes, and 
large circuit parameter variations

– High clock power consumption and lack of flexibility 
to independently control clock frequencies

• How about totally asynchronous design style
– Lack of EDA tool support
– Design complexity and circuit overhead

• The GALS compromise
– Synchronous blocks each operating in their own 

independent clock domain



Wires and On Chip Communication

• Global wires are a concern
– Their length doesn’t shrink with technology scaling—

assuming the chip size remains the same
– The ratio of global wire delay to gate delay doubles 

each generation
• Methods to avoid global wires

– Network on chip (NOC)
– Local communication
– Nearest neighbor communication

nearest local
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• GALS array of identical processors 

– Each processor is a reduced complexity programmable 
DSP with small memories

– Each processor can receive data from any two 
neighbors and send data to any of its four neighbors
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reset
halt

clk

Programmable Clock Oscillator

• Standard cell based
• Configurable frequency

– Delay tunable stages 
using 7 parallel tri-state 
inverters

– 5 or 9 stage selection
– 1 to 128 clock divider

• SR latch logic enables 
clean OSC halt

• Results
– 1.66 MHz – 702 MHz
– Max gap: 0.08 MHz

(1.66 – 500 MHz)
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• Each processor 
contains two 
dual-clock FIFOs

• Rd/Wr in separate 
clock domains
– Gray coded Rd/Wr

address across 
clock domains
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multiple procs

north

Binary    Gray 
& Sync.

addr addr

SRAM



Advantages of the
AsAP Clocking System

• Simplified clock tree design 
– The maximum span is < 1 mm in 0.18 µm

• Scalable – easy to add processors
• Improved energy efficiency

– Clock halts in 9 cycles (processor dissipates 
leakage power only) and restores in < 1 cycle 
according to work availability

– 53% and 65% power savings for two applications
– Independent clock and voltage scaling (individual 

processor voltage scaling not implemented in this 
version)



Physical Design 

• 0.18 µm TSMC
• Standard cell
• Design flow

– Completely synthesized, except oscillator
– Macro memory blocks used for four main memories
– Completely auto placed and routed

• To simplify physical design, clock gating not 
implemented in this version



Transistors:
1 Proc                      230,000
Chip                         8.5 million

Max speed:    475 MHz @ 1.8 V
Area:

1 Proc                      0.66 mm²
Chip                         32.1 mm²

Power (1 Proc @ 1.8V, 475 MHz):
Typical application      32 mW
Typical 100% active    84 mW
Worst case                144 mW

Power (1 Proc @ 0.9V, 116 MHz):
Typical application    2.4 mW

Single
Processor

OSC FIFOs

DMemIMem

810 µm
5.65 mm

810 
µm

5.68 
mm

Chip Micrograph of the 6 x 6 Array
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Area Evaluation

• Most of AsAP’s area is for the core (66%)
• Each processor requires a very small area; 

more than 20x smaller than others
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Power and Performance
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Implementation

• 9 processors
• Fully functional on chip
• 224 mW @ 300 MHz
• ~1400 clock cycles for 

each 8x8 block
• Similar performance and 

~11x lower energy 
dissipation than
8-way VLIW TI C62x
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• 22 processors
• Fully functional on chip
• 407 mW @ 300 MHz 

30% of 54 Mb/s
• Code unscheduled and 

lightly optimized
• ~10x performance and 

35x – 75x lower energy 
dissipation than 8-way 
VLIW TI C62x
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Summary
• Scalable programmable processing array

– Many processors on a single chip
– Reduced complexity processors with small memories
– GALS clocking style
– Nearest neighbor communication

• Results
– 0.18 µm, 475 MHz @ 1.8 V

• 32 mW application power
• 84 mW 100% active power
• 2.4 mW application power @ 116 MHz and 0.9 V

– High performance density: 475 MOPS in 0.66 mm²
– Well suited for future fabrication technologies
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